OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [kernel/] [time/] [tick-sched.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 *  linux/kernel/time/tick-sched.c
3
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7
 *
8
 *  No idle tick implementation for low and high resolution timers
9
 *
10
 *  Started by: Thomas Gleixner and Ingo Molnar
11
 *
12
 *  For licencing details see kernel-base/COPYING
13
 */
14
#include <linux/cpu.h>
15
#include <linux/err.h>
16
#include <linux/hrtimer.h>
17
#include <linux/interrupt.h>
18
#include <linux/kernel_stat.h>
19
#include <linux/percpu.h>
20
#include <linux/profile.h>
21
#include <linux/sched.h>
22
#include <linux/tick.h>
23
 
24
#include <asm/irq_regs.h>
25
 
26
#include "tick-internal.h"
27
 
28
/*
29
 * Per cpu nohz control structure
30
 */
31
static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32
 
33
/*
34
 * The time, when the last jiffy update happened. Protected by xtime_lock.
35
 */
36
static ktime_t last_jiffies_update;
37
 
38
struct tick_sched *tick_get_tick_sched(int cpu)
39
{
40
        return &per_cpu(tick_cpu_sched, cpu);
41
}
42
 
43
/*
44
 * Must be called with interrupts disabled !
45
 */
46
static void tick_do_update_jiffies64(ktime_t now)
47
{
48
        unsigned long ticks = 0;
49
        ktime_t delta;
50
 
51
        /* Reevalute with xtime_lock held */
52
        write_seqlock(&xtime_lock);
53
 
54
        delta = ktime_sub(now, last_jiffies_update);
55
        if (delta.tv64 >= tick_period.tv64) {
56
 
57
                delta = ktime_sub(delta, tick_period);
58
                last_jiffies_update = ktime_add(last_jiffies_update,
59
                                                tick_period);
60
 
61
                /* Slow path for long timeouts */
62
                if (unlikely(delta.tv64 >= tick_period.tv64)) {
63
                        s64 incr = ktime_to_ns(tick_period);
64
 
65
                        ticks = ktime_divns(delta, incr);
66
 
67
                        last_jiffies_update = ktime_add_ns(last_jiffies_update,
68
                                                           incr * ticks);
69
                }
70
                do_timer(++ticks);
71
        }
72
        write_sequnlock(&xtime_lock);
73
}
74
 
75
/*
76
 * Initialize and return retrieve the jiffies update.
77
 */
78
static ktime_t tick_init_jiffy_update(void)
79
{
80
        ktime_t period;
81
 
82
        write_seqlock(&xtime_lock);
83
        /* Did we start the jiffies update yet ? */
84
        if (last_jiffies_update.tv64 == 0)
85
                last_jiffies_update = tick_next_period;
86
        period = last_jiffies_update;
87
        write_sequnlock(&xtime_lock);
88
        return period;
89
}
90
 
91
/*
92
 * NOHZ - aka dynamic tick functionality
93
 */
94
#ifdef CONFIG_NO_HZ
95
/*
96
 * NO HZ enabled ?
97
 */
98
static int tick_nohz_enabled __read_mostly  = 1;
99
 
100
/*
101
 * Enable / Disable tickless mode
102
 */
103
static int __init setup_tick_nohz(char *str)
104
{
105
        if (!strcmp(str, "off"))
106
                tick_nohz_enabled = 0;
107
        else if (!strcmp(str, "on"))
108
                tick_nohz_enabled = 1;
109
        else
110
                return 0;
111
        return 1;
112
}
113
 
114
__setup("nohz=", setup_tick_nohz);
115
 
116
/**
117
 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
118
 *
119
 * Called from interrupt entry when the CPU was idle
120
 *
121
 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
122
 * must be updated. Otherwise an interrupt handler could use a stale jiffy
123
 * value. We do this unconditionally on any cpu, as we don't know whether the
124
 * cpu, which has the update task assigned is in a long sleep.
125
 */
126
void tick_nohz_update_jiffies(void)
127
{
128
        int cpu = smp_processor_id();
129
        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
130
        unsigned long flags;
131
        ktime_t now;
132
 
133
        if (!ts->tick_stopped)
134
                return;
135
 
136
        touch_softlockup_watchdog();
137
 
138
        cpu_clear(cpu, nohz_cpu_mask);
139
        now = ktime_get();
140
 
141
        local_irq_save(flags);
142
        tick_do_update_jiffies64(now);
143
        local_irq_restore(flags);
144
}
145
 
