1 |
62 |
marcus.erl |
/*
|
2 |
|
|
* linux/kernel/time/ntp.c
|
3 |
|
|
*
|
4 |
|
|
* NTP state machine interfaces and logic.
|
5 |
|
|
*
|
6 |
|
|
* This code was mainly moved from kernel/timer.c and kernel/time.c
|
7 |
|
|
* Please see those files for relevant copyright info and historical
|
8 |
|
|
* changelogs.
|
9 |
|
|
*/
|
10 |
|
|
|
11 |
|
|
#include <linux/mm.h>
|
12 |
|
|
#include <linux/time.h>
|
13 |
|
|
#include <linux/timer.h>
|
14 |
|
|
#include <linux/timex.h>
|
15 |
|
|
#include <linux/jiffies.h>
|
16 |
|
|
#include <linux/hrtimer.h>
|
17 |
|
|
#include <linux/capability.h>
|
18 |
|
|
#include <asm/div64.h>
|
19 |
|
|
#include <asm/timex.h>
|
20 |
|
|
|
21 |
|
|
/*
|
22 |
|
|
* Timekeeping variables
|
23 |
|
|
*/
|
24 |
|
|
unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
|
25 |
|
|
unsigned long tick_nsec; /* ACTHZ period (nsec) */
|
26 |
|
|
static u64 tick_length, tick_length_base;
|
27 |
|
|
|
28 |
|
|
#define MAX_TICKADJ 500 /* microsecs */
|
29 |
|
|
#define MAX_TICKADJ_SCALED (((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \
|
30 |
|
|
TICK_LENGTH_SHIFT) / NTP_INTERVAL_FREQ)
|
31 |
|
|
|
32 |
|
|
/*
|
33 |
|
|
* phase-lock loop variables
|
34 |
|
|
*/
|
35 |
|
|
/* TIME_ERROR prevents overwriting the CMOS clock */
|
36 |
|
|
static int time_state = TIME_OK; /* clock synchronization status */
|
37 |
|
|
int time_status = STA_UNSYNC; /* clock status bits */
|
38 |
|
|
static s64 time_offset; /* time adjustment (ns) */
|
39 |
|
|
static long time_constant = 2; /* pll time constant */
|
40 |
|
|
long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
|
41 |
|
|
long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
|
42 |
|
|
long time_freq; /* frequency offset (scaled ppm)*/
|
43 |
|
|
static long time_reftime; /* time at last adjustment (s) */
|
44 |
|
|
long time_adjust;
|
45 |
|
|
|
46 |
|
|
#define CLOCK_TICK_OVERFLOW (LATCH * HZ - CLOCK_TICK_RATE)
|
47 |
|
|
#define CLOCK_TICK_ADJUST (((s64)CLOCK_TICK_OVERFLOW * NSEC_PER_SEC) / \
|
48 |
|
|
(s64)CLOCK_TICK_RATE)
|
49 |
|
|
|
50 |
|
|
static void ntp_update_frequency(void)
|
51 |
|
|
{
|
52 |
|
|
u64 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
|
53 |
|
|
<< TICK_LENGTH_SHIFT;
|
54 |
|
|
second_length += (s64)CLOCK_TICK_ADJUST << TICK_LENGTH_SHIFT;
|
55 |
|
|
second_length += (s64)time_freq << (TICK_LENGTH_SHIFT - SHIFT_NSEC);
|
56 |
|
|
|
57 |
|
|
tick_length_base = second_length;
|
58 |
|
|
|
59 |
|
|
do_div(second_length, HZ);
|
60 |
|
|
tick_nsec = second_length >> TICK_LENGTH_SHIFT;
|
61 |
|
|
|
62 |
|
|
do_div(tick_length_base, NTP_INTERVAL_FREQ);
|
63 |
|
|
}
|
64 |
|
|
|
65 |
|
|
/**
|
66 |
|
|
* ntp_clear - Clears the NTP state variables
|
67 |
|
|
*
|
68 |
|
|
* Must be called while holding a write on the xtime_lock
|
69 |
|
|
*/
|
70 |
|
|
void ntp_clear(void)
|
71 |
|
|
{
|
72 |
|
|
time_adjust = 0; /* stop active adjtime() */
|
73 |
|
|
time_status |= STA_UNSYNC;
|
74 |
|
|
time_maxerror = NTP_PHASE_LIMIT;
|
75 |
|
|
time_esterror = NTP_PHASE_LIMIT;
|
76 |
|
|
|
77 |
|
|
ntp_update_frequency();
|
78 |
|
|
|
79 |
|
|
tick_length = tick_length_base;
|
80 |
|
|
time_offset = 0;
|
81 |
|
|
}
|
82 |
|
|
|
83 |
|
|
/*
|
84 |
|
|
* this routine handles the overflow of the microsecond field
|
85 |
|
|
*
|
86 |
|
|
* The tricky bits of code to handle the accurate clock support
|
87 |
|
|
* were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
|
88 |
|
|
* They were originally developed for SUN and DEC kernels.
