1 |
62 |
marcus.erl |
/*
|
2 |
|
|
* linux/kernel/time.c
|
3 |
|
|
*
|
4 |
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
5 |
|
|
*
|
6 |
|
|
* This file contains the interface functions for the various
|
7 |
|
|
* time related system calls: time, stime, gettimeofday, settimeofday,
|
8 |
|
|
* adjtime
|
9 |
|
|
*/
|
10 |
|
|
/*
|
11 |
|
|
* Modification history kernel/time.c
|
12 |
|
|
*
|
13 |
|
|
* 1993-09-02 Philip Gladstone
|
14 |
|
|
* Created file with time related functions from sched.c and adjtimex()
|
15 |
|
|
* 1993-10-08 Torsten Duwe
|
16 |
|
|
* adjtime interface update and CMOS clock write code
|
17 |
|
|
* 1995-08-13 Torsten Duwe
|
18 |
|
|
* kernel PLL updated to 1994-12-13 specs (rfc-1589)
|
19 |
|
|
* 1999-01-16 Ulrich Windl
|
20 |
|
|
* Introduced error checking for many cases in adjtimex().
|
21 |
|
|
* Updated NTP code according to technical memorandum Jan '96
|
22 |
|
|
* "A Kernel Model for Precision Timekeeping" by Dave Mills
|
23 |
|
|
* Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
|
24 |
|
|
* (Even though the technical memorandum forbids it)
|
25 |
|
|
* 2004-07-14 Christoph Lameter
|
26 |
|
|
* Added getnstimeofday to allow the posix timer functions to return
|
27 |
|
|
* with nanosecond accuracy
|
28 |
|
|
*/
|
29 |
|
|
|
30 |
|
|
#include <linux/module.h>
|
31 |
|
|
#include <linux/timex.h>
|
32 |
|
|
#include <linux/capability.h>
|
33 |
|
|
#include <linux/clocksource.h>
|
34 |
|
|
#include <linux/errno.h>
|
35 |
|
|
#include <linux/syscalls.h>
|
36 |
|
|
#include <linux/security.h>
|
37 |
|
|
#include <linux/fs.h>
|
38 |
|
|
|
39 |
|
|
#include <asm/uaccess.h>
|
40 |
|
|
#include <asm/unistd.h>
|
41 |
|
|
|
42 |
|
|
/*
|
43 |
|
|
* The timezone where the local system is located. Used as a default by some
|
44 |
|
|
* programs who obtain this value by using gettimeofday.
|
45 |
|
|
*/
|
46 |
|
|
struct timezone sys_tz;
|
47 |
|
|
|
48 |
|
|
EXPORT_SYMBOL(sys_tz);
|
49 |
|
|
|
50 |
|
|
#ifdef __ARCH_WANT_SYS_TIME
|
51 |
|
|
|
52 |
|
|
/*
|
53 |
|
|
* sys_time() can be implemented in user-level using
|
54 |
|
|
* sys_gettimeofday(). Is this for backwards compatibility? If so,
|
55 |
|
|
* why not move it into the appropriate arch directory (for those
|
56 |
|
|
* architectures that need it).
|
57 |
|
|
*/
|
58 |
|
|
asmlinkage long sys_time(time_t __user * tloc)
|
59 |
|
|
{
|
60 |
|
|
time_t i = get_seconds();
|
61 |
|
|
|
62 |
|
|
if (tloc) {
|
63 |
|
|
if (put_user(i,tloc))
|
64 |
|
|
i = -EFAULT;
|
65 |
|
|
}
|
66 |
|
|
return i;
|
67 |
|
|
}
|
68 |
|
|
|
69 |
|
|
/*
|
70 |
|
|
* sys_stime() can be implemented in user-level using
|
71 |
|
|
* sys_settimeofday(). Is this for backwards compatibility? If so,
|
72 |
|
|
* why not move it into the appropriate arch directory (for those
|
73 |
|
|
* architectures that need it).
