OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [kernel/] [sys.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 *  linux/kernel/sys.c
3
 *
4
 *  Copyright (C) 1991, 1992  Linus Torvalds
5
 */
6
 
7
#include <linux/module.h>
8
#include <linux/mm.h>
9
#include <linux/utsname.h>
10
#include <linux/mman.h>
11
#include <linux/smp_lock.h>
12
#include <linux/notifier.h>
13
#include <linux/reboot.h>
14
#include <linux/prctl.h>
15
#include <linux/highuid.h>
16
#include <linux/fs.h>
17
#include <linux/resource.h>
18
#include <linux/kernel.h>
19
#include <linux/kexec.h>
20
#include <linux/workqueue.h>
21
#include <linux/capability.h>
22
#include <linux/device.h>
23
#include <linux/key.h>
24
#include <linux/times.h>
25
#include <linux/posix-timers.h>
26
#include <linux/security.h>
27
#include <linux/dcookies.h>
28
#include <linux/suspend.h>
29
#include <linux/tty.h>
30
#include <linux/signal.h>
31
#include <linux/cn_proc.h>
32
#include <linux/getcpu.h>
33
#include <linux/task_io_accounting_ops.h>
34
#include <linux/seccomp.h>
35
#include <linux/cpu.h>
36
 
37
#include <linux/compat.h>
38
#include <linux/syscalls.h>
39
#include <linux/kprobes.h>
40
#include <linux/user_namespace.h>
41
 
42
#include <asm/uaccess.h>
43
#include <asm/io.h>
44
#include <asm/unistd.h>
45
 
46
#ifndef SET_UNALIGN_CTL
47
# define SET_UNALIGN_CTL(a,b)   (-EINVAL)
48
#endif
49
#ifndef GET_UNALIGN_CTL
50
# define GET_UNALIGN_CTL(a,b)   (-EINVAL)
51
#endif
52
#ifndef SET_FPEMU_CTL
53
# define SET_FPEMU_CTL(a,b)     (-EINVAL)
54
#endif
55
#ifndef GET_FPEMU_CTL
56
# define GET_FPEMU_CTL(a,b)     (-EINVAL)
57
#endif
58
#ifndef SET_FPEXC_CTL
59
# define SET_FPEXC_CTL(a,b)     (-EINVAL)
60
#endif
61
#ifndef GET_FPEXC_CTL
62
# define GET_FPEXC_CTL(a,b)     (-EINVAL)
63
#endif
64
#ifndef GET_ENDIAN
65
# define GET_ENDIAN(a,b)        (-EINVAL)
66
#endif
67
#ifndef SET_ENDIAN
68
# define SET_ENDIAN(a,b)        (-EINVAL)
69
#endif
70
 
71
/*
72
 * this is where the system-wide overflow UID and GID are defined, for
73
 * architectures that now have 32-bit UID/GID but didn't in the past
74
 */
75
 
76
int overflowuid = DEFAULT_OVERFLOWUID;
77
int overflowgid = DEFAULT_OVERFLOWGID;
78
 
79
#ifdef CONFIG_UID16
80
EXPORT_SYMBOL(overflowuid);
81
EXPORT_SYMBOL(overflowgid);
82
#endif
83
 
84
/*
85
 * the same as above, but for filesystems which can only store a 16-bit
86
 * UID and GID. as such, this is needed on all architectures
87
 */
88
 
89
int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
90
int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
91
 
92
EXPORT_SYMBOL(fs_overflowuid);
93
EXPORT_SYMBOL(fs_overflowgid);
94
 
95
/*
96
 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
97
 */
98
 
99
int C_A_D = 1;
100
struct pid *cad_pid;
101
EXPORT_SYMBOL(cad_pid);
102
 
103
/*
104
 * If set, this is used for preparing the system to power off.
105
 */
106
 
107
void (*pm_power_off_prepare)(void);
108
 
109
static int set_one_prio(struct task_struct *p, int niceval, int error)
110
{
111
        int no_nice;
112
 
113
        if (p->uid != current->euid &&
114
                p->euid != current->euid && !capable(CAP_SYS_NICE)) {
115
                error = -EPERM;
116
                goto out;
117
        }
118
        if (niceval < task_nice(p) && !can_nice(p, niceval)) {
119
                error = -EACCES;
120
                goto out;
121
        }
122
        no_nice = security_task_setnice(p, niceval);
123
        if (no_nice) {
124
                error = no_nice;
125
                goto out;
126
        }
127
        if (error == -ESRCH)
128
                error = 0;
129
        set_user_nice(p, niceval);
130
out:
131
        return error;
132
}
133
 
134
asmlinkage long sys_setpriority(int which, int who, int niceval)
135
{
136
        struct task_struct *g, *p;
137
        struct user_struct *user;
138
        int error = -EINVAL;
139
        struct pid *pgrp;
140
 
141
        if (which > PRIO_USER || which < PRIO_PROCESS)
142
                goto out;
143
 
144
        /* normalize: avoid signed division (rounding problems) */
145
        error = -ESRCH;
146
        if (niceval < -20)
147
                niceval = -20;
148
        if (niceval > 19)
149
                niceval = 19;
150
 
151
        read_lock(&tasklist_lock);
152
        switch (which) {
153
                case PRIO_PROCESS:
154
                        if (who)
155
                                p = find_task_by_vpid(who);
156
                        else
157
                                p = current;
158
                        if (p)
159
                                error = set_one_prio(p, niceval, error);
160
                        break;
161
                case PRIO_PGRP:
162
                        if (who)
163
                                pgrp = find_vpid(who);
164
                        else
165
                                pgrp = task_pgrp(current);
166
                        do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
167
                                error = set_one_prio(p, niceval, error);
168
                        } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
169
                        break;
170
                case PRIO_USER:
171
                        user = current->user;
172
                        if (!who)
173
                                who = current->uid;
174
                        else
175
                                if ((who != current->uid) && !(user = find_user(who)))
176
                                        goto out_unlock;        /* No processes for this user */
177
 
178
                        do_each_thread(g, p)
179
                                if (p->uid == who)
180
                                        error = set_one_prio(p, niceval, error);
181
                        while_each_thread(g, p);
182
                        if (who != current->uid)
183
                                free_uid(user);         /* For find_user() */
184
                        break;
185
        }
186
out_unlock:
187
        read_unlock(&tasklist_lock);
188
out:
189
        return error;
190
}
191
 
192
/*
193
 * Ugh. To avoid negative return values, "getpriority()" will
194
 * not return the normal nice-value, but a negated value that
195
 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
196
 * to stay compatible.
197
 */
198
asmlinkage long sys_getpriority(int which, int who)
199
{
200
        struct task_struct *g, *p;
201
        struct user_struct *user;
202
        long niceval, retval = -ESRCH;
203
        struct pid *pgrp;
204
 
205
        if (which > PRIO_USER || which < PRIO_PROCESS)
206
                return -EINVAL;
207
 
208
        read_lock(&tasklist_lock);
209
        switch (which) {
210
                case PRIO_PROCESS:
211
                        if (who)
212
                                p = find_task_by_vpid(who);
213
                        else
214
                                p = current;
215
                        if (p) {
216
                                niceval = 20 - task_nice(p);
217
                                if (niceval > retval)
218
                                        retval = niceval;
219
                        }
220
                        break;
221
                case PRIO_PGRP:
222
                        if (who)
223
                                pgrp = find_vpid(who);
224
                        else
225
                                pgrp = task_pgrp(current);
226
                        do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
227
                                niceval = 20 - task_nice(p);
228
                                if (niceval > retval)
229
                                        retval = niceval;
230
                        } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
231
                        break;
232
                case PRIO_USER:
233
                        user = current->user;
234
                        if (!who)
235
                                who = current->uid;
236
                        else
237
                                if ((who != current->uid) && !(user = find_user(who)))
238
                                        goto out_unlock;        /* No processes for this user */
239
 