|
89 |
|
|
* All the kudos should go to Dave for this stuff.
|
90 |
|
|
*/
|
91 |
|
|
void second_overflow(void)
|
92 |
|
|
{
|
93 |
|
|
long time_adj;
|
94 |
|
|
|
95 |
|
|
/* Bump the maxerror field */
|
96 |
|
|
time_maxerror += MAXFREQ >> SHIFT_USEC;
|
97 |
|
|
if (time_maxerror > NTP_PHASE_LIMIT) {
|
98 |
|
|
time_maxerror = NTP_PHASE_LIMIT;
|
99 |
|
|
time_status |= STA_UNSYNC;
|
100 |
|
|
}
|
101 |
|
|
|
102 |
|
|
/*
|
103 |
|
|
* Leap second processing. If in leap-insert state at the end of the
|
104 |
|
|
* day, the system clock is set back one second; if in leap-delete
|
105 |
|
|
* state, the system clock is set ahead one second. The microtime()
|
106 |
|
|
* routine or external clock driver will insure that reported time is
|
107 |
|
|
* always monotonic. The ugly divides should be replaced.
|
108 |
|
|
*/
|
109 |
|
|
switch (time_state) {
|
110 |
|
|
case TIME_OK:
|
111 |
|
|
if (time_status & STA_INS)
|
112 |
|
|
time_state = TIME_INS;
|
113 |
|
|
else if (time_status & STA_DEL)
|
114 |
|
|
time_state = TIME_DEL;
|
115 |
|
|
break;
|
116 |
|
|
case TIME_INS:
|
117 |
|
|
if (xtime.tv_sec % 86400 == 0) {
|
118 |
|
|
xtime.tv_sec--;
|
119 |
|
|
wall_to_monotonic.tv_sec++;
|
120 |
|
|
time_state = TIME_OOP;
|
121 |
|
|
printk(KERN_NOTICE "Clock: inserting leap second "
|
122 |
|
|
"23:59:60 UTC\n");
|
123 |
|
|
}
|
124 |
|
|
break;
|
125 |
|
|
case TIME_DEL:
|
126 |
|
|
if ((xtime.tv_sec + 1) % 86400 == 0) {
|
127 |
|
|
xtime.tv_sec++;
|
128 |
|
|
wall_to_monotonic.tv_sec--;
|
129 |
|
|
time_state = TIME_WAIT;
|
130 |
|
|
printk(KERN_NOTICE "Clock: deleting leap second "
|
131 |
|
|
"23:59:59 UTC\n");
|
132 |
|
|
}
|
133 |
|
|
break;
|
134 |
|
|
case TIME_OOP:
|
135 |
|
|
time_state = TIME_WAIT;
|
136 |
|
|
break;
|
137 |
|
|
case TIME_WAIT:
|
138 |
|
|
if (!(time_status & (STA_INS | STA_DEL)))
|
139 |
|
|
time_state = TIME_OK;
|
140 |
|
|
}
|
141 |
|
|
|
142 |
|
|
/*
|
143 |
|
|
* Compute the phase adjustment for the next second. The offset is
|
144 |
|
|
* reduced by a fixed factor times the time constant.