|
74 |
|
|
*/
|
75 |
|
|
|
76 |
|
|
asmlinkage long sys_stime(time_t __user *tptr)
|
77 |
|
|
{
|
78 |
|
|
struct timespec tv;
|
79 |
|
|
int err;
|
80 |
|
|
|
81 |
|
|
if (get_user(tv.tv_sec, tptr))
|
82 |
|
|
return -EFAULT;
|
83 |
|
|
|
84 |
|
|
tv.tv_nsec = 0;
|
85 |
|
|
|
86 |
|
|
err = security_settime(&tv, NULL);
|
87 |
|
|
if (err)
|
88 |
|
|
return err;
|
89 |
|
|
|
90 |
|
|
do_settimeofday(&tv);
|
91 |
|
|
return 0;
|
92 |
|
|
}
|
93 |
|
|
|
94 |
|
|
#endif /* __ARCH_WANT_SYS_TIME */
|
95 |
|
|
|
96 |
|
|
asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz)
|
97 |
|
|
{
|
98 |
|
|
if (likely(tv != NULL)) {
|
99 |
|
|
struct timeval ktv;
|
100 |
|
|
do_gettimeofday(&ktv);
|
101 |
|
|
if (copy_to_user(tv, &ktv, sizeof(ktv)))
|
102 |
|
|
return -EFAULT;
|
103 |
|
|
}
|
104 |
|
|
if (unlikely(tz != NULL)) {
|
105 |
|
|
if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
|
106 |
|
|
return -EFAULT;
|
107 |
|
|
}
|
108 |
|
|
return 0;
|
109 |
|
|
}
|
110 |
|
|
|
111 |
|
|
/*
|
112 |
|
|
* Adjust the time obtained from the CMOS to be UTC time instead of
|
113 |
|
|
* local time.
|
114 |
|
|
*
|
115 |
|
|
* This is ugly, but preferable to the alternatives. Otherwise we
|
116 |
|
|
* would either need to write a program to do it in /etc/rc (and risk
|
117 |
|
|
* confusion if the program gets run more than once; it would also be
|
118 |
|
|
* hard to make the program warp the clock precisely n hours) or
|
119 |
|
|
* compile in the timezone information into the kernel. Bad, bad....
|
120 |
|
|
*
|
121 |
|
|
* - TYT, 1992-01-01
|
122 |
|
|
*
|
123 |
|
|
* The best thing to do is to keep the CMOS clock in universal time (UTC)
|
124 |
|
|
* as real UNIX machines always do it. This avoids all headaches about
|
125 |
|
|
* daylight saving times and warping kernel clocks.
|
126 |
|
|
*/
|
127 |
|
|
static inline void warp_clock(void)
|
128 |
|
|
{
|
129 |
|
|
write_seqlock_irq(&xtime_lock);
|
130 |
|
|
wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
|
131 |
|
|
xtime.tv_sec += sys_tz.tz_minuteswest * 60;
|
132 |
|
|
write_sequnlock_irq(&xtime_lock);
|
133 |
|
|
clock_was_set();
|
134 |
|
|
}
|
135 |
|
|
|
136 |
|
|
/*
|
137 |
|
|
* In case for some reason the CMOS clock has not already been running
|
138 |
|
|
* in UTC, but in some local time: The first time we set the timezone,
|
139 |
|
|
* we will warp the clock so that it is ticking UTC time instead of
|
140 |
|
|
* local time. Presumably, if someone is setting the timezone then we
|
141 |
|
|
* are running in an environment where the programs understand about
|
142 |
|
|
* timezones. This should be done at boot time in the /etc/rc script,
|
143 |
|
|
* as soon as possible, so that the clock can be set right. Otherwise,
|
144 |
|
|
* various programs will get confused when the clock gets warped.
