OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [kernel/] [time/] [ntp.c] - Blame information for rev 63

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * linux/kernel/time/ntp.c
3
 *
4
 * NTP state machine interfaces and logic.
5
 *
6
 * This code was mainly moved from kernel/timer.c and kernel/time.c
7
 * Please see those files for relevant copyright info and historical
8
 * changelogs.
9
 */
10
 
11
#include <linux/mm.h>
12
#include <linux/time.h>
13
#include <linux/timer.h>
14
#include <linux/timex.h>
15
#include <linux/jiffies.h>
16
#include <linux/hrtimer.h>
17
#include <linux/capability.h>
18
#include <asm/div64.h>
19
#include <asm/timex.h>
20
 
21
/*
22
 * Timekeeping variables
23
 */
24
unsigned long tick_usec = TICK_USEC;            /* USER_HZ period (usec) */
25
unsigned long tick_nsec;                        /* ACTHZ period (nsec) */
26
static u64 tick_length, tick_length_base;
27
 
28
#define MAX_TICKADJ             500             /* microsecs */
29
#define MAX_TICKADJ_SCALED      (((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \
30
                                  TICK_LENGTH_SHIFT) / NTP_INTERVAL_FREQ)
31
 
32
/*
33
 * phase-lock loop variables
34
 */
35
/* TIME_ERROR prevents overwriting the CMOS clock */
36
static int time_state = TIME_OK;        /* clock synchronization status */
37
int time_status = STA_UNSYNC;           /* clock status bits            */
38
static s64 time_offset;         /* time adjustment (ns)         */
39
static long time_constant = 2;          /* pll time constant            */
40
long time_maxerror = NTP_PHASE_LIMIT;   /* maximum error (us)           */
41
long time_esterror = NTP_PHASE_LIMIT;   /* estimated error (us)         */
42
long time_freq;                         /* frequency offset (scaled ppm)*/
43
static long time_reftime;               /* time at last adjustment (s)  */
44
long time_adjust;
45
 
46
#define CLOCK_TICK_OVERFLOW     (LATCH * HZ - CLOCK_TICK_RATE)
47
#define CLOCK_TICK_ADJUST       (((s64)CLOCK_TICK_OVERFLOW * NSEC_PER_SEC) / \
48
                                        (s64)CLOCK_TICK_RATE)
49
 
50
static void ntp_update_frequency(void)
51
{
52
        u64 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
53
                                << TICK_LENGTH_SHIFT;
54
        second_length += (s64)CLOCK_TICK_ADJUST << TICK_LENGTH_SHIFT;
55
        second_length += (s64)time_freq << (TICK_LENGTH_SHIFT - SHIFT_NSEC);
56
 
57
        tick_length_base = second_length;
58
 
59
        do_div(second_length, HZ);
60
        tick_nsec = second_length >> TICK_LENGTH_SHIFT;
61
 
62
        do_div(tick_length_base, NTP_INTERVAL_FREQ);
63
}
64
 
65
/**
66
 * ntp_clear - Clears the NTP state variables
67
 *
68
 * Must be called while holding a write on the xtime_lock
69
 */
70
void ntp_clear(void)
71
{
72
        time_adjust = 0;         /* stop active adjtime() */
73
        time_status |= STA_UNSYNC;
74
        time_maxerror = NTP_PHASE_LIMIT;
75
        time_esterror = NTP_PHASE_LIMIT;
76
 
77
        ntp_update_frequency();
78
 
79
        tick_length = tick_length_base;
80
        time_offset = 0;
81
}
82
 
83
/*
84
 * this routine handles the overflow of the microsecond field
85
 *
86
 * The tricky bits of code to handle the accurate clock support
87
 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
88
 * They were originally developed for SUN and DEC kernels.
89
 * All the kudos should go to Dave for this stuff.
90
 */
91
void second_overflow(void)
92
{
93
        long time_adj;
94
 
95
        /* Bump the maxerror field */
96
        time_maxerror += MAXFREQ >> SHIFT_USEC;
97
        if (time_maxerror > NTP_PHASE_LIMIT) {
98
                time_maxerror = NTP_PHASE_LIMIT;
99
                time_status |= STA_UNSYNC;
100
        }
101
 