|
145 |
|
|
*/
|
146 |
|
|
tick_length = tick_length_base;
|
147 |
|
|
time_adj = shift_right(time_offset, SHIFT_PLL + time_constant);
|
148 |
|
|
time_offset -= time_adj;
|
149 |
|
|
tick_length += (s64)time_adj << (TICK_LENGTH_SHIFT - SHIFT_UPDATE);
|
150 |
|
|
|
151 |
|
|
if (unlikely(time_adjust)) {
|
152 |
|
|
if (time_adjust > MAX_TICKADJ) {
|
153 |
|
|
time_adjust -= MAX_TICKADJ;
|
154 |
|
|
tick_length += MAX_TICKADJ_SCALED;
|
155 |
|
|
} else if (time_adjust < -MAX_TICKADJ) {
|
156 |
|
|
time_adjust += MAX_TICKADJ;
|
157 |
|
|
tick_length -= MAX_TICKADJ_SCALED;
|
158 |
|
|
} else {
|
159 |
|
|
tick_length += (s64)(time_adjust * NSEC_PER_USEC /
|
160 |
|
|
NTP_INTERVAL_FREQ) << TICK_LENGTH_SHIFT;
|
161 |
|
|
time_adjust = 0;
|
162 |
|
|
}
|
163 |
|
|
}
|
164 |
|
|
}
|
165 |
|
|
|
166 |
|
|
/*
|
167 |
|
|
* Return how long ticks are at the moment, that is, how much time
|
168 |
|
|
* update_wall_time_one_tick will add to xtime next time we call it
|
169 |
|
|
* (assuming no calls to do_adjtimex in the meantime).
|
170 |
|
|
* The return value is in fixed-point nanoseconds shifted by the
|
171 |
|
|
* specified number of bits to the right of the binary point.
|
172 |
|
|
* This function has no side-effects.
|
173 |
|
|
*/
|
174 |
|
|
u64 current_tick_length(void)
|
175 |
|
|
{
|
176 |
|
|
return tick_length;
|
177 |
|
|
}
|
178 |
|
|
|
179 |
|
|
#ifdef CONFIG_GENERIC_CMOS_UPDATE
|
180 |
|
|
|
181 |
|
|
/* Disable the cmos update - used by virtualization and embedded */
|
182 |
|
|
int no_sync_cmos_clock __read_mostly;
|
183 |
|
|
|
184 |
|
|
static void sync_cmos_clock(unsigned long dummy);
|
185 |
|
|
|
186 |
|
|
static DEFINE_TIMER(sync_cmos_timer, sync_cmos_clock, 0, 0);
|
187 |
|
|
|
188 |
|
|
static void sync_cmos_clock(unsigned long dummy)
|
189 |
|
|
{
|
190 |
|
|
struct timespec now, next;
|
191 |
|
|
int fail = 1;
|
192 |
|
|
|
193 |
|
|
/*
|
194 |
|
|
* If we have an externally synchronized Linux clock, then update
|
195 |
|
|
* CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
|
196 |
|
|
* called as close as possible to 500 ms before the new second starts.
|
197 |
|
|
* This code is run on a timer. If the clock is set, that timer
|
198 |
|
|
* may not expire at the correct time. Thus, we adjust...
|
199 |
|
|
*/
|
200 |
|
|
if (!ntp_synced())
|
201 |
|
|
/*
|
202 |
|
|
* Not synced, exit, do not restart a timer (if one is
|
203 |
|
|
* running, let it run out).