|
145 |
|
|
*/
|
146 |
|
|
|
147 |
|
|
int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
|
148 |
|
|
{
|
149 |
|
|
static int firsttime = 1;
|
150 |
|
|
int error = 0;
|
151 |
|
|
|
152 |
|
|
if (tv && !timespec_valid(tv))
|
153 |
|
|
return -EINVAL;
|
154 |
|
|
|
155 |
|
|
error = security_settime(tv, tz);
|
156 |
|
|
if (error)
|
157 |
|
|
return error;
|
158 |
|
|
|
159 |
|
|
if (tz) {
|
160 |
|
|
/* SMP safe, global irq locking makes it work. */
|
161 |
|
|
sys_tz = *tz;
|
162 |
|
|
update_vsyscall_tz();
|
163 |
|
|
if (firsttime) {
|
164 |
|
|
firsttime = 0;
|
165 |
|
|
if (!tv)
|
166 |
|
|
warp_clock();
|
167 |
|
|
}
|
168 |
|
|
}
|
169 |
|
|
if (tv)
|
170 |
|
|
{
|
171 |
|
|
/* SMP safe, again the code in arch/foo/time.c should
|
172 |
|
|
* globally block out interrupts when it runs.
|
173 |
|
|
*/
|
174 |
|
|
return do_settimeofday(tv);
|
175 |
|
|
}
|
176 |
|
|
return 0;
|
177 |
|
|
}
|
178 |
|
|
|
179 |
|
|
asmlinkage long sys_settimeofday(struct timeval __user *tv,
|
180 |
|
|
struct timezone __user *tz)
|
181 |
|
|
{
|
182 |
|
|
struct timeval user_tv;
|
183 |
|
|
struct timespec new_ts;
|
184 |
|
|
struct timezone new_tz;
|
185 |
|
|
|
186 |
|
|
if (tv) {
|
187 |
|
|
if (copy_from_user(&user_tv, tv, sizeof(*tv)))
|
188 |
|
|
return -EFAULT;
|
189 |
|
|
new_ts.tv_sec = user_tv.tv_sec;
|
190 |
|
|
new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
|
191 |
|
|
}
|
192 |
|
|
if (tz) {
|
193 |
|
|
if (copy_from_user(&new_tz, tz, sizeof(*tz)))
|
194 |
|
|
return -EFAULT;
|
195 |
|
|
}
|
196 |
|
|
|
197 |
|
|
return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
|
198 |
|
|
}
|
199 |
|
|
|
200 |
|
|
asmlinkage long sys_adjtimex(struct timex __user *txc_p)
|
201 |
|
|
{
|
202 |
|
|
struct timex txc; /* Local copy of parameter */
|
203 |
|
|
int ret;
|
204 |
|
|
|
205 |
|
|
/* Copy the user data space into the kernel copy
|
206 |
|
|
* structure. But bear in mind that the structures
|
207 |
|
|
* may change
|
208 |
|
|
*/
|
209 |
|
|
if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
|
210 |
|
|
return -EFAULT;
|
211 |
|
|
ret = do_adjtimex(&txc);
|
212 |
|
|
return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
|
213 |
|
|
}
|
214 |
|
|
|
215 |
|
|
/**
|
216 |
|
|
* current_fs_time - Return FS time
|
217 |
|
|
* @sb: Superblock.
|
218 |
|
|
*
|
219 |
|
|
* Return the current time truncated to the time granularity supported by
|
220 |
|
|
* the fs.
|
221 |
|
|
*/
|
222 |
|
|
struct timespec current_fs_time(struct super_block *sb)
|
223 |
|
|
{
|
224 |
|
|
struct timespec now = current_kernel_time();
|
225 |
|
|
return timespec_trunc(now, sb->s_time_gran);
|
226 |
|
|
}
|
227 |
|
|
EXPORT_SYMBOL(current_fs_time);
|
228 |
|
|
|
229 |
|
|
/*
|
230 |
|
|
* Convert jiffies to milliseconds and back.