146
/**
147
 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
148
 *
149
 * When the next event is more than a tick into the future, stop the idle tick
150
 * Called either from the idle loop or from irq_exit() when an idle period was
151
 * just interrupted by an interrupt which did not cause a reschedule.
152
 */
153
void tick_nohz_stop_sched_tick(void)
154
{
155
        unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
156
        struct tick_sched *ts;
157
        ktime_t last_update, expires, now, delta;
158
        struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
159
        int cpu;
160
 
161
        local_irq_save(flags);
162
 
163
        cpu = smp_processor_id();
164
        ts = &per_cpu(tick_cpu_sched, cpu);
165
 
166
        /*
167
         * If this cpu is offline and it is the one which updates
168
         * jiffies, then give up the assignment and let it be taken by
169
         * the cpu which runs the tick timer next. If we don't drop
170
         * this here the jiffies might be stale and do_timer() never
171
         * invoked.
172
         */
173
        if (unlikely(!cpu_online(cpu))) {
174
                if (cpu == tick_do_timer_cpu)
175
                        tick_do_timer_cpu = -1;
176
        }
177
 
178
        if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
179
                goto end;
180
 
181
        if (need_resched())
182
                goto end;
183
 
184
        cpu = smp_processor_id();
185
        if (unlikely(local_softirq_pending())) {
186
                static int ratelimit;
187
 
188
                if (ratelimit < 10) {
189
                        printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
190
                               local_softirq_pending());
191
                        ratelimit++;
192
                }
193
        }
194
 
195
        now = ktime_get();
196
        /*
197
         * When called from irq_exit we need to account the idle sleep time
198
         * correctly.
199
         */
200
        if (ts->tick_stopped) {
201
                delta = ktime_sub(now, ts->idle_entrytime);
202
                ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
203
        }
204
 
205
        ts->idle_entrytime = now;
206
        ts->idle_calls++;
207
 
208
        /* Read jiffies and the time when jiffies were updated last */
209
        do {
210
                seq = read_seqbegin(&xtime_lock);
211
                last_update = last_jiffies_update;
212
                last_jiffies = jiffies;
213
        } while (read_seqretry(&xtime_lock, seq));
214
 
215
        /* Get the next timer wheel timer */
216
        next_jiffies = get_next_timer_interrupt(last_jiffies);
217
        delta_jiffies = next_jiffies - last_jiffies;
218
 
219
        if (rcu_needs_cpu(cpu))
220
                delta_jiffies = 1;
221
        /*
222
         * Do not stop the tick, if we are only one off
223
         * or if the cpu is required for rcu
224
         */
225
        if (!ts->tick_stopped && delta_jiffies == 1)
226
                goto out;
227
 
228
        /* Schedule the tick, if we are at least one jiffie off */
229
        if ((long)delta_jiffies >= 1) {
230
 
231
                if (delta_jiffies > 1)
232
                        cpu_set(cpu, nohz_cpu_mask);
233
                /*
234
                 * nohz_stop_sched_tick can be called several times before
235
                 * the nohz_restart_sched_tick is called. This happens when
236
                 * interrupts arrive which do not cause a reschedule. In the
237
                 * first call we save the current tick time, so we can restart
238
                 * the scheduler tick in nohz_restart_sched_tick.
239
                 */
240
                if (!ts->tick_stopped) {
241
                        if (select_nohz_load_balancer(1)) {
242
                                /*
243
                                 * sched tick not stopped!
244
                                 */
245
                                cpu_clear(cpu, nohz_cpu_mask);
246
                                goto out;
247
                        }
248
 
249
                        ts->idle_tick = ts->sched_timer.expires;
250
                        ts->tick_stopped = 1;
251
                        ts->idle_jiffies = last_jiffies;
252
                }
253
 
254
                /*
255
                 * If this cpu is the one which updates jiffies, then
256
                 * give up the assignment and let it be taken by the
257
                 * cpu which runs the tick timer next, which might be
258
                 * this cpu as well. If we don't drop this here the
259
                 * jiffies might be stale and do_timer() never
260
                 * invoked.
261
                 */
262
                if (cpu == tick_do_timer_cpu)
263
                        tick_do_timer_cpu = -1;
264
 
265
                ts->idle_sleeps++;
266
 
267
                /*
268
                 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that
269
                 * there is no timer pending or at least extremly far
270
                 * into the future (12 days for HZ=1000). In this case
271
                 * we simply stop the tick timer:
272
                 */
273
                if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) {
274
                        ts->idle_expires.tv64 = KTIME_MAX;
275
                        if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
276
                                hrtimer_cancel(&ts->sched_timer);
277
                        goto out;
278
                }
279
 