|
204 |
|
|
*/
|
205 |
|
|
return;
|
206 |
|
|
|
207 |
|
|
getnstimeofday(&now);
|
208 |
|
|
if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
|
209 |
|
|
fail = update_persistent_clock(now);
|
210 |
|
|
|
211 |
|
|
next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec;
|
212 |
|
|
if (next.tv_nsec <= 0)
|
213 |
|
|
next.tv_nsec += NSEC_PER_SEC;
|
214 |
|
|
|
215 |
|
|
if (!fail)
|
216 |
|
|
next.tv_sec = 659;
|
217 |
|
|
else
|
218 |
|
|
next.tv_sec = 0;
|
219 |
|
|
|
220 |
|
|
if (next.tv_nsec >= NSEC_PER_SEC) {
|
221 |
|
|
next.tv_sec++;
|
222 |
|
|
next.tv_nsec -= NSEC_PER_SEC;
|
223 |
|
|
}
|
224 |
|
|
mod_timer(&sync_cmos_timer, jiffies + timespec_to_jiffies(&next));
|
225 |
|
|
}
|
226 |
|
|
|
227 |
|
|
static void notify_cmos_timer(void)
|
228 |
|
|
{
|
229 |
|
|
if (!no_sync_cmos_clock)
|
230 |
|
|
mod_timer(&sync_cmos_timer, jiffies + 1);
|
231 |
|
|
}
|
232 |
|
|
|
233 |
|
|
#else
|
234 |
|
|
static inline void notify_cmos_timer(void) { }
|
235 |
|
|
#endif
|
236 |
|
|
|
237 |
|
|
/* adjtimex mainly allows reading (and writing, if superuser) of
|
238 |
|
|
* kernel time-keeping variables. used by xntpd.
|
239 |
|
|
*/
|
240 |
|
|
int do_adjtimex(struct timex *txc)
|
241 |
|
|
{
|
242 |
|
|
long mtemp, save_adjust, rem;
|
243 |
|
|
s64 freq_adj, temp64;
|
244 |
|
|
int result;
|
245 |
|
|
|
246 |
|
|
/* In order to modify anything, you gotta be super-user! */
|
247 |
|
|
if (txc->modes && !capable(CAP_SYS_TIME))
|
248 |
|
|
return -EPERM;
|
249 |
|
|
|
250 |
|
|
/* Now we validate the data before disabling interrupts */
|
251 |
|
|
|
252 |
|
|
if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT) {
|
253 |
|
|
/* singleshot must not be used with any other mode bits */
|
254 |
|
|
if (txc->modes != ADJ_OFFSET_SINGLESHOT &&
|
255 |
|
|
txc->modes != ADJ_OFFSET_SS_READ)
|
256 |
|
|
return -EINVAL;
|
257 |
|
|
}
|
258 |
|
|
|
259 |
|
|
if (txc->modes != ADJ_OFFSET_SINGLESHOT && (txc->modes & ADJ_OFFSET))
|
260 |
|
|
/* adjustment Offset limited to +- .512 seconds */
|
261 |
|
|
if (txc->offset <= - MAXPHASE || txc->offset >= MAXPHASE )
|
262 |
|
|
return -EINVAL;
|
263 |
|
|
|
264 |
|
|
/* if the quartz is off by more than 10% something is VERY wrong ! */
|
265 |
|
|
if (txc->modes & ADJ_TICK)
|
266 |
|
|
if (txc->tick < 900000/USER_HZ ||
|
267 |
|
|
txc->tick > 1100000/USER_HZ)
|
268 |
|
|
return -EINVAL;
|
269 |
|
|
|
270 |
|
|
write_seqlock_irq(&xtime_lock);
|
271 |
|
|
result = time_state; /* mostly `TIME_OK' */
|
272 |
|
|
|
273 |
|