|
231 |
|
|
*
|
232 |
|
|
* Avoid unnecessary multiplications/divisions in the
|
233 |
|
|
* two most common HZ cases:
|
234 |
|
|
*/
|
235 |
|
|
unsigned int inline jiffies_to_msecs(const unsigned long j)
|
236 |
|
|
{
|
237 |
|
|
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
|
238 |
|
|
return (MSEC_PER_SEC / HZ) * j;
|
239 |
|
|
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
|
240 |
|
|
return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
|
241 |
|
|
#else
|
242 |
|
|
return (j * MSEC_PER_SEC) / HZ;
|
243 |
|
|
#endif
|
244 |
|
|
}
|
245 |
|
|
EXPORT_SYMBOL(jiffies_to_msecs);
|
246 |
|
|
|
247 |
|
|
unsigned int inline jiffies_to_usecs(const unsigned long j)
|
248 |
|
|
{
|
249 |
|
|
#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
|
250 |
|
|
return (USEC_PER_SEC / HZ) * j;
|
251 |
|
|
#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
|
252 |
|
|
return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
|
253 |
|
|
#else
|
254 |
|
|
return (j * USEC_PER_SEC) / HZ;
|
255 |
|
|
#endif
|
256 |
|
|
}
|
257 |
|
|
EXPORT_SYMBOL(jiffies_to_usecs);
|
258 |
|
|
|
259 |
|
|
/**
|
260 |
|
|
* timespec_trunc - Truncate timespec to a granularity
|
261 |
|
|
* @t: Timespec
|
262 |
|
|
* @gran: Granularity in ns.
|
263 |
|
|
*
|
264 |
|
|
* Truncate a timespec to a granularity. gran must be smaller than a second.
|
265 |
|
|
* Always rounds down.
|
266 |
|
|
*
|
267 |
|
|
* This function should be only used for timestamps returned by
|
268 |
|
|
* current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
|
269 |
|
|
* it doesn't handle the better resolution of the later.
|
270 |
|
|
*/
|
271 |
|
|
struct timespec timespec_trunc(struct timespec t, unsigned gran)
|
272 |
|
|
{
|
273 |
|
|
/*
|
274 |
|
|
* Division is pretty slow so avoid it for common cases.
|
275 |
|
|
* Currently current_kernel_time() never returns better than
|
276 |
|
|
* jiffies resolution. Exploit that.
|
277 |
|
|
*/
|
278 |
|
|
if (gran <= jiffies_to_usecs(1) * 1000) {
|
279 |
|
|
/* nothing */
|
280 |
|
|
} else if (gran == 1000000000) {
|
281 |
|
|
t.tv_nsec = 0;
|
282 |
|
|
} else {
|
283 |
|
|
t.tv_nsec -= t.tv_nsec % gran;
|
284 |
|
|
}
|
285 |
|
|
return t;
|
286 |
|
|
}
|
287 |
|
|
EXPORT_SYMBOL(timespec_trunc);
|
288 |
|
|
|
289 |
|
|
#ifndef CONFIG_GENERIC_TIME
|
290 |
|
|
/*
|
291 |
|
|
* Simulate gettimeofday using do_gettimeofday which only allows a timeval
|
292 |
|
|
* and therefore only yields usec accuracy
|
293 |
|
|
*/
|
294 |
|
|
void getnstimeofday(struct timespec *tv)
|
295 |
|
|
{
|
296 |
|
|
struct timeval x;
|
297 |
|
|
|
298 |
|
|
do_gettimeofday(&x);
|
299 |
|
|
tv->tv_sec = x.tv_sec;
|
300 |
|
|
tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
|
301 |
|
|
}
|
302 |
|
|
EXPORT_SYMBOL_GPL(getnstimeofday);
|
303 |
|
|
#endif
|
304 |
|
|
|
305 |
|
|
/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
|
306 |
|
|
* Assumes input in normal date format, i.e. 1980-12-31 23:59:59
|
307 |
|
|
* => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
|
308 |
|
|
*
|
309 |
|
|
* [For the Julian calendar (which was used in Russia before 1917,
|
310 |
|
|
* Britain & colonies before 1752, anywhere else before 1582,
|
311 |
|
|
* and is still in use by some communities) leave out the
|
312 |
|
|
* -year/100+year/400 terms, and add 10.]