280
                /*
281
                 * calculate the expiry time for the next timer wheel
282
                 * timer
283
                 */
284
                expires = ktime_add_ns(last_update, tick_period.tv64 *
285
                                       delta_jiffies);
286
                ts->idle_expires = expires;
287
 
288
                if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
289
                        hrtimer_start(&ts->sched_timer, expires,
290
                                      HRTIMER_MODE_ABS);
291
                        /* Check, if the timer was already in the past */
292
                        if (hrtimer_active(&ts->sched_timer))
293
                                goto out;
294
                } else if(!tick_program_event(expires, 0))
295
                                goto out;
296
                /*
297
                 * We are past the event already. So we crossed a
298
                 * jiffie boundary. Update jiffies and raise the
299
                 * softirq.
300
                 */
301
                tick_do_update_jiffies64(ktime_get());
302
                cpu_clear(cpu, nohz_cpu_mask);
303
        }
304
        raise_softirq_irqoff(TIMER_SOFTIRQ);
305
out:
306
        ts->next_jiffies = next_jiffies;
307
        ts->last_jiffies = last_jiffies;
308
        ts->sleep_length = ktime_sub(dev->next_event, now);
309
end:
310
        local_irq_restore(flags);
311
}
312
 
313
/**
314
 * tick_nohz_get_sleep_length - return the length of the current sleep
315
 *
316
 * Called from power state control code with interrupts disabled
317
 */
318
ktime_t tick_nohz_get_sleep_length(void)
319
{
320
        struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
321
 
322
        return ts->sleep_length;
323
}
324
 
325
/**
326
 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
327
 *
328
 * Restart the idle tick when the CPU is woken up from idle
329
 */
330
void tick_nohz_restart_sched_tick(void)
331
{
332
        int cpu = smp_processor_id();
333
        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
334
        unsigned long ticks;
335
        ktime_t now, delta;
336
 
337
        if (!ts->tick_stopped)
338
                return;
339
 
340
        /* Update jiffies first */
341
        now = ktime_get();
342
 
343
        local_irq_disable();
344
        select_nohz_load_balancer(0);
345
        tick_do_update_jiffies64(now);
346
        cpu_clear(cpu, nohz_cpu_mask);
347
 
348
        /* Account the idle time */
349
        delta = ktime_sub(now, ts->idle_entrytime);
350
        ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
351
 
352
        /*
353
         * We stopped the tick in idle. Update process times would miss the
354
         * time we slept as update_process_times does only a 1 tick
355
         * accounting. Enforce that this is accounted to idle !
356
         */
357
        ticks = jiffies - ts->idle_jiffies;
358
        /*
359
         * We might be one off. Do not randomly account a huge number of ticks!
360
         */
361
        if (ticks && ticks < LONG_MAX) {
362
                add_preempt_count(HARDIRQ_OFFSET);
363
                account_system_time(current, HARDIRQ_OFFSET,
364
                                    jiffies_to_cputime(ticks));
365
                sub_preempt_count(HARDIRQ_OFFSET);
366
        }
367
 
368
        /*
369
         * Cancel the scheduled timer and restore the tick
370
         */
371
        ts->tick_stopped  = 0;
372
        hrtimer_cancel(&ts->sched_timer);
373
        ts->sched_timer.expires = ts->idle_tick;
374
 
375
        while (1) {
376
                /* Forward the time to expire in the future */
377
                hrtimer_forward(&ts->sched_timer, now, tick_period);
378
 
379
                if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
380
                        hrtimer_start(&ts->sched_timer,
381
                                      ts->sched_timer.expires,
382
                                      HRTIMER_MODE_ABS);
383
                        /* Check, if the timer was already in the past */
384
                        if (hrtimer_active(&ts->sched_timer))
385
                                break;
386
                } else {
387
                        if (!tick_program_event(ts->sched_timer.expires, 0))
388
                                break;
389
                }
390
                /* Update jiffies and reread time */
391
                tick_do_update_jiffies64(now);
392
                now = ktime_get();
393
        }
394
        local_irq_enable();
395
}
396
 
397
static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
398
{
399
        hrtimer_forward(&ts->sched_timer, now, tick_period);
400
        return tick_program_event(ts->sched_timer.expires, 0);
401
}
402
 