102
        /*
103
         * Leap second processing. If in leap-insert state at the end of the
104
         * day, the system clock is set back one second; if in leap-delete
105
         * state, the system clock is set ahead one second. The microtime()
106
         * routine or external clock driver will insure that reported time is
107
         * always monotonic. The ugly divides should be replaced.
108
         */
109
        switch (time_state) {
110
        case TIME_OK:
111
                if (time_status & STA_INS)
112
                        time_state = TIME_INS;
113
                else if (time_status & STA_DEL)
114
                        time_state = TIME_DEL;
115
                break;
116
        case TIME_INS:
117
                if (xtime.tv_sec % 86400 == 0) {
118
                        xtime.tv_sec--;
119
                        wall_to_monotonic.tv_sec++;
120
                        time_state = TIME_OOP;
121
                        printk(KERN_NOTICE "Clock: inserting leap second "
122
                                        "23:59:60 UTC\n");
123
                }
124
                break;
125
        case TIME_DEL:
126
                if ((xtime.tv_sec + 1) % 86400 == 0) {
127
                        xtime.tv_sec++;
128
                        wall_to_monotonic.tv_sec--;
129
                        time_state = TIME_WAIT;
130
                        printk(KERN_NOTICE "Clock: deleting leap second "
131
                                        "23:59:59 UTC\n");
132
                }
133
                break;
134
        case TIME_OOP:
135
                time_state = TIME_WAIT;
136
                break;
137
        case TIME_WAIT:
138
                if (!(time_status & (STA_INS | STA_DEL)))
139
                time_state = TIME_OK;
140
        }
141
 
142
        /*
143
         * Compute the phase adjustment for the next second. The offset is
144
         * reduced by a fixed factor times the time constant.
145
         */
146
        tick_length = tick_length_base;
147
        time_adj = shift_right(time_offset, SHIFT_PLL + time_constant);
148
        time_offset -= time_adj;
149
        tick_length += (s64)time_adj << (TICK_LENGTH_SHIFT - SHIFT_UPDATE);
150
 
151
        if (unlikely(time_adjust)) {
152
                if (time_adjust > MAX_TICKADJ) {
153
                        time_adjust -= MAX_TICKADJ;
154
                        tick_length += MAX_TICKADJ_SCALED;
155
                } else if (time_adjust < -MAX_TICKADJ) {
156
                        time_adjust += MAX_TICKADJ;
157
                        tick_length -= MAX_TICKADJ_SCALED;
158
                } else {
159
                        tick_length += (s64)(time_adjust * NSEC_PER_USEC /
160
                                        NTP_INTERVAL_FREQ) << TICK_LENGTH_SHIFT;
161
                        time_adjust = 0;
162
                }
163
        }
164
}
165
 
166
/*
167
 * Return how long ticks are at the moment, that is, how much time
168
 * update_wall_time_one_tick will add to xtime next time we call it
169
 * (assuming no calls to do_adjtimex in the meantime).
170
 * The return value is in fixed-point nanoseconds shifted by the
171
 * specified number of bits to the right of the binary point.
172
 * This function has no side-effects.
173
 */
174
u64 current_tick_length(void)
175
{
176
        return tick_length;
177
}
178
 
179
#ifdef CONFIG_GENERIC_CMOS_UPDATE
180
 
181
/* Disable the cmos update - used by virtualization and embedded */
182
int no_sync_cmos_clock  __read_mostly;
183
 
184
static void sync_cmos_clock(unsigned long dummy);
185
 
186
static DEFINE_TIMER(sync_cmos_timer, sync_cmos_clock, 0, 0);
187
 
188
static void sync_cmos_clock(unsigned long dummy)
189
{
190
        struct timespec now, next;
191
        int fail = 1;
192
 
193
        /*
194
         * If we have an externally synchronized Linux clock, then update
195
         * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
196
         * called as close as possible to 500 ms before the new second starts.
197
         * This code is run on a timer.  If the clock is set, that timer
198
         * may not expire at the correct time.  Thus, we adjust...
199
         */
200
        if (!ntp_synced())
201
                /*
202
                 * Not synced, exit, do not restart a timer (if one is
203
                 * running, let it run out).
204
                 */
205
                return;
206
 
207
        getnstimeofday(&now);
208
        if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
209
                fail = update_persistent_clock(now);
210
 