|
313 |
|
|
*
|
314 |
|
|
* This algorithm was first published by Gauss (I think).
|
315 |
|
|
*
|
316 |
|
|
* WARNING: this function will overflow on 2106-02-07 06:28:16 on
|
317 |
|
|
* machines were long is 32-bit! (However, as time_t is signed, we
|
318 |
|
|
* will already get problems at other places on 2038-01-19 03:14:08)
|
319 |
|
|
*/
|
320 |
|
|
unsigned long
|
321 |
|
|
mktime(const unsigned int year0, const unsigned int mon0,
|
322 |
|
|
const unsigned int day, const unsigned int hour,
|
323 |
|
|
const unsigned int min, const unsigned int sec)
|
324 |
|
|
{
|
325 |
|
|
unsigned int mon = mon0, year = year0;
|
326 |
|
|
|
327 |
|
|
/* 1..12 -> 11,12,1..10 */
|
328 |
|
|
if (0 >= (int) (mon -= 2)) {
|
329 |
|
|
mon += 12; /* Puts Feb last since it has leap day */
|
330 |
|
|
year -= 1;
|
331 |
|
|
}
|
332 |
|
|
|
333 |
|
|
return ((((unsigned long)
|
334 |
|
|
(year/4 - year/100 + year/400 + 367*mon/12 + day) +
|
335 |
|
|
year*365 - 719499
|
336 |
|
|
)*24 + hour /* now have hours */
|
337 |
|
|
)*60 + min /* now have minutes */
|
338 |
|
|
)*60 + sec; /* finally seconds */
|
339 |
|
|
}
|
340 |
|
|
|
341 |
|
|
EXPORT_SYMBOL(mktime);
|
342 |
|
|
|
343 |
|
|
/**
|
344 |
|
|
* set_normalized_timespec - set timespec sec and nsec parts and normalize
|
345 |
|
|
*
|
346 |
|
|
* @ts: pointer to timespec variable to be set
|
347 |
|
|
* @sec: seconds to set
|
348 |
|
|
* @nsec: nanoseconds to set
|
349 |
|
|
*
|
350 |
|
|
* Set seconds and nanoseconds field of a timespec variable and
|
351 |
|
|
* normalize to the timespec storage format
|
352 |
|
|
*
|
353 |
|
|
* Note: The tv_nsec part is always in the range of
|
354 |
|
|
* 0 <= tv_nsec < NSEC_PER_SEC
|
355 |
|
|
* For negative values only the tv_sec field is negative !
|
356 |
|
|
*/
|
357 |
|
|
void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
|
358 |
|
|
{
|
359 |
|
|
while (nsec >= NSEC_PER_SEC) {
|
360 |
|
|
nsec -= NSEC_PER_SEC;
|
361 |
|
|
++sec;
|
362 |
|
|
}
|
363 |
|
|
while (nsec < 0) {
|
364 |
|
|
nsec += NSEC_PER_SEC;
|
365 |
|
|
--sec;
|
366 |
|
|
}
|
367 |
|
|
ts->tv_sec = sec;
|
368 |
|
|
ts->tv_nsec = nsec;
|
369 |
|
|
}
|
370 |
|
|
|
371 |
|
|
/**
|
372 |
|
|
* ns_to_timespec - Convert nanoseconds to timespec
|
373 |
|
|
* @nsec: the nanoseconds value to be converted
|
374 |
|
|
*
|
375 |
|
|
* Returns the timespec representation of the nsec parameter.
