1 |
62 |
marcus.erl |
|
2 |
|
|
#ifdef CONFIG_SCHEDSTATS
|
3 |
|
|
/*
|
4 |
|
|
* bump this up when changing the output format or the meaning of an existing
|
5 |
|
|
* format, so that tools can adapt (or abort)
|
6 |
|
|
*/
|
7 |
|
|
#define SCHEDSTAT_VERSION 14
|
8 |
|
|
|
9 |
|
|
static int show_schedstat(struct seq_file *seq, void *v)
|
10 |
|
|
{
|
11 |
|
|
int cpu;
|
12 |
|
|
|
13 |
|
|
seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
|
14 |
|
|
seq_printf(seq, "timestamp %lu\n", jiffies);
|
15 |
|
|
for_each_online_cpu(cpu) {
|
16 |
|
|
struct rq *rq = cpu_rq(cpu);
|
17 |
|
|
#ifdef CONFIG_SMP
|
18 |
|
|
struct sched_domain *sd;
|
19 |
|
|
int dcount = 0;
|
20 |
|
|
#endif
|
21 |
|
|
|
22 |
|
|
/* runqueue-specific stats */
|
23 |
|
|
seq_printf(seq,
|
24 |
|
|
"cpu%d %u %u %u %u %u %u %u %u %u %llu %llu %lu",
|
25 |
|
|
cpu, rq->yld_both_empty,
|
26 |
|
|
rq->yld_act_empty, rq->yld_exp_empty, rq->yld_count,
|
27 |
|
|
rq->sched_switch, rq->sched_count, rq->sched_goidle,
|
28 |
|
|
rq->ttwu_count, rq->ttwu_local,
|
29 |
|
|
rq->rq_sched_info.cpu_time,
|
30 |
|
|
rq->rq_sched_info.run_delay, rq->rq_sched_info.pcount);
|
31 |
|
|
|
32 |
|
|
seq_printf(seq, "\n");
|
33 |
|
|
|
34 |
|
|
#ifdef CONFIG_SMP
|
35 |
|
|
/* domain-specific stats */
|
36 |
|
|
preempt_disable();
|
37 |
|
|
for_each_domain(cpu, sd) {
|
38 |
|
|
enum cpu_idle_type itype;
|
39 |
|
|
char mask_str[NR_CPUS];
|
40 |
|
|
|
41 |
|
|
cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
|
42 |
|
|
seq_printf(seq, "domain%d %s", dcount++, mask_str);
|
43 |
|
|
for (itype = CPU_IDLE; itype < CPU_MAX_IDLE_TYPES;
|
44 |
|
|
itype++) {
|
45 |
|
|
seq_printf(seq, " %u %u %u %u %u %u %u %u",
|
46 |
|
|
sd->lb_count[itype],
|
47 |
|
|
sd->lb_balanced[itype],
|
48 |
|
|
sd->lb_failed[itype],
|
49 |
|
|
sd->lb_imbalance[itype],
|
50 |
|
|
sd->lb_gained[itype],
|
51 |
|
|
sd->lb_hot_gained[itype],
|
52 |
|
|
sd->lb_nobusyq[itype],
|
53 |
|
|
sd->lb_nobusyg[itype]);
|
54 |
|
|
}
|
55 |
|
|
seq_printf(seq,
|
56 |
|
|
" %u %u %u %u %u %u %u %u %u %u %u %u\n",
|
57 |
|
|
sd->alb_count, sd->alb_failed, sd->alb_pushed,
|
58 |
|
|
sd->sbe_count, sd->sbe_balanced, sd->sbe_pushed,
|
59 |
|
|
sd->sbf_count, sd->sbf_balanced, sd->sbf_pushed,
|
60 |
|
|
sd->ttwu_wake_remote, sd->ttwu_move_affine,
|
61 |
|
|
sd->ttwu_move_balance);
|
62 |
|
|
}
|
63 |
|
|
preempt_enable();
|
64 |
|
|
#endif
|
65 |
|
|
}
|
66 |
|
|
return 0;
|
67 |
|
|
}
|
68 |
|
|
|
69 |
|
|
static int schedstat_open(struct inode *inode, struct file *file)
|
70 |
|
|
{
|
71 |
|
|
unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
|
72 |
|
|
char *buf = kmalloc(size, GFP_KERNEL);
|
73 |
|
|
struct seq_file *m;
|
74 |
|
|
int res;
|
75 |
|
|
|
76 |
|
|
if (!buf)
|
77 |
|
|
return -ENOMEM;
|
78 |
|
|
res = single_open(file, show_schedstat, NULL);
|
79 |
|
|
if (!res) {
|
80 |
|
|
m = file->private_data;
|
81 |
|
|
m->buf = buf;
|
82 |
|
|
m->size = size;
|
83 |
|
|
} else
|
84 |
|
|
kfree(buf);
|
85 |
|
|
return res;
|
86 |
|
|