240
                        do_each_thread(g, p)
241
                                if (p->uid == who) {
242
                                        niceval = 20 - task_nice(p);
243
                                        if (niceval > retval)
244
                                                retval = niceval;
245
                                }
246
                        while_each_thread(g, p);
247
                        if (who != current->uid)
248
                                free_uid(user);         /* for find_user() */
249
                        break;
250
        }
251
out_unlock:
252
        read_unlock(&tasklist_lock);
253
 
254
        return retval;
255
}
256
 
257
/**
258
 *      emergency_restart - reboot the system
259
 *
260
 *      Without shutting down any hardware or taking any locks
261
 *      reboot the system.  This is called when we know we are in
262
 *      trouble so this is our best effort to reboot.  This is
263
 *      safe to call in interrupt context.
264
 */
265
void emergency_restart(void)
266
{
267
        machine_emergency_restart();
268
}
269
EXPORT_SYMBOL_GPL(emergency_restart);
270
 
271
static void kernel_restart_prepare(char *cmd)
272
{
273
        blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
274
        system_state = SYSTEM_RESTART;
275
        device_shutdown();
276
        sysdev_shutdown();
277
}
278
 
279
/**
280
 *      kernel_restart - reboot the system
281
 *      @cmd: pointer to buffer containing command to execute for restart
282
 *              or %NULL
283
 *
284
 *      Shutdown everything and perform a clean reboot.
285
 *      This is not safe to call in interrupt context.
286
 */
287
void kernel_restart(char *cmd)
288
{
289
        kernel_restart_prepare(cmd);
290
        if (!cmd)
291
                printk(KERN_EMERG "Restarting system.\n");
292
        else
293
                printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
294
        machine_restart(cmd);
295
}
296
EXPORT_SYMBOL_GPL(kernel_restart);
297
 
298
/**
299
 *      kernel_kexec - reboot the system
300
 *
301
 *      Move into place and start executing a preloaded standalone
302
 *      executable.  If nothing was preloaded return an error.
303
 */
304
static void kernel_kexec(void)
305
{
306
#ifdef CONFIG_KEXEC
307
        struct kimage *image;
308
        image = xchg(&kexec_image, NULL);
309
        if (!image)
310
                return;
311
        kernel_restart_prepare(NULL);
312
        printk(KERN_EMERG "Starting new kernel\n");
313
        machine_shutdown();
314
        machine_kexec(image);
315
#endif
316
}
317
 
318
void kernel_shutdown_prepare(enum system_states state)
319
{
320
        blocking_notifier_call_chain(&reboot_notifier_list,
321
                (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
322
        system_state = state;
323
        device_shutdown();
324
}
325
/**
326
 *      kernel_halt - halt the system
327
 *
328
 *      Shutdown everything and perform a clean system halt.
329
 */
330
void kernel_halt(void)
331
{
332
        kernel_shutdown_prepare(SYSTEM_HALT);
333
        sysdev_shutdown();
334
        printk(KERN_EMERG "System halted.\n");
335
        machine_halt();
336
}
337
 
338
EXPORT_SYMBOL_GPL(kernel_halt);
339
 
340
/**
341
 *      kernel_power_off - power_off the system
342
 *
343
 *      Shutdown everything and perform a clean system power_off.
344
 */
345
void kernel_power_off(void)
346
{
347
        kernel_shutdown_prepare(SYSTEM_POWER_OFF);
348
        if (pm_power_off_prepare)
349
                pm_power_off_prepare();
350
        disable_nonboot_cpus();
351
        sysdev_shutdown();
352
        printk(KERN_EMERG "Power down.\n");
353
        machine_power_off();
354
}
355
EXPORT_SYMBOL_GPL(kernel_power_off);
356
/*
357
 * Reboot system call: for obvious reasons only root may call it,
358
 * and even root needs to set up some magic numbers in the registers
359
 * so that some mistake won't make this reboot the whole machine.
360
 * You can also set the meaning of the ctrl-alt-del-key here.
361
 *
362
 * reboot doesn't sync: do that yourself before calling this.
363
 */
364
asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
365
{
366
        char buffer[256];
367
 
368
        /* We only trust the superuser with rebooting the system. */
369
        if (!capable(CAP_SYS_BOOT))
370
                return -EPERM;
371
 
372
        /* For safety, we require "magic" arguments. */
373
        if (magic1 != LINUX_REBOOT_MAGIC1 ||
374
            (magic2 != LINUX_REBOOT_MAGIC2 &&
375
                        magic2 != LINUX_REBOOT_MAGIC2A &&
376
                        magic2 != LINUX_REBOOT_MAGIC2B &&
377
                        magic2 != LINUX_REBOOT_MAGIC2C))
378
                return -EINVAL;
379
 
380
        /* Instead of trying to make the power_off code look like
381
         * halt when pm_power_off is not set do it the easy way.
382
         */
383
        if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
384
                cmd = LINUX_REBOOT_CMD_HALT;
385
 
386
        lock_kernel();
387
        switch (cmd) {
388
        case LINUX_REBOOT_CMD_RESTART:
389
                kernel_restart(NULL);
390
                break;
391
 
392
        case LINUX_REBOOT_CMD_CAD_ON:
393
                C_A_D = 1;
394
                break;
395
 
396
        case LINUX_REBOOT_CMD_CAD_OFF:
397
                C_A_D = 0;
398
                break;
399
 
400
        case LINUX_REBOOT_CMD_HALT:
401
                kernel_halt();
402
                unlock_kernel();
403
                do_exit(0);
404
                break;
405
 
406
        case LINUX_REBOOT_CMD_POWER_OFF:
407
                kernel_power_off();
408
                unlock_kernel();
409
                do_exit(0);
410
                break;
411
 
412
        case LINUX_REBOOT_CMD_RESTART2:
413
                if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
414
                        unlock_kernel();
415
                        return -EFAULT;
416
                }
417
                buffer[sizeof(buffer) - 1] = '\0';
418
 
419
                kernel_restart(buffer);
420
                break;
421
 
422
        case LINUX_REBOOT_CMD_KEXEC:
423
                kernel_kexec();
424
                unlock_kernel();
425
                return -EINVAL;
426
 
427
#ifdef CONFIG_HIBERNATION
428
        case LINUX_REBOOT_CMD_SW_SUSPEND:
429
                {
430
                        int ret = hibernate();
431
                        unlock_kernel();
432
                        return ret;
433
                }
434
#endif
435
 
436
        default:
437
                unlock_kernel();
438
                return -EINVAL;
439
        }
440
        unlock_kernel();
441
        return 0;
442
}
443
 
444
static void deferred_cad(struct work_struct *dummy)
445
{
446
        kernel_restart(NULL);
447
}
448
 
449
/*
450
 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
451
 * As it's called within an interrupt, it may NOT sync: the only choice
452
 * is whether to reboot at once, or just ignore the ctrl-alt-del.
453
 */
454
void ctrl_alt_del(void)
455
{
456
        static DECLARE_WORK(cad_work, deferred_cad);
457
 
458
        if (C_A_D)
459
                schedule_work(&cad_work);
460
        else
461
                kill_cad_pid(SIGINT, 1);
462
}
463
 