|
/* Save for later - semantics of adjtime is to return old value */
|
274 |
|
|
save_adjust = time_adjust;
|
275 |
|
|
|
276 |
|
|
#if 0 /* STA_CLOCKERR is never set yet */
|
277 |
|
|
time_status &= ~STA_CLOCKERR; /* reset STA_CLOCKERR */
|
278 |
|
|
#endif
|
279 |
|
|
/* If there are input parameters, then process them */
|
280 |
|
|
if (txc->modes)
|
281 |
|
|
{
|
282 |
|
|
if (txc->modes & ADJ_STATUS) /* only set allowed bits */
|
283 |
|
|
time_status = (txc->status & ~STA_RONLY) |
|
284 |
|
|
(time_status & STA_RONLY);
|
285 |
|
|
|
286 |
|
|
if (txc->modes & ADJ_FREQUENCY) { /* p. 22 */
|
287 |
|
|
if (txc->freq > MAXFREQ || txc->freq < -MAXFREQ) {
|
288 |
|
|
result = -EINVAL;
|
289 |
|
|
goto leave;
|
290 |
|
|
}
|
291 |
|
|
time_freq = ((s64)txc->freq * NSEC_PER_USEC)
|
292 |
|
|
>> (SHIFT_USEC - SHIFT_NSEC);
|
293 |
|
|
}
|
294 |
|
|
|
295 |
|
|
if (txc->modes & ADJ_MAXERROR) {
|
296 |
|
|
if (txc->maxerror < 0 || txc->maxerror >= NTP_PHASE_LIMIT) {
|
297 |
|
|
result = -EINVAL;
|
298 |
|
|
goto leave;
|
299 |
|
|
}
|
300 |
|
|
time_maxerror = txc->maxerror;
|
301 |
|
|
}
|
302 |
|
|
|
303 |
|
|
if (txc->modes & ADJ_ESTERROR) {
|
304 |
|
|
if (txc->esterror < 0 || txc->esterror >= NTP_PHASE_LIMIT) {
|
305 |
|
|
result = -EINVAL;
|
306 |
|
|
goto leave;
|
307 |
|
|
}
|
308 |
|
|
time_esterror = txc->esterror;
|
309 |
|
|
}
|
310 |
|
|
|
311 |
|
|
if (txc->modes & ADJ_TIMECONST) { /* p. 24 */
|
312 |
|
|
if (txc->constant < 0) { /* NTP v4 uses values > 6 */
|
313 |
|
|
result = -EINVAL;
|
314 |
|
|
goto leave;
|
315 |
|
|
}
|
316 |
|
|
time_constant = min(txc->constant + 4, (long)MAXTC);
|
317 |
|
|
}
|
318 |
|
|
|
319 |
|
|
if (txc->modes & ADJ_OFFSET) { /* values checked earlier */
|
320 |
|
|
if (txc->modes == ADJ_OFFSET_SINGLESHOT) {
|
321 |
|
|
/* adjtime() is independent from ntp_adjtime() */
|
322 |
|
|
time_adjust = txc->offset;
|
323 |
|
|
}
|
324 |
|
|
else if (time_status & STA_PLL) {
|
325 |
|
|
time_offset = txc->offset * NSEC_PER_USEC;
|
326 |
|
|
|
327 |
|
|
/*
|
328 |
|
|
* Scale the phase adjustment and
|
329 |
|
|
* clamp to the operating range.
|
330 |
|
|
*/
|
331 |
|
|
time_offset = min(time_offset, (s64)MAXPHASE * NSEC_PER_USEC);
|
332 |
|
|
time_offset = max(time_offset, (s64)-MAXPHASE * NSEC_PER_USEC);
|
333 |
|
|
|
334 |
|
|
/*
|
335 |
|
|
* Select whether the frequency is to be controlled
|
336 |
|
|
* and in which mode (PLL or FLL). Clamp to the operating
|
337 |
|
|
* range. Ugly multiply/divide should be replaced someday.