}
|
87 |
|
|
|
88 |
|
|
const struct file_operations proc_schedstat_operations = {
|
89 |
|
|
.open = schedstat_open,
|
90 |
|
|
.read = seq_read,
|
91 |
|
|
.llseek = seq_lseek,
|
92 |
|
|
.release = single_release,
|
93 |
|
|
};
|
94 |
|
|
|
95 |
|
|
/*
|
96 |
|
|
* Expects runqueue lock to be held for atomicity of update
|
97 |
|
|
*/
|
98 |
|
|
static inline void
|
99 |
|
|
rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
|
100 |
|
|
{
|
101 |
|
|
if (rq) {
|
102 |
|
|
rq->rq_sched_info.run_delay += delta;
|
103 |
|
|
rq->rq_sched_info.pcount++;
|
104 |
|
|
}
|
105 |
|
|
}
|
106 |
|
|
|
107 |
|
|
/*
|
108 |
|
|
* Expects runqueue lock to be held for atomicity of update
|
109 |
|
|
*/
|
110 |
|
|
static inline void
|
111 |
|
|
rq_sched_info_depart(struct rq *rq, unsigned long long delta)
|
112 |
|
|
{
|
113 |
|
|
if (rq)
|
114 |
|
|
rq->rq_sched_info.cpu_time += delta;
|
115 |
|
|
}
|
116 |
|
|
# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
|
117 |
|
|
# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
|
118 |
|
|
# define schedstat_set(var, val) do { var = (val); } while (0)
|
119 |
|
|
#else /* !CONFIG_SCHEDSTATS */
|
120 |
|
|
static inline void
|
121 |
|
|
rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
|
122 |
|
|
{}
|
123 |
|
|
static inline void
|
124 |
|
|
rq_sched_info_depart(struct rq *rq, unsigned long long delta)
|
125 |
|
|
{}
|
126 |
|
|
# define schedstat_inc(rq, field) do { } while (0)
|
127 |
|
|
# define schedstat_add(rq, field, amt) do { } while (0)
|
128 |
|
|
# define schedstat_set(var, val) do { } while (0)
|
129 |
|
|
#endif
|
130 |
|
|
|
131 |
|
|
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
|
132 |
|
|
/*
|
133 |
|
|
* Called when a process is dequeued from the active array and given
|
134 |
|
|
* the cpu. We should note that with the exception of interactive
|
135 |
|
|
* tasks, the expired queue will become the active queue after the active
|
136 |
|
|
* queue is empty, without explicitly dequeuing and requeuing tasks in the
|
137 |
|
|
* expired queue. (Interactive tasks may be requeued directly to the
|
138 |
|
|
* active queue, thus delaying tasks in the expired queue from running;
|
139 |
|
|
* see scheduler_tick()).
|
140 |
|
|
*
|
141 |
|
|
* This function is only called from sched_info_arrive(), rather than
|
142 |
|
|
* dequeue_task(). Even though a task may be queued and dequeued multiple
|
143 |
|
|
* times as it is shuffled about, we're really interested in knowing how
|
144 |
|
|
* long it was from the *first* time it was queued to the time that it
|
145 |
|
|
* finally hit a cpu.
|
146 |
|
|
*/
|
147 |
|
|
static inline void sched_info_dequeued(struct task_struct *t)
|
148 |
|
|
{
|
149 |
|
|
t->sched_info.last_queued = 0;
|
150 |
|
|
}
|
151 |
|
|
|
152 |
|
|
/*
|
153 |
|
|
* Called when a task finally hits the cpu. We can now calculate how
|
154 |
|
|
* long it was waiting to run. We also note when it began so that we
|
155 |
|
|
* can keep stats on how long its timeslice is.