464
/*
465
 * Unprivileged users may change the real gid to the effective gid
466
 * or vice versa.  (BSD-style)
467
 *
468
 * If you set the real gid at all, or set the effective gid to a value not
469
 * equal to the real gid, then the saved gid is set to the new effective gid.
470
 *
471
 * This makes it possible for a setgid program to completely drop its
472
 * privileges, which is often a useful assertion to make when you are doing
473
 * a security audit over a program.
474
 *
475
 * The general idea is that a program which uses just setregid() will be
476
 * 100% compatible with BSD.  A program which uses just setgid() will be
477
 * 100% compatible with POSIX with saved IDs.
478
 *
479
 * SMP: There are not races, the GIDs are checked only by filesystem
480
 *      operations (as far as semantic preservation is concerned).
481
 */
482
asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
483
{
484
        int old_rgid = current->gid;
485
        int old_egid = current->egid;
486
        int new_rgid = old_rgid;
487
        int new_egid = old_egid;
488
        int retval;
489
 
490
        retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
491
        if (retval)
492
                return retval;
493
 
494
        if (rgid != (gid_t) -1) {
495
                if ((old_rgid == rgid) ||
496
                    (current->egid==rgid) ||
497
                    capable(CAP_SETGID))
498
                        new_rgid = rgid;
499
                else
500
                        return -EPERM;
501
        }
502
        if (egid != (gid_t) -1) {
503
                if ((old_rgid == egid) ||
504
                    (current->egid == egid) ||
505
                    (current->sgid == egid) ||
506
                    capable(CAP_SETGID))
507
                        new_egid = egid;
508
                else
509
                        return -EPERM;
510
        }
511
        if (new_egid != old_egid) {
512
                set_dumpable(current->mm, suid_dumpable);
513
                smp_wmb();
514
        }
515
        if (rgid != (gid_t) -1 ||
516
            (egid != (gid_t) -1 && egid != old_rgid))
517
                current->sgid = new_egid;
518
        current->fsgid = new_egid;
519
        current->egid = new_egid;
520
        current->gid = new_rgid;
521
        key_fsgid_changed(current);
522
        proc_id_connector(current, PROC_EVENT_GID);
523
        return 0;
524
}
525
 
526
/*
527
 * setgid() is implemented like SysV w/ SAVED_IDS
528
 *
529
 * SMP: Same implicit races as above.
530
 */
531
asmlinkage long sys_setgid(gid_t gid)
532
{
533
        int old_egid = current->egid;
534
        int retval;
535
 
536
        retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
537
        if (retval)
538
                return retval;
539
 
540
        if (capable(CAP_SETGID)) {
541
                if (old_egid != gid) {
542
                        set_dumpable(current->mm, suid_dumpable);
543
                        smp_wmb();
544
                }
545
                current->gid = current->egid = current->sgid = current->fsgid = gid;
546
        } else if ((gid == current->gid) || (gid == current->sgid)) {
547
                if (old_egid != gid) {
548
                        set_dumpable(current->mm, suid_dumpable);
549
                        smp_wmb();
550
                }
551
                current->egid = current->fsgid = gid;
552
        }
553
        else
554
                return -EPERM;
555
 
556
        key_fsgid_changed(current);
557
        proc_id_connector(current, PROC_EVENT_GID);
558
        return 0;
559
}
560
 
561
static int set_user(uid_t new_ruid, int dumpclear)
562
{
563
        struct user_struct *new_user;
564
 
565
        new_user = alloc_uid(current->nsproxy->user_ns, new_ruid);
566
        if (!new_user)
567
                return -EAGAIN;
568
 
569
        if (atomic_read(&new_user->processes) >=
570
                                current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
571
                        new_user != current->nsproxy->user_ns->root_user) {
572
                free_uid(new_user);
573
                return -EAGAIN;
574
        }
575
 
576
        switch_uid(new_user);
577
 
578
        if (dumpclear) {
579
                set_dumpable(current->mm, suid_dumpable);
580
                smp_wmb();
581
        }
582
        current->uid = new_ruid;
583
        return 0;
584
}
585
 
586
/*
587
 * Unprivileged users may change the real uid to the effective uid
588
 * or vice versa.  (BSD-style)
589
 *
590
 * If you set the real uid at all, or set the effective uid to a value not
591
 * equal to the real uid, then the saved uid is set to the new effective uid.
592
 *
593
 * This makes it possible for a setuid program to completely drop its
594
 * privileges, which is often a useful assertion to make when you are doing
595
 * a security audit over a program.
596
 *
597
 * The general idea is that a program which uses just setreuid() will be
598
 * 100% compatible with BSD.  A program which uses just setuid() will be
599
 * 100% compatible with POSIX with saved IDs.
600
 */
601
asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
602
{
603
        int old_ruid, old_euid, old_suid, new_ruid, new_euid;
604
        int retval;
605
 
606
        retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
607
        if (retval)
608
                return retval;
609
 
610
        new_ruid = old_ruid = current->uid;
611
        new_euid = old_euid = current->euid;
612
        old_suid = current->suid;
613
 
614
        if (ruid != (uid_t) -1) {
615
                new_ruid = ruid;
616
                if ((old_ruid != ruid) &&
617
                    (current->euid != ruid) &&
618
                    !capable(CAP_SETUID))
619
                        return -EPERM;
620
        }
621
 
622
        if (euid != (uid_t) -1) {
623
                new_euid = euid;
624
                if ((old_ruid != euid) &&
625
                    (current->euid != euid) &&
626
                    (current->suid != euid) &&
627
                    !capable(CAP_SETUID))
628
                        return -EPERM;
629
        }
630
 
631
        if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
632
                return -EAGAIN;
633
 
634
        if (new_euid != old_euid) {
635
                set_dumpable(current->mm, suid_dumpable);
636
                smp_wmb();
637
        }
638
        current->fsuid = current->euid = new_euid;
639
        if (ruid != (uid_t) -1 ||
640
            (euid != (uid_t) -1 && euid != old_ruid))
641
                current->suid = current->euid;
642
        current->fsuid = current->euid;
643
 
644
        key_fsuid_changed(current);
645
        proc_id_connector(current, PROC_EVENT_UID);
646
 
647
        return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
648
}
649
 
650
 
651
 
652
/*
653
 * setuid() is implemented like SysV with SAVED_IDS
654
 *
655
 * Note that SAVED_ID's is deficient in that a setuid root program
656
 * like sendmail, for example, cannot set its uid to be a normal
657
 * user and then switch back, because if you're root, setuid() sets
658
 * the saved uid too.  If you don't like this, blame the bright people
659
 * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
660
 * will allow a root program to temporarily drop privileges and be able to
661
 * regain them by swapping the real and effective uid.
662
 */
663
asmlinkage long sys_setuid(uid_t uid)
664
{
665
        int old_euid = current->euid;
666
        int old_ruid, old_suid, new_suid;
667
        int retval;
668
 
669
        retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
670
        if (retval)
671
                return retval;
672
 
673
        old_ruid = current->uid;
674
        old_suid = current->suid;
675
        new_suid = old_suid;
676
 
677
        if (capable(CAP_SETUID)) {
678
                if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
679
                        return -EAGAIN;
680
                new_suid = uid;
681
        } else if ((uid != current->uid) && (uid != new_suid))
682
                return -EPERM;
683
 
684
        if (old_euid != uid) {
685
                set_dumpable(current->mm, suid_dumpable);
686
                smp_wmb();
687
        }
688
        current->fsuid = current->euid = uid;
689
        current->suid = new_suid;
690
 
691
        key_fsuid_changed(current);
692
        proc_id_connector(current, PROC_EVENT_UID);
693
 