|
338 |
|
|
*/
|
339 |
|
|
|
340 |
|
|
if (time_status & STA_FREQHOLD || time_reftime == 0)
|
341 |
|
|
time_reftime = xtime.tv_sec;
|
342 |
|
|
mtemp = xtime.tv_sec - time_reftime;
|
343 |
|
|
time_reftime = xtime.tv_sec;
|
344 |
|
|
|
345 |
|
|
freq_adj = time_offset * mtemp;
|
346 |
|
|
freq_adj = shift_right(freq_adj, time_constant * 2 +
|
347 |
|
|
(SHIFT_PLL + 2) * 2 - SHIFT_NSEC);
|
348 |
|
|
if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) {
|
349 |
|
|
temp64 = time_offset << (SHIFT_NSEC - SHIFT_FLL);
|
350 |
|
|
if (time_offset < 0) {
|
351 |
|
|
temp64 = -temp64;
|
352 |
|
|
do_div(temp64, mtemp);
|
353 |
|
|
freq_adj -= temp64;
|
354 |
|
|
} else {
|
355 |
|
|
do_div(temp64, mtemp);
|
356 |
|
|
freq_adj += temp64;
|
357 |
|
|
}
|
358 |
|
|
}
|
359 |
|
|
freq_adj += time_freq;
|
360 |
|
|
freq_adj = min(freq_adj, (s64)MAXFREQ_NSEC);
|
361 |
|
|
time_freq = max(freq_adj, (s64)-MAXFREQ_NSEC);
|
362 |
|
|
time_offset = div_long_long_rem_signed(time_offset,
|
363 |
|
|
NTP_INTERVAL_FREQ,
|
364 |
|
|
&rem);
|
365 |
|
|
time_offset <<= SHIFT_UPDATE;
|
366 |
|
|
} /* STA_PLL */
|
367 |
|
|
} /* txc->modes & ADJ_OFFSET */
|
368 |
|
|
if (txc->modes & ADJ_TICK)
|
369 |
|
|
tick_usec = txc->tick;
|
370 |
|
|
|
371 |
|
|
if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
|
372 |
|
|
ntp_update_frequency();
|
373 |
|
|
} /* txc->modes */
|
374 |
|
|
leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0)
|
375 |
|
|
result = TIME_ERROR;
|
376 |
|
|
|
377 |
|
|
if ((txc->modes == ADJ_OFFSET_SINGLESHOT) ||
|
378 |
|
|
(txc->modes == ADJ_OFFSET_SS_READ))
|
379 |
|
|
txc->offset = save_adjust;
|
380 |
|
|
else
|
381 |
|
|
txc->offset = ((long)shift_right(time_offset, SHIFT_UPDATE)) *
|
382 |
|
|
NTP_INTERVAL_FREQ / 1000;
|
383 |
|
|
txc->freq = (time_freq / NSEC_PER_USEC) <<
|
384 |
|
|
(SHIFT_USEC - SHIFT_NSEC);
|
385 |
|
|
txc->maxerror = time_maxerror;
|
386 |
|
|
txc->esterror = time_esterror;
|
387 |
|
|
txc->status = time_status;
|
388 |
|
|
txc->constant = time_constant;
|
389 |
|
|
txc->precision = 1;
|
390 |
|
|
txc->tolerance = MAXFREQ;
|
391 |
|
|
txc->tick = tick_usec;
|
392 |
|
|
|
393 |
|
|
/* PPS is not implemented, so these are zero */
|
394 |
|
|
txc->ppsfreq = 0;
|
395 |
|
|
txc->jitter = 0;
|
396 |
|
|
txc->shift = 0;
|
397 |
|
|
txc->stabil = 0;
|
398 |
|
|
txc->jitcnt = 0;
|
399 |
|
|
txc->calcnt = 0;
|
400 |
|
|
txc->errcnt = 0;
|
401 |
|
|
txc->stbcnt = 0;
|
402 |
|
|
write_sequnlock_irq(&xtime_lock);
|
403 |
|
|
do_gettimeofday(&txc->time);
|
404 |
|
|
notify_cmos_timer();
|
405 |
|
|
return(result);
|
406 |
|
|
}
|