|
156 |
|
|
*/
|
157 |
|
|
static void sched_info_arrive(struct task_struct *t)
|
158 |
|
|
{
|
159 |
|
|
unsigned long long now = task_rq(t)->clock, delta = 0;
|
160 |
|
|
|
161 |
|
|
if (t->sched_info.last_queued)
|
162 |
|
|
delta = now - t->sched_info.last_queued;
|
163 |
|
|
sched_info_dequeued(t);
|
164 |
|
|
t->sched_info.run_delay += delta;
|
165 |
|
|
t->sched_info.last_arrival = now;
|
166 |
|
|
t->sched_info.pcount++;
|
167 |
|
|
|
168 |
|
|
rq_sched_info_arrive(task_rq(t), delta);
|
169 |
|
|
}
|
170 |
|
|
|
171 |
|
|
/*
|
172 |
|
|
* Called when a process is queued into either the active or expired
|
173 |
|
|
* array. The time is noted and later used to determine how long we
|
174 |
|
|
* had to wait for us to reach the cpu. Since the expired queue will
|
175 |
|
|
* become the active queue after active queue is empty, without dequeuing
|
176 |
|
|
* and requeuing any tasks, we are interested in queuing to either. It
|
177 |
|
|
* is unusual but not impossible for tasks to be dequeued and immediately
|
178 |
|
|
* requeued in the same or another array: this can happen in sched_yield(),
|
179 |
|
|
* set_user_nice(), and even load_balance() as it moves tasks from runqueue
|
180 |
|
|
* to runqueue.
|
181 |
|
|
*
|
182 |
|
|
* This function is only called from enqueue_task(), but also only updates
|
183 |
|
|
* the timestamp if it is already not set. It's assumed that
|
184 |
|
|
* sched_info_dequeued() will clear that stamp when appropriate.
|
185 |
|
|
*/
|
186 |
|
|
static inline void sched_info_queued(struct task_struct *t)
|
187 |
|
|
{
|
188 |
|
|
if (unlikely(sched_info_on()))
|
189 |
|
|
if (!t->sched_info.last_queued)
|
190 |
|
|
t->sched_info.last_queued = task_rq(t)->clock;
|
191 |
|
|
}
|
192 |
|
|
|
193 |
|
|
/*
|
194 |
|
|
* Called when a process ceases being the active-running process, either
|
195 |
|
|
* voluntarily or involuntarily. Now we can calculate how long we ran.
|
196 |
|
|
*/
|
197 |
|
|
static inline void sched_info_depart(struct task_struct *t)
|
198 |
|
|
{
|
199 |
|
|
unsigned long long delta = task_rq(t)->clock -
|
200 |
|
|
t->sched_info.last_arrival;
|
201 |
|
|
|
202 |
|
|
t->sched_info.cpu_time += delta;
|
203 |
|
|
rq_sched_info_depart(task_rq(t), delta);
|
204 |
|
|
}
|
205 |
|
|
|
206 |
|
|
/*
|
207 |
|
|
* Called when tasks are switched involuntarily due, typically, to expiring
|
208 |
|
|
* their time slice. (This may also be called when switching to or from
|
209 |
|
|
* the idle task.) We are only called when prev != next.
|
210 |
|
|
*/
|
211 |
|
|
static inline void
|
212 |
|
|
__sched_info_switch(struct task_struct *prev, struct task_struct *next)
|
213 |
|
|
{
|
214 |
|
|
struct rq *rq = task_rq(prev);
|
215 |
|
|
|
216 |
|
|
/*
|
217 |
|
|
* prev now departs the cpu. It's not interesting to record
|
218 |
|
|
* stats about how efficient we were at scheduling the idle
|
219 |
|
|
* process, however.
|
220 |
|
|
*/
|
221 |
|
|
if (prev != rq->idle)
|
222 |
|
|
sched_info_depart(prev);
|
223 |
|
|
|
224 |
|
|
if (next != rq->idle)
|
225 |
|
|
sched_info_arrive(next);
|
226 |
|
|
}
|
227 |
|
|
static inline void
|
228 |
|
|
sched_info_switch(struct task_struct *prev, struct task_struct *next)
|
229 |
|
|
{
|
230 |
|
|
if (unlikely(sched_info_on()))
|
231 |
|
|
__sched_info_switch(prev, next);
|
232 |
|
|
}
|
233 |
|
|
#else
|
234 |
|
|
#define sched_info_queued(t) do { } while (0)
|
235 |
|
|
#define sched_info_switch(t, next) do { } while (0)
|
236 |
|
|
#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
|
237 |
|
|
|