694
        return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
695
}
696
 
697
 
698
/*
699
 * This function implements a generic ability to update ruid, euid,
700
 * and suid.  This allows you to implement the 4.4 compatible seteuid().
701
 */
702
asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
703
{
704
        int old_ruid = current->uid;
705
        int old_euid = current->euid;
706
        int old_suid = current->suid;
707
        int retval;
708
 
709
        retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
710
        if (retval)
711
                return retval;
712
 
713
        if (!capable(CAP_SETUID)) {
714
                if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
715
                    (ruid != current->euid) && (ruid != current->suid))
716
                        return -EPERM;
717
                if ((euid != (uid_t) -1) && (euid != current->uid) &&
718
                    (euid != current->euid) && (euid != current->suid))
719
                        return -EPERM;
720
                if ((suid != (uid_t) -1) && (suid != current->uid) &&
721
                    (suid != current->euid) && (suid != current->suid))
722
                        return -EPERM;
723
        }
724
        if (ruid != (uid_t) -1) {
725
                if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
726
                        return -EAGAIN;
727
        }
728
        if (euid != (uid_t) -1) {
729
                if (euid != current->euid) {
730
                        set_dumpable(current->mm, suid_dumpable);
731
                        smp_wmb();
732
                }
733
                current->euid = euid;
734
        }
735
        current->fsuid = current->euid;
736
        if (suid != (uid_t) -1)
737
                current->suid = suid;
738
 
739
        key_fsuid_changed(current);
740
        proc_id_connector(current, PROC_EVENT_UID);
741
 
742
        return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
743
}
744
 
745
asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
746
{
747
        int retval;
748
 
749
        if (!(retval = put_user(current->uid, ruid)) &&
750
            !(retval = put_user(current->euid, euid)))
751
                retval = put_user(current->suid, suid);
752
 
753
        return retval;
754
}
755
 
756
/*
757
 * Same as above, but for rgid, egid, sgid.
758
 */
759
asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
760
{
761
        int retval;
762
 
763
        retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
764
        if (retval)
765
                return retval;
766
 
767
        if (!capable(CAP_SETGID)) {
768
                if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
769
                    (rgid != current->egid) && (rgid != current->sgid))
770
                        return -EPERM;
771
                if ((egid != (gid_t) -1) && (egid != current->gid) &&
772
                    (egid != current->egid) && (egid != current->sgid))
773
                        return -EPERM;
774
                if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
775
                    (sgid != current->egid) && (sgid != current->sgid))
776
                        return -EPERM;
777
        }
778
        if (egid != (gid_t) -1) {
779
                if (egid != current->egid) {
780
                        set_dumpable(current->mm, suid_dumpable);
781
                        smp_wmb();
782
                }
783
                current->egid = egid;
784
        }
785
        current->fsgid = current->egid;
786
        if (rgid != (gid_t) -1)
787
                current->gid = rgid;
788
        if (sgid != (gid_t) -1)
789
                current->sgid = sgid;
790
 
791
        key_fsgid_changed(current);
792
        proc_id_connector(current, PROC_EVENT_GID);
793
        return 0;
794
}
795
 
796
asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
797
{
798
        int retval;
799
 
800
        if (!(retval = put_user(current->gid, rgid)) &&
801
            !(retval = put_user(current->egid, egid)))
802
                retval = put_user(current->sgid, sgid);
803
 
804
        return retval;
805
}
806
 
807
 
808
/*
809
 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
810
 * is used for "access()" and for the NFS daemon (letting nfsd stay at
811
 * whatever uid it wants to). It normally shadows "euid", except when
812
 * explicitly set by setfsuid() or for access..
813
 */
814
asmlinkage long sys_setfsuid(uid_t uid)
815
{
816
        int old_fsuid;
817
 
818
        old_fsuid = current->fsuid;
819
        if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
820
                return old_fsuid;
821
 
822
        if (uid == current->uid || uid == current->euid ||
823
            uid == current->suid || uid == current->fsuid ||
824
            capable(CAP_SETUID)) {
825
                if (uid != old_fsuid) {
826
                        set_dumpable(current->mm, suid_dumpable);
827
                        smp_wmb();
828
                }
829
                current->fsuid = uid;
830
        }
831
 
832
        key_fsuid_changed(current);
833
        proc_id_connector(current, PROC_EVENT_UID);
834
 
835
        security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
836
 
837
        return old_fsuid;
838
}
839
 
840
/*
841
 * Samma på svenska..
842
 */
843
asmlinkage long sys_setfsgid(gid_t gid)
844
{
845
        int old_fsgid;
846
 
847
        old_fsgid = current->fsgid;
848
        if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
849
                return old_fsgid;
850
 
851
        if (gid == current->gid || gid == current->egid ||
852
            gid == current->sgid || gid == current->fsgid ||
853
            capable(CAP_SETGID)) {
854
                if (gid != old_fsgid) {
855
                        set_dumpable(current->mm, suid_dumpable);
856
                        smp_wmb();
857
                }
858
                current->fsgid = gid;
859
                key_fsgid_changed(current);
860
                proc_id_connector(current, PROC_EVENT_GID);
861
        }
862
        return old_fsgid;
863
}
864
 
865
asmlinkage long sys_times(struct tms __user * tbuf)
866
{
867
        /*
868
         *      In the SMP world we might just be unlucky and have one of
869
         *      the times increment as we use it. Since the value is an
870
         *      atomically safe type this is just fine. Conceptually its
871
         *      as if the syscall took an instant longer to occur.
872
         */
873
        if (tbuf) {
874
                struct tms tmp;
875
                struct task_struct *tsk = current;
876
                struct task_struct *t;
877
                cputime_t utime, stime, cutime, cstime;
878
 
879
                spin_lock_irq(&tsk->sighand->siglock);
880
                utime = tsk->signal->utime;
881
                stime = tsk->signal->stime;
882
                t = tsk;
883
                do {
884
                        utime = cputime_add(utime, t->utime);
885
                        stime = cputime_add(stime, t->stime);
886
                        t = next_thread(t);
887
                } while (t != tsk);
888
 
889
                cutime = tsk->signal->cutime;
890
                cstime = tsk->signal->cstime;
891
                spin_unlock_irq(&tsk->sighand->siglock);
892
 
893
                tmp.tms_utime = cputime_to_clock_t(utime);
894
                tmp.tms_stime = cputime_to_clock_t(stime);
895
                tmp.tms_cutime = cputime_to_clock_t(cutime);
896
                tmp.tms_cstime = cputime_to_clock_t(cstime);
897
                if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
898
                        return -EFAULT;
899
        }
900
        return (long) jiffies_64_to_clock_t(get_jiffies_64());
901
}
902
 
903
/*
904
 * This needs some heavy checking ...
905
 * I just haven't the stomach for it. I also don't fully
906
 * understand sessions/pgrp etc. Let somebody who does explain it.
907
 *
908
 * OK, I think I have the protection semantics right.... this is really
909
 * only important on a multi-user system anyway, to make sure one user
910
 * can't send a signal to a process owned by another.  -TYT, 12/12/91
911
 *
912
 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
913
 * LBT 04.03.94
914
 */
915
asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
916
{
917
        struct task_struct *p;
918
        struct task_struct *group_leader = current->group_leader;
919
        int err = -EINVAL;
920
        struct pid_namespace *ns;
921
 
922
        if (!pid)
923
                pid = task_pid_vnr(group_leader);
924
        if (!pgid)
925
                pgid = pid;
926
        if (pgid < 0)
927
                return -EINVAL;
928
 