211
        next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec;
212
        if (next.tv_nsec <= 0)
213
                next.tv_nsec += NSEC_PER_SEC;
214
 
215
        if (!fail)
216
                next.tv_sec = 659;
217
        else
218
                next.tv_sec = 0;
219
 
220
        if (next.tv_nsec >= NSEC_PER_SEC) {
221
                next.tv_sec++;
222
                next.tv_nsec -= NSEC_PER_SEC;
223
        }
224
        mod_timer(&sync_cmos_timer, jiffies + timespec_to_jiffies(&next));
225
}
226
 
227
static void notify_cmos_timer(void)
228
{
229
        if (!no_sync_cmos_clock)
230
                mod_timer(&sync_cmos_timer, jiffies + 1);
231
}
232
 
233
#else
234
static inline void notify_cmos_timer(void) { }
235
#endif
236
 
237
/* adjtimex mainly allows reading (and writing, if superuser) of
238
 * kernel time-keeping variables. used by xntpd.
239
 */
240
int do_adjtimex(struct timex *txc)
241
{
242
        long mtemp, save_adjust, rem;
243
        s64 freq_adj, temp64;
244
        int result;
245
 
246
        /* In order to modify anything, you gotta be super-user! */
247
        if (txc->modes && !capable(CAP_SYS_TIME))
248
                return -EPERM;
249
 
250
        /* Now we validate the data before disabling interrupts */
251
 
252
        if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT) {
253
          /* singleshot must not be used with any other mode bits */
254
                if (txc->modes != ADJ_OFFSET_SINGLESHOT &&
255
                                        txc->modes != ADJ_OFFSET_SS_READ)
256
                        return -EINVAL;
257
        }
258
 
259
        if (txc->modes != ADJ_OFFSET_SINGLESHOT && (txc->modes & ADJ_OFFSET))
260
          /* adjustment Offset limited to +- .512 seconds */
261
                if (txc->offset <= - MAXPHASE || txc->offset >= MAXPHASE )
262
                        return -EINVAL;
263
 
264
        /* if the quartz is off by more than 10% something is VERY wrong ! */
265
        if (txc->modes & ADJ_TICK)
266
                if (txc->tick <  900000/USER_HZ ||
267
                    txc->tick > 1100000/USER_HZ)
268
                        return -EINVAL;
269
 
270
        write_seqlock_irq(&xtime_lock);
271
        result = time_state;    /* mostly `TIME_OK' */
272
 
273
        /* Save for later - semantics of adjtime is to return old value */
274
        save_adjust = time_adjust;
275
 
276
#if 0   /* STA_CLOCKERR is never set yet */
277
        time_status &= ~STA_CLOCKERR;           /* reset STA_CLOCKERR */
278
#endif
279
        /* If there are input parameters, then process them */
280
        if (txc->modes)
281
        {
282
            if (txc->modes & ADJ_STATUS)        /* only set allowed bits */
283
                time_status =  (txc->status & ~STA_RONLY) |
284
                              (time_status & STA_RONLY);
285
 
286
            if (txc->modes & ADJ_FREQUENCY) {   /* p. 22 */
287
                if (txc->freq > MAXFREQ || txc->freq < -MAXFREQ) {
288
                    result = -EINVAL;
289
                    goto leave;
290
                }
291
                time_freq = ((s64)txc->freq * NSEC_PER_USEC)
292
                                >> (SHIFT_USEC - SHIFT_NSEC);
293
            }
294
 
295
            if (txc->modes & ADJ_MAXERROR) {
296
                if (txc->maxerror < 0 || txc->maxerror >= NTP_PHASE_LIMIT) {
297
                    result = -EINVAL;
298
                    goto leave;
299
                }
300
                time_maxerror = txc->maxerror;
301
            }
302
 
303
            if (txc->modes & ADJ_ESTERROR) {
304
                if (txc->esterror < 0 || txc->esterror >= NTP_PHASE_LIMIT) {
305
                    result = -EINVAL;
306
                    goto leave;
307
                }
308
                time_esterror = txc->esterror;
309
            }
310
 