403
/*
404
 * The nohz low res interrupt handler
405
 */
406
static void tick_nohz_handler(struct clock_event_device *dev)
407
{
408
        struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
409
        struct pt_regs *regs = get_irq_regs();
410
        int cpu = smp_processor_id();
411
        ktime_t now = ktime_get();
412
 
413
        dev->next_event.tv64 = KTIME_MAX;
414
 
415
        /*
416
         * Check if the do_timer duty was dropped. We don't care about
417
         * concurrency: This happens only when the cpu in charge went
418
         * into a long sleep. If two cpus happen to assign themself to
419
         * this duty, then the jiffies update is still serialized by
420
         * xtime_lock.
421
         */
422
        if (unlikely(tick_do_timer_cpu == -1))
423
                tick_do_timer_cpu = cpu;
424
 
425
        /* Check, if the jiffies need an update */
426
        if (tick_do_timer_cpu == cpu)
427
                tick_do_update_jiffies64(now);
428
 
429
        /*
430
         * When we are idle and the tick is stopped, we have to touch
431
         * the watchdog as we might not schedule for a really long
432
         * time. This happens on complete idle SMP systems while
433
         * waiting on the login prompt. We also increment the "start
434
         * of idle" jiffy stamp so the idle accounting adjustment we
435
         * do when we go busy again does not account too much ticks.
436
         */
437
        if (ts->tick_stopped) {
438
                touch_softlockup_watchdog();
439
                ts->idle_jiffies++;
440
        }
441
 
442
        update_process_times(user_mode(regs));
443
        profile_tick(CPU_PROFILING);
444
 
445
        /* Do not restart, when we are in the idle loop */
446
        if (ts->tick_stopped)
447
                return;
448
 
449
        while (tick_nohz_reprogram(ts, now)) {
450
                now = ktime_get();
451
                tick_do_update_jiffies64(now);
452
        }
453
}
454
 
455
/**
456
 * tick_nohz_switch_to_nohz - switch to nohz mode
457
 */
458
static void tick_nohz_switch_to_nohz(void)
459
{
460
        struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
461
        ktime_t next;
462
 
463
        if (!tick_nohz_enabled)
464
                return;
465
 
466
        local_irq_disable();
467
        if (tick_switch_to_oneshot(tick_nohz_handler)) {
468
                local_irq_enable();
469
                return;
470
        }
471
 
472
        ts->nohz_mode = NOHZ_MODE_LOWRES;
473
 
474
        /*
475
         * Recycle the hrtimer in ts, so we can share the
476
         * hrtimer_forward with the highres code.
477
         */
478
        hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
479
        /* Get the next period */
480
        next = tick_init_jiffy_update();
481
 
482
        for (;;) {
483
                ts->sched_timer.expires = next;
484
                if (!tick_program_event(next, 0))
485
                        break;
486
                next = ktime_add(next, tick_period);
487
        }
488
        local_irq_enable();
489
 
490
        printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
491
               smp_processor_id());
492
}
493
 
494
#else
495
 
496
static inline void tick_nohz_switch_to_nohz(void) { }
497
 
498
#endif /* NO_HZ */
499
 
500
/*
501
 * High resolution timer specific code
502
 */
503
#ifdef CONFIG_HIGH_RES_TIMERS
504
/*
505
 * We rearm the timer until we get disabled by the idle code
506
 * Called with interrupts disabled and timer->base->cpu_base->lock held.
507
 */
508
static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
509
{
510
        struct tick_sched *ts =
511
                container_of(timer, struct tick_sched, sched_timer);
512
        struct hrtimer_cpu_base *base = timer->base->cpu_base;
513
        struct pt_regs *regs = get_irq_regs();
514
        ktime_t now = ktime_get();
515
        int cpu = smp_processor_id();
516
 
517
#ifdef CONFIG_NO_HZ
518
        /*
519
         * Check if the do_timer duty was dropped. We don't care about
520
         * concurrency: This happens only when the cpu in charge went
521
         * into a long sleep. If two cpus happen to assign themself to
522
         * this duty, then the jiffies update is still serialized by
523
         * xtime_lock.
524
         */
525
        if (unlikely(tick_do_timer_cpu == -1))
526
                tick_do_timer_cpu = cpu;
527
#endif
528
 
529
        /* Check, if the jiffies need an update */
530
        if (tick_do_timer_cpu == cpu)
531
                tick_do_update_jiffies64(now);
532
 