929
        /* From this point forward we keep holding onto the tasklist lock
930
         * so that our parent does not change from under us. -DaveM
931
         */
932
        ns = current->nsproxy->pid_ns;
933
 
934
        write_lock_irq(&tasklist_lock);
935
 
936
        err = -ESRCH;
937
        p = find_task_by_pid_ns(pid, ns);
938
        if (!p)
939
                goto out;
940
 
941
        err = -EINVAL;
942
        if (!thread_group_leader(p))
943
                goto out;
944
 
945
        if (p->real_parent->tgid == group_leader->tgid) {
946
                err = -EPERM;
947
                if (task_session(p) != task_session(group_leader))
948
                        goto out;
949
                err = -EACCES;
950
                if (p->did_exec)
951
                        goto out;
952
        } else {
953
                err = -ESRCH;
954
                if (p != group_leader)
955
                        goto out;
956
        }
957
 
958
        err = -EPERM;
959
        if (p->signal->leader)
960
                goto out;
961
 
962
        if (pgid != pid) {
963
                struct task_struct *g;
964
 
965
                g = find_task_by_pid_type_ns(PIDTYPE_PGID, pgid, ns);
966
                if (!g || task_session(g) != task_session(group_leader))
967
                        goto out;
968
        }
969
 
970
        err = security_task_setpgid(p, pgid);
971
        if (err)
972
                goto out;
973
 
974
        if (task_pgrp_nr_ns(p, ns) != pgid) {
975
                struct pid *pid;
976
 
977
                detach_pid(p, PIDTYPE_PGID);
978
                pid = find_vpid(pgid);
979
                attach_pid(p, PIDTYPE_PGID, pid);
980
                set_task_pgrp(p, pid_nr(pid));
981
        }
982
 
983
        err = 0;
984
out:
985
        /* All paths lead to here, thus we are safe. -DaveM */
986
        write_unlock_irq(&tasklist_lock);
987
        return err;
988
}
989
 
990
asmlinkage long sys_getpgid(pid_t pid)
991
{
992
        if (!pid)
993
                return task_pgrp_vnr(current);
994
        else {
995
                int retval;
996
                struct task_struct *p;
997
                struct pid_namespace *ns;
998
 
999
                ns = current->nsproxy->pid_ns;
1000
 
1001
                read_lock(&tasklist_lock);
1002
                p = find_task_by_pid_ns(pid, ns);
1003
                retval = -ESRCH;
1004
                if (p) {
1005
                        retval = security_task_getpgid(p);
1006
                        if (!retval)
1007
                                retval = task_pgrp_nr_ns(p, ns);
1008
                }
1009
                read_unlock(&tasklist_lock);
1010
                return retval;
1011
        }
1012
}
1013
 
1014
#ifdef __ARCH_WANT_SYS_GETPGRP
1015
 
1016
asmlinkage long sys_getpgrp(void)
1017
{
1018
        /* SMP - assuming writes are word atomic this is fine */
1019
        return task_pgrp_vnr(current);
1020
}
1021
 
1022
#endif
1023
 
1024
asmlinkage long sys_getsid(pid_t pid)
1025
{
1026
        if (!pid)
1027
                return task_session_vnr(current);
1028
        else {
1029
                int retval;
1030
                struct task_struct *p;
1031
                struct pid_namespace *ns;
1032
 
1033
                ns = current->nsproxy->pid_ns;
1034
 
1035
                read_lock(&tasklist_lock);
1036
                p = find_task_by_pid_ns(pid, ns);
1037
                retval = -ESRCH;
1038
                if (p) {
1039
                        retval = security_task_getsid(p);
1040
                        if (!retval)
1041
                                retval = task_session_nr_ns(p, ns);
1042
                }
1043
                read_unlock(&tasklist_lock);
1044
                return retval;
1045
        }
1046
}
1047
 
1048
asmlinkage long sys_setsid(void)
1049
{
1050
        struct task_struct *group_leader = current->group_leader;
1051
        pid_t session;
1052
        int err = -EPERM;
1053
 
1054
        write_lock_irq(&tasklist_lock);
1055
 
1056
        /* Fail if I am already a session leader */
1057
        if (group_leader->signal->leader)
1058
                goto out;
1059
 
1060
        session = group_leader->pid;
1061
        /* Fail if a process group id already exists that equals the
1062
         * proposed session id.
1063
         *
1064
         * Don't check if session id == 1 because kernel threads use this
1065
         * session id and so the check will always fail and make it so
1066
         * init cannot successfully call setsid.
1067
         */
1068
        if (session > 1 && find_task_by_pid_type_ns(PIDTYPE_PGID,
1069
                                session, &init_pid_ns))
1070
                goto out;
1071
 
1072
        group_leader->signal->leader = 1;
1073
        __set_special_pids(session, session);
1074
 
1075
        spin_lock(&group_leader->sighand->siglock);
1076
        group_leader->signal->tty = NULL;
1077
        spin_unlock(&group_leader->sighand->siglock);
1078
 
1079
        err = task_pgrp_vnr(group_leader);
1080
out:
1081
        write_unlock_irq(&tasklist_lock);
1082
        return err;
1083
}
1084
 
1085
/*
1086
 * Supplementary group IDs
1087
 */
1088
 
1089
/* init to 2 - one for init_task, one to ensure it is never freed */
1090
struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1091
 
1092
struct group_info *groups_alloc(int gidsetsize)
1093
{
1094
        struct group_info *group_info;
1095
        int nblocks;
1096
        int i;
1097
 
1098
        nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1099
        /* Make sure we always allocate at least one indirect block pointer */
1100
        nblocks = nblocks ? : 1;
1101
        group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1102
        if (!group_info)
1103
                return NULL;
1104
        group_info->ngroups = gidsetsize;
1105
        group_info->nblocks = nblocks;
1106
        atomic_set(&group_info->usage, 1);
1107
 
1108
        if (gidsetsize <= NGROUPS_SMALL)
1109
                group_info->blocks[0] = group_info->small_block;
1110
        else {
1111
                for (i = 0; i < nblocks; i++) {
1112
                        gid_t *b;
1113
                        b = (void *)__get_free_page(GFP_USER);
1114
                        if (!b)
1115
                                goto out_undo_partial_alloc;
1116
                        group_info->blocks[i] = b;
1117
                }
1118
        }
1119
        return group_info;
1120
 
1121
out_undo_partial_alloc:
1122
        while (--i >= 0) {
1123
                free_page((unsigned long)group_info->blocks[i]);
1124
        }
1125
        kfree(group_info);
1126
        return NULL;
1127
}
1128
 
1129
EXPORT_SYMBOL(groups_alloc);
1130
 
1131
void groups_free(struct group_info *group_info)
1132
{
1133
        if (group_info->blocks[0] != group_info->small_block) {
1134
                int i;
1135
                for (i = 0; i < group_info->nblocks; i++)
1136
                        free_page((unsigned long)group_info->blocks[i]);
1137
        }
1138
        kfree(group_info);
1139
}
1140
 
1141
EXPORT_SYMBOL(groups_free);
1142
 
1143
/* export the group_info to a user-space array */
1144
static int groups_to_user(gid_t __user *grouplist,
1145
    struct group_info *group_info)
1146
{
1147
        int i;
1148
        int count = group_info->ngroups;
1149
 
1150
        for (i = 0; i < group_info->nblocks; i++) {
1151
                int cp_count = min(NGROUPS_PER_BLOCK, count);
1152
                int off = i * NGROUPS_PER_BLOCK;
1153
                int len = cp_count * sizeof(*grouplist);
1154
 