311
            if (txc->modes & ADJ_TIMECONST) {   /* p. 24 */
312
                if (txc->constant < 0) { /* NTP v4 uses values > 6 */
313
                    result = -EINVAL;
314
                    goto leave;
315
                }
316
                time_constant = min(txc->constant + 4, (long)MAXTC);
317
            }
318
 
319
            if (txc->modes & ADJ_OFFSET) {      /* values checked earlier */
320
                if (txc->modes == ADJ_OFFSET_SINGLESHOT) {
321
                    /* adjtime() is independent from ntp_adjtime() */
322
                    time_adjust = txc->offset;
323
                }
324
                else if (time_status & STA_PLL) {
325
                    time_offset = txc->offset * NSEC_PER_USEC;
326
 
327
                    /*
328
                     * Scale the phase adjustment and
329
                     * clamp to the operating range.
330
                     */
331
                    time_offset = min(time_offset, (s64)MAXPHASE * NSEC_PER_USEC);
332
                    time_offset = max(time_offset, (s64)-MAXPHASE * NSEC_PER_USEC);
333
 
334
                    /*
335
                     * Select whether the frequency is to be controlled
336
                     * and in which mode (PLL or FLL). Clamp to the operating
337
                     * range. Ugly multiply/divide should be replaced someday.
338
                     */
339
 
340
                    if (time_status & STA_FREQHOLD || time_reftime == 0)
341
                        time_reftime = xtime.tv_sec;
342
                    mtemp = xtime.tv_sec - time_reftime;
343
                    time_reftime = xtime.tv_sec;
344
 
345
                    freq_adj = time_offset * mtemp;
346
                    freq_adj = shift_right(freq_adj, time_constant * 2 +
347
                                           (SHIFT_PLL + 2) * 2 - SHIFT_NSEC);
348
                    if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) {
349
                        temp64 = time_offset << (SHIFT_NSEC - SHIFT_FLL);
350
                        if (time_offset < 0) {
351
                            temp64 = -temp64;
352
                            do_div(temp64, mtemp);
353
                            freq_adj -= temp64;
354
                        } else {
355
                            do_div(temp64, mtemp);
356
                            freq_adj += temp64;
357
                        }
358
                    }
359
                    freq_adj += time_freq;
360
                    freq_adj = min(freq_adj, (s64)MAXFREQ_NSEC);
361
                    time_freq = max(freq_adj, (s64)-MAXFREQ_NSEC);
362
                    time_offset = div_long_long_rem_signed(time_offset,
363
                                                           NTP_INTERVAL_FREQ,
364
                                                           &rem);
365
                    time_offset <<= SHIFT_UPDATE;
366
                } /* STA_PLL */
367
            } /* txc->modes & ADJ_OFFSET */
368
            if (txc->modes & ADJ_TICK)
369
                tick_usec = txc->tick;
370
 
371
            if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
372
                    ntp_update_frequency();
373
        } /* txc->modes */
374
leave:  if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0)
375
                result = TIME_ERROR;
376
 
377
        if ((txc->modes == ADJ_OFFSET_SINGLESHOT) ||
378
                        (txc->modes == ADJ_OFFSET_SS_READ))
379
                txc->offset = save_adjust;
380
        else
381
                txc->offset = ((long)shift_right(time_offset, SHIFT_UPDATE)) *
382
                                NTP_INTERVAL_FREQ / 1000;
383
        txc->freq          = (time_freq / NSEC_PER_USEC) <<
384
                                (SHIFT_USEC - SHIFT_NSEC);
385
        txc->maxerror      = time_maxerror;
386
        txc->esterror      = time_esterror;
387
        txc->status        = time_status;
388
        txc->constant      = time_constant;
389
        txc->precision     = 1;
390
        txc->tolerance     = MAXFREQ;
391
        txc->tick          = tick_usec;
392
 
393
        /* PPS is not implemented, so these are zero */
394
        txc->ppsfreq       = 0;
395
        txc->jitter        = 0;
396
        txc->shift         = 0;
397
        txc->stabil        = 0;
398
        txc->jitcnt        = 0;
399
        txc->calcnt        = 0;
400
        txc->errcnt        = 0;
401
        txc->stbcnt        = 0;
402
        write_sequnlock_irq(&xtime_lock);
403
        do_gettimeofday(&txc->time);
404
        notify_cmos_timer();
405
        return(result);
406
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.