533
        /*
534
         * Do not call, when we are not in irq context and have
535
         * no valid regs pointer
536
         */
537
        if (regs) {
538
                /*
539
                 * When we are idle and the tick is stopped, we have to touch
540
                 * the watchdog as we might not schedule for a really long
541
                 * time. This happens on complete idle SMP systems while
542
                 * waiting on the login prompt. We also increment the "start of
543
                 * idle" jiffy stamp so the idle accounting adjustment we do
544
                 * when we go busy again does not account too much ticks.
545
                 */
546
                if (ts->tick_stopped) {
547
                        touch_softlockup_watchdog();
548
                        ts->idle_jiffies++;
549
                }
550
                /*
551
                 * update_process_times() might take tasklist_lock, hence
552
                 * drop the base lock. sched-tick hrtimers are per-CPU and
553
                 * never accessible by userspace APIs, so this is safe to do.
554
                 */
555
                spin_unlock(&base->lock);
556
                update_process_times(user_mode(regs));
557
                profile_tick(CPU_PROFILING);
558
                spin_lock(&base->lock);
559
        }
560
 
561
        /* Do not restart, when we are in the idle loop */
562
        if (ts->tick_stopped)
563
                return HRTIMER_NORESTART;
564
 
565
        hrtimer_forward(timer, now, tick_period);
566
 
567
        return HRTIMER_RESTART;
568
}
569
 
570
/**
571
 * tick_setup_sched_timer - setup the tick emulation timer
572
 */
573
void tick_setup_sched_timer(void)
574
{
575
        struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
576
        ktime_t now = ktime_get();
577
        u64 offset;
578
 
579
        /*
580
         * Emulate tick processing via per-CPU hrtimers:
581
         */
582
        hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
583
        ts->sched_timer.function = tick_sched_timer;
584
        ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
585
 
586
        /* Get the next period (per cpu) */
587
        ts->sched_timer.expires = tick_init_jiffy_update();
588
        offset = ktime_to_ns(tick_period) >> 1;
589
        do_div(offset, num_possible_cpus());
590
        offset *= smp_processor_id();
591
        ts->sched_timer.expires = ktime_add_ns(ts->sched_timer.expires, offset);
592
 
593
        for (;;) {
594
                hrtimer_forward(&ts->sched_timer, now, tick_period);
595
                hrtimer_start(&ts->sched_timer, ts->sched_timer.expires,
596
                              HRTIMER_MODE_ABS);
597
                /* Check, if the timer was already in the past */
598
                if (hrtimer_active(&ts->sched_timer))
599
                        break;
600
                now = ktime_get();
601
        }
602
 
603
#ifdef CONFIG_NO_HZ
604
        if (tick_nohz_enabled)
605
                ts->nohz_mode = NOHZ_MODE_HIGHRES;
606
#endif
607
}
608
 
609
void tick_cancel_sched_timer(int cpu)
610
{
611
        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
612
 
613
        if (ts->sched_timer.base)
614
                hrtimer_cancel(&ts->sched_timer);
615
        ts->tick_stopped = 0;
616
        ts->nohz_mode = NOHZ_MODE_INACTIVE;
617
}
618
#endif /* HIGH_RES_TIMERS */
619
 
620
/**
621
 * Async notification about clocksource changes
622
 */
623
void tick_clock_notify(void)
624
{
625
        int cpu;
626
 
627
        for_each_possible_cpu(cpu)
628
                set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
629
}
630
 
631
/*
632
 * Async notification about clock event changes
633
 */
634
void tick_oneshot_notify(void)
635
{
636
        struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
637
 
638
        set_bit(0, &ts->check_clocks);
639
}
640
 
641
/**
642
 * Check, if a change happened, which makes oneshot possible.
643
 *
644
 * Called cyclic from the hrtimer softirq (driven by the timer
645
 * softirq) allow_nohz signals, that we can switch into low-res nohz
646
 * mode, because high resolution timers are disabled (either compile
647
 * or runtime).
648
 */
649
int tick_check_oneshot_change(int allow_nohz)
650
{
651
        struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
652
 
653
        if (!test_and_clear_bit(0, &ts->check_clocks))
654
                return 0;
655
 
656
        if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
657
                return 0;
658
 
659
        if (!timekeeping_is_continuous() || !tick_is_oneshot_available())
660
                return 0;
661
 
662
        if (!allow_nohz)
663
                return 1;
664
 
665
        tick_nohz_switch_to_nohz();
666
        return 0;
667
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.