1155
                if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1156
                        return -EFAULT;
1157
 
1158
                count -= cp_count;
1159
        }
1160
        return 0;
1161
}
1162
 
1163
/* fill a group_info from a user-space array - it must be allocated already */
1164
static int groups_from_user(struct group_info *group_info,
1165
    gid_t __user *grouplist)
1166
{
1167
        int i;
1168
        int count = group_info->ngroups;
1169
 
1170
        for (i = 0; i < group_info->nblocks; i++) {
1171
                int cp_count = min(NGROUPS_PER_BLOCK, count);
1172
                int off = i * NGROUPS_PER_BLOCK;
1173
                int len = cp_count * sizeof(*grouplist);
1174
 
1175
                if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1176
                        return -EFAULT;
1177
 
1178
                count -= cp_count;
1179
        }
1180
        return 0;
1181
}
1182
 
1183
/* a simple Shell sort */
1184
static void groups_sort(struct group_info *group_info)
1185
{
1186
        int base, max, stride;
1187
        int gidsetsize = group_info->ngroups;
1188
 
1189
        for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1190
                ; /* nothing */
1191
        stride /= 3;
1192
 
1193
        while (stride) {
1194
                max = gidsetsize - stride;
1195
                for (base = 0; base < max; base++) {
1196
                        int left = base;
1197
                        int right = left + stride;
1198
                        gid_t tmp = GROUP_AT(group_info, right);
1199
 
1200
                        while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1201
                                GROUP_AT(group_info, right) =
1202
                                    GROUP_AT(group_info, left);
1203
                                right = left;
1204
                                left -= stride;
1205
                        }
1206
                        GROUP_AT(group_info, right) = tmp;
1207
                }
1208
                stride /= 3;
1209
        }
1210
}
1211
 
1212
/* a simple bsearch */
1213
int groups_search(struct group_info *group_info, gid_t grp)
1214
{
1215
        unsigned int left, right;
1216
 
1217
        if (!group_info)
1218
                return 0;
1219
 
1220
        left = 0;
1221
        right = group_info->ngroups;
1222
        while (left < right) {
1223
                unsigned int mid = (left+right)/2;
1224
                int cmp = grp - GROUP_AT(group_info, mid);
1225
                if (cmp > 0)
1226
                        left = mid + 1;
1227
                else if (cmp < 0)
1228
                        right = mid;
1229
                else
1230
                        return 1;
1231
        }
1232
        return 0;
1233
}
1234
 
1235
/* validate and set current->group_info */
1236
int set_current_groups(struct group_info *group_info)
1237
{
1238
        int retval;
1239
        struct group_info *old_info;
1240
 
1241
        retval = security_task_setgroups(group_info);
1242
        if (retval)
1243
                return retval;
1244
 
1245
        groups_sort(group_info);
1246
        get_group_info(group_info);
1247
 
1248
        task_lock(current);
1249
        old_info = current->group_info;
1250
        current->group_info = group_info;
1251
        task_unlock(current);
1252
 
1253
        put_group_info(old_info);
1254
 
1255
        return 0;
1256
}
1257
 
1258
EXPORT_SYMBOL(set_current_groups);
1259
 
1260
asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1261
{
1262
        int i = 0;
1263
 
1264
        /*
1265
         *      SMP: Nobody else can change our grouplist. Thus we are
1266
         *      safe.
1267
         */
1268
 
1269
        if (gidsetsize < 0)
1270
                return -EINVAL;
1271
 
1272
        /* no need to grab task_lock here; it cannot change */
1273
        i = current->group_info->ngroups;
1274
        if (gidsetsize) {
1275
                if (i > gidsetsize) {
1276
                        i = -EINVAL;
1277
                        goto out;
1278
                }
1279
                if (groups_to_user(grouplist, current->group_info)) {
1280
                        i = -EFAULT;
1281
                        goto out;
1282
                }
1283
        }
1284
out:
1285
        return i;
1286
}
1287
 
1288
/*
1289
 *      SMP: Our groups are copy-on-write. We can set them safely
1290
 *      without another task interfering.
1291
 */
1292
 
1293
asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1294
{
1295
        struct group_info *group_info;
1296
        int retval;
1297
 
1298
        if (!capable(CAP_SETGID))
1299
                return -EPERM;
1300
        if ((unsigned)gidsetsize > NGROUPS_MAX)
1301
                return -EINVAL;
1302
 
1303
        group_info = groups_alloc(gidsetsize);
1304
        if (!group_info)
1305
                return -ENOMEM;
1306
        retval = groups_from_user(group_info, grouplist);
1307
        if (retval) {
1308
                put_group_info(group_info);
1309
                return retval;
1310
        }
1311
 
1312
        retval = set_current_groups(group_info);
1313
        put_group_info(group_info);
1314
 
1315
        return retval;
1316
}
1317
 
1318
/*
1319
 * Check whether we're fsgid/egid or in the supplemental group..
1320
 */
1321
int in_group_p(gid_t grp)
1322
{
1323
        int retval = 1;
1324
        if (grp != current->fsgid)
1325
                retval = groups_search(current->group_info, grp);
1326
        return retval;
1327
}
1328
 
1329
EXPORT_SYMBOL(in_group_p);
1330
 
1331
int in_egroup_p(gid_t grp)
1332
{
1333
        int retval = 1;
1334
        if (grp != current->egid)
1335
                retval = groups_search(current->group_info, grp);
1336
        return retval;
1337
}
1338
 
1339
EXPORT_SYMBOL(in_egroup_p);
1340
 
1341
DECLARE_RWSEM(uts_sem);
1342
 
1343
EXPORT_SYMBOL(uts_sem);
1344
 
1345
asmlinkage long sys_newuname(struct new_utsname __user * name)
1346
{
1347
        int errno = 0;
1348
 
1349
        down_read(&uts_sem);
1350
        if (copy_to_user(name, utsname(), sizeof *name))
1351
                errno = -EFAULT;
1352
        up_read(&uts_sem);
1353
        return errno;
1354
}
1355
 
1356
asmlinkage long sys_sethostname(char __user *name, int len)
1357
{
1358
        int errno;
1359
        char tmp[__NEW_UTS_LEN];
1360
 
1361
        if (!capable(CAP_SYS_ADMIN))
1362
                return -EPERM;
1363
        if (len < 0 || len > __NEW_UTS_LEN)
1364
                return -EINVAL;
1365
        down_write(&uts_sem);
1366
        errno = -EFAULT;
1367
        if (!copy_from_user(tmp, name, len)) {
1368
                memcpy(utsname()->nodename, tmp, len);
1369
                utsname()->nodename[len] = 0;
1370
                errno = 0;
1371
        }
1372
        up_write(&uts_sem);
1373
        return errno;
1374
}
1375
 
1376
#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1377
 
1378
asmlinkage long sys_gethostname(char __user *name, int len)
1379
{
1380
        int i, errno;
1381
 
1382
        if (len < 0)
1383
                return -EINVAL;
1384
        down_read(&uts_sem);
1385
        i = 1 + strlen(utsname()->nodename);
1386
        if (i > len)
1387
                i = len;
1388
        errno = 0;
1389
        if (copy_to_user(name, utsname()->nodename, i))
1390
                errno = -EFAULT;
1391
        up_read(&uts_sem);
1392
        return errno;
1393
}
1394
 
1395
#endif
1396
 
1397
/*
1398
 * Only setdomainname; getdomainname can be implemented by calling
1399
 * uname()
1400
 */
1401
asmlinkage long sys_setdomainname(char __user *name, int len)
1402
{
1403
        int errno;
1404
        char tmp[__NEW_UTS_LEN];
1405
 
1406
        if (!capable(CAP_SYS_ADMIN))
1407
                return -EPERM;
1408
        if (len < 0 || len > __NEW_UTS_LEN)
1409
                return -EINVAL;
1410
 
1411
        down_write(&uts_sem);
1412
        errno = -EFAULT;
1413
        if (!copy_from_user(tmp, name, len)) {
1414
                memcpy(utsname()->domainname, tmp, len);
1415
                utsname()->domainname[len] = 0;
1416
                errno = 0;
1417
        }
1418
        up_write(&uts_sem);
1419
        return errno;
1420
}
1421
 
1422
asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1423
{
1424
        if (resource >= RLIM_NLIMITS)
1425
                return -EINVAL;
1426
        else {
1427
                struct rlimit value;
1428
                task_lock(current->group_leader);
1429
                value = current->signal->rlim[resource];
1430
                task_unlock(current->group_leader);
1431
                return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1432
        }
1433
}
1434
 
1435
#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1436
 
1437
/*
1438
 *      Back compatibility for getrlimit. Needed for some apps.
1439
 */
1440
 
1441
asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1442
{
1443
        struct rlimit x;
1444
        if (resource >= RLIM_NLIMITS)
1445
                return -EINVAL;
1446
 
1447
        task_lock(current->group_leader);
1448
        x = current->signal->rlim[resource];
1449
        task_unlock(current->group_leader);
1450
        if (x.rlim_cur > 0x7FFFFFFF)
1451
                x.rlim_cur = 0x7FFFFFFF;
1452
        if (x.rlim_max > 0x7FFFFFFF)
1453
                x.rlim_max = 0x7FFFFFFF;
1454
        return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1455
}
1456
 
1457
#endif
1458
 
1459
asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1460
{
1461
        struct rlimit new_rlim, *old_rlim;
1462
        unsigned long it_prof_secs;
1463
        int retval;
1464
 
1465
        if (resource >= RLIM_NLIMITS)
1466
                return -EINVAL;
1467
        if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1468
                return -EFAULT;
1469
        if (new_rlim.rlim_cur > new_rlim.rlim_max)
1470
                return -EINVAL;
1471
        old_rlim = current->signal->rlim + resource;
1472
        if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1473
            !capable(CAP_SYS_RESOURCE))
1474
                return -EPERM;
1475
        if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1476
                return -EPERM;
1477
 
1478
        retval = security_task_setrlimit(resource, &new_rlim);
1479
        if (retval)
1480
                return retval;
1481
 
1482
        if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1483
                /*
1484
                 * The caller is asking for an immediate RLIMIT_CPU
1485
                 * expiry.  But we use the zero value to mean "it was
1486
                 * never set".  So let's cheat and make it one second
1487
                 * instead
1488
                 */
1489
                new_rlim.rlim_cur = 1;
1490
        }
1491
 
1492
        task_lock(current->group_leader);
1493
        *old_rlim = new_rlim;
1494
        task_unlock(current->group_leader);
1495
 
1496
        if (resource != RLIMIT_CPU)
1497
                goto out;
1498
 
1499
        /*
1500
         * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1501
         * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1502
         * very long-standing error, and fixing it now risks breakage of
1503
         * applications, so we live with it
1504
         */
1505
        if (new_rlim.rlim_cur == RLIM_INFINITY)
1506
                goto out;
1507
 
1508
        it_prof_secs = cputime_to_secs(current->signal->it_prof_expires);
1509
        if (it_prof_secs == 0 || new_rlim.rlim_cur <= it_prof_secs) {
1510
                unsigned long rlim_cur = new_rlim.rlim_cur;
1511
                cputime_t cputime;
1512
 
1513
                cputime = secs_to_cputime(rlim_cur);
1514
                read_lock(&tasklist_lock);
1515
                spin_lock_irq(&current->sighand->siglock);
1516
                set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
1517
                spin_unlock_irq(&current->sighand->siglock);
1518
                read_unlock(&tasklist_lock);
1519
        }
1520
out:
1521
        return 0;
1522
}
1523
 
1524
/*
1525
 * It would make sense to put struct rusage in the task_struct,
1526
 * except that would make the task_struct be *really big*.  After
1527
 * task_struct gets moved into malloc'ed memory, it would
1528
 * make sense to do this.  It will make moving the rest of the information
1529
 * a lot simpler!  (Which we're not doing right now because we're not
1530
 * measuring them yet).
1531
 *
1532
 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1533
 * races with threads incrementing their own counters.  But since word
1534
 * reads are atomic, we either get new values or old values and we don't
1535
 * care which for the sums.  We always take the siglock to protect reading
1536
 * the c* fields from p->signal from races with exit.c updating those
1537
 * fields when reaping, so a sample either gets all the additions of a
1538
 * given child after it's reaped, or none so this sample is before reaping.
1539
 *
1540
 * Locking:
1541
 * We need to take the siglock for CHILDEREN, SELF and BOTH
1542
 * for  the cases current multithreaded, non-current single threaded
1543
 * non-current multithreaded.  Thread traversal is now safe with
1544
 * the siglock held.
1545
 * Strictly speaking, we donot need to take the siglock if we are current and
1546
 * single threaded,  as no one else can take our signal_struct away, no one
1547
 * else can  reap the  children to update signal->c* counters, and no one else
1548
 * can race with the signal-> fields. If we do not take any lock, the
1549
 * signal-> fields could be read out of order while another thread was just
1550
 * exiting. So we should  place a read memory barrier when we avoid the lock.
1551
 * On the writer side,  write memory barrier is implied in  __exit_signal
1552
 * as __exit_signal releases  the siglock spinlock after updating the signal->
1553
 * fields. But we don't do this yet to keep things simple.
1554
 *
1555
 */
1556
 
1557
static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1558
{
1559
        struct task_struct *t;
1560
        unsigned long flags;
1561
        cputime_t utime, stime;
1562
 
1563
        memset((char *) r, 0, sizeof *r);
1564
        utime = stime = cputime_zero;
1565
 
1566
        rcu_read_lock();
1567
        if (!lock_task_sighand(p, &flags)) {
1568
                rcu_read_unlock();
1569
                return;
1570
        }
1571
 
1572
        switch (who) {
1573
                case RUSAGE_BOTH:
1574
                case RUSAGE_CHILDREN:
1575
                        utime = p->signal->cutime;
1576
                        stime = p->signal->cstime;
1577
                        r->ru_nvcsw = p->signal->cnvcsw;
1578
                        r->ru_nivcsw = p->signal->cnivcsw;
1579
                        r->ru_minflt = p->signal->cmin_flt;
1580
                        r->ru_majflt = p->signal->cmaj_flt;
1581
                        r->ru_inblock = p->signal->cinblock;
1582
                        r->ru_oublock = p->signal->coublock;
1583
 
1584
                        if (who == RUSAGE_CHILDREN)
1585
                                break;
1586
 
1587
                case RUSAGE_SELF:
1588
                        utime = cputime_add(utime, p->signal->utime);
1589
                        stime = cputime_add(stime, p->signal->stime);
1590
                        r->ru_nvcsw += p->signal->nvcsw;
1591
                        r->ru_nivcsw += p->signal->nivcsw;
1592
                        r->ru_minflt += p->signal->min_flt;
1593
                        r->ru_majflt += p->signal->maj_flt;
1594
                        r->ru_inblock += p->signal->inblock;
1595
                        r->ru_oublock += p->signal->oublock;
1596
                        t = p;
1597
                        do {
1598
                                utime = cputime_add(utime, t->utime);
1599
                                stime = cputime_add(stime, t->stime);
1600
                                r->ru_nvcsw += t->nvcsw;
1601
                                r->ru_nivcsw += t->nivcsw;
1602
                                r->ru_minflt += t->min_flt;
1603
                                r->ru_majflt += t->maj_flt;
1604
                                r->ru_inblock += task_io_get_inblock(t);
1605
                                r->ru_oublock += task_io_get_oublock(t);
1606
                                t = next_thread(t);
1607
                        } while (t != p);
1608
                        break;
1609
 
1610
                default:
1611
                        BUG();
1612
        }
1613
 
1614
        unlock_task_sighand(p, &flags);
1615
        rcu_read_unlock();
1616
 
1617
        cputime_to_timeval(utime, &r->ru_utime);
1618
        cputime_to_timeval(stime, &r->ru_stime);
1619
}
1620
 
1621
int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1622
{
1623
        struct rusage r;
1624
        k_getrusage(p, who, &r);
1625
        return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1626
}
1627
 
1628
asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1629
{
1630
        if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
1631
                return -EINVAL;
1632
        return getrusage(current, who, ru);
1633
}
1634
 
1635
asmlinkage long sys_umask(int mask)
1636
{
1637
        mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1638
        return mask;
1639
}
1640
 
1641
asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1642
                          unsigned long arg4, unsigned long arg5)
1643
{
1644
        long error;
1645
 
1646
        error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1647
        if (error)
1648
                return error;
1649
 
1650
        switch (option) {
1651
                case PR_SET_PDEATHSIG:
1652
                        if (!valid_signal(arg2)) {
1653
                                error = -EINVAL;
1654
                                break;
1655
                        }
1656
                        current->pdeath_signal = arg2;
1657
                        break;
1658
                case PR_GET_PDEATHSIG:
1659
                        error = put_user(current->pdeath_signal, (int __user *)arg2);
1660
                        break;
1661
                case PR_GET_DUMPABLE:
1662
                        error = get_dumpable(current->mm);
1663
                        break;
1664
                case PR_SET_DUMPABLE:
1665
                        if (arg2 < 0 || arg2 > 1) {
1666
                                error = -EINVAL;
1667
                                break;
1668
                        }
1669
                        set_dumpable(current->mm, arg2);
1670
                        break;
1671
 
1672
                case PR_SET_UNALIGN:
1673
                        error = SET_UNALIGN_CTL(current, arg2);
1674
                        break;
1675
                case PR_GET_UNALIGN:
1676
                        error = GET_UNALIGN_CTL(current, arg2);
1677
                        break;
1678
                case PR_SET_FPEMU:
1679
                        error = SET_FPEMU_CTL(current, arg2);
1680
                        break;
1681
                case PR_GET_FPEMU:
1682
                        error = GET_FPEMU_CTL(current, arg2);
1683
                        break;
1684
                case PR_SET_FPEXC:
1685
                        error = SET_FPEXC_CTL(current, arg2);
1686
                        break;
1687
                case PR_GET_FPEXC:
1688
                        error = GET_FPEXC_CTL(current, arg2);
1689
                        break;
1690
                case PR_GET_TIMING:
1691
                        error = PR_TIMING_STATISTICAL;
1692
                        break;
1693
                case PR_SET_TIMING:
1694
                        if (arg2 == PR_TIMING_STATISTICAL)
1695
                                error = 0;
1696
                        else
1697
                                error = -EINVAL;
1698
                        break;
1699
 
1700
                case PR_GET_KEEPCAPS:
1701
                        if (current->keep_capabilities)
1702
                                error = 1;
1703
                        break;
1704
                case PR_SET_KEEPCAPS:
1705
                        if (arg2 != 0 && arg2 != 1) {
1706
                                error = -EINVAL;
1707
                                break;
1708
                        }
1709
                        current->keep_capabilities = arg2;
1710
                        break;
1711
                case PR_SET_NAME: {
1712
                        struct task_struct *me = current;
1713
                        unsigned char ncomm[sizeof(me->comm)];
1714
 
1715
                        ncomm[sizeof(me->comm)-1] = 0;
1716
                        if (strncpy_from_user(ncomm, (char __user *)arg2,
1717
                                                sizeof(me->comm)-1) < 0)
1718
                                return -EFAULT;
1719
                        set_task_comm(me, ncomm);
1720
                        return 0;
1721
                }
1722
                case PR_GET_NAME: {
1723
                        struct task_struct *me = current;
1724
                        unsigned char tcomm[sizeof(me->comm)];
1725
 
1726
                        get_task_comm(tcomm, me);
1727
                        if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
1728
                                return -EFAULT;
1729
                        return 0;
1730
                }
1731
                case PR_GET_ENDIAN:
1732
                        error = GET_ENDIAN(current, arg2);
1733
                        break;
1734
                case PR_SET_ENDIAN:
1735
                        error = SET_ENDIAN(current, arg2);
1736
                        break;
1737
 
1738
                case PR_GET_SECCOMP:
1739
                        error = prctl_get_seccomp();
1740
                        break;
1741
                case PR_SET_SECCOMP:
1742
                        error = prctl_set_seccomp(arg2);
1743
                        break;
1744
 
1745
                default:
1746
                        error = -EINVAL;
1747
                        break;
1748
        }
1749
        return error;
1750
}
1751
 
1752
asmlinkage long sys_getcpu(unsigned __user *cpup, unsigned __user *nodep,
1753
                           struct getcpu_cache __user *unused)
1754
{
1755
        int err = 0;
1756
        int cpu = raw_smp_processor_id();
1757
        if (cpup)
1758
                err |= put_user(cpu, cpup);
1759
        if (nodep)
1760
                err |= put_user(cpu_to_node(cpu), nodep);
1761
        return err ? -EFAULT : 0;
1762
}
1763
 
1764
char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1765
 
1766
static void argv_cleanup(char **argv, char **envp)
1767
{
1768
        argv_free(argv);
1769
}
1770
 
1771
/**
1772
 * orderly_poweroff - Trigger an orderly system poweroff
1773
 * @force: force poweroff if command execution fails
1774
 *
1775
 * This may be called from any context to trigger a system shutdown.
1776
 * If the orderly shutdown fails, it will force an immediate shutdown.
1777
 */
1778
int orderly_poweroff(bool force)
1779
{
1780
        int argc;
1781
        char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1782
        static char *envp[] = {
1783
                "HOME=/",
1784
                "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1785
                NULL
1786
        };
1787
        int ret = -ENOMEM;
1788
        struct subprocess_info *info;
1789
 
1790
        if (argv == NULL) {
1791
                printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1792
                       __func__, poweroff_cmd);
1793
                goto out;
1794
        }
1795
 
1796
        info = call_usermodehelper_setup(argv[0], argv, envp);
1797
        if (info == NULL) {
1798
                argv_free(argv);
1799
                goto out;
1800
        }
1801
 
1802
        call_usermodehelper_setcleanup(info, argv_cleanup);
1803
 
1804
        ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1805
 
1806
  out:
1807
        if (ret && force) {
1808
                printk(KERN_WARNING "Failed to start orderly shutdown: "
1809
                       "forcing the issue\n");
1810
 
1811
                /* I guess this should try to kick off some daemon to
1812
                   sync and poweroff asap.  Or not even bother syncing
1813
                   if we're doing an emergency shutdown? */
1814
                emergency_sync();
1815
                kernel_power_off();
1816
        }
1817
 
1818
        return ret;
1819
}
1820
EXPORT_SYMBOL_GPL(orderly_poweroff);

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.