|
376 |
|
|
*/
|
377 |
|
|
struct timespec ns_to_timespec(const s64 nsec)
|
378 |
|
|
{
|
379 |
|
|
struct timespec ts;
|
380 |
|
|
|
381 |
|
|
if (!nsec)
|
382 |
|
|
return (struct timespec) {0, 0};
|
383 |
|
|
|
384 |
|
|
ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
|
385 |
|
|
if (unlikely(nsec < 0))
|
386 |
|
|
set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
|
387 |
|
|
|
388 |
|
|
return ts;
|
389 |
|
|
}
|
390 |
|
|
EXPORT_SYMBOL(ns_to_timespec);
|
391 |
|
|
|
392 |
|
|
/**
|
393 |
|
|
* ns_to_timeval - Convert nanoseconds to timeval
|
394 |
|
|
* @nsec: the nanoseconds value to be converted
|
395 |
|
|
*
|
396 |
|
|
* Returns the timeval representation of the nsec parameter.
|
397 |
|
|
*/
|
398 |
|
|
struct timeval ns_to_timeval(const s64 nsec)
|
399 |
|
|
{
|
400 |
|
|
struct timespec ts = ns_to_timespec(nsec);
|
401 |
|
|
struct timeval tv;
|
402 |
|
|
|
403 |
|
|
tv.tv_sec = ts.tv_sec;
|
404 |
|
|
tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
|
405 |
|
|
|
406 |
|
|
return tv;
|
407 |
|
|
}
|
408 |
|
|
EXPORT_SYMBOL(ns_to_timeval);
|
409 |
|
|
|
410 |
|
|
/*
|
411 |
|
|
* When we convert to jiffies then we interpret incoming values
|
412 |
|
|
* the following way:
|
413 |
|
|
*
|
414 |
|
|
* - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
|
415 |
|
|
*
|
416 |
|
|
* - 'too large' values [that would result in larger than
|
417 |
|
|
* MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
|
418 |
|
|
*
|
419 |
|
|
* - all other values are converted to jiffies by either multiplying
|
420 |
|
|
* the input value by a factor or dividing it with a factor
|
421 |
|
|
*
|
422 |
|
|
* We must also be careful about 32-bit overflows.
|
423 |
|
|
*/
|
424 |
|
|
unsigned long msecs_to_jiffies(const unsigned int m)
|
425 |
|
|
{
|
426 |
|
|
/*
|
427 |
|
|
* Negative value, means infinite timeout:
|
428 |
|
|
*/
|
429 |
|
|
if ((int)m < 0)
|
430 |
|
|
return MAX_JIFFY_OFFSET;
|
431 |
|
|
|
432 |
|
|
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
|
433 |
|
|
/*
|
434 |
|
|
* HZ is equal to or smaller than 1000, and 1000 is a nice
|
435 |
|
|
* round multiple of HZ, divide with the factor between them,
|
436 |
|
|
* but round upwards:
|
437 |
|
|
*/
|
438 |
|
|
return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
|
439 |
|
|
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
|
440 |
|
|
/*
|
441 |
|
|
* HZ is larger than 1000, and HZ is a nice round multiple of
|
442 |
|
|
* 1000 - simply multiply with the factor between them.
|
443 |
|
|
*
|
444 |
|
|
* But first make sure the multiplication result cannot
|
445 |
|
|
* overflow:
|
446 |
|
|
*/
|
447 |
|
|
if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
|
448 |
|
|
return MAX_JIFFY_OFFSET;
|
449 |
|
|
|
450 |
|
|
return m * (HZ / MSEC_PER_SEC);
|
451 |
|
|
#else
|
452 |
|
|
/*
|
453 |
|
|
* Generic case - multiply, round and divide. But first
|
454 |
|
|
* check that if we are doing a net multiplication, that
|
455 |
|
|
* we wouldnt overflow:
|
456 |
|
|
*/
|
457 |
|
|
if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
|
458 |
|
|
return MAX_JIFFY_OFFSET;
|
459 |
|
|
|
460 |
|
|
return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC;
|
461 |
|
|
#endif
|
462 |
|
|
}
|
463 |
|
|
EXPORT_SYMBOL(msecs_to_jiffies);
|
464 |
|
|
|
465 |
|
|
unsigned long usecs_to_jiffies(const unsigned int u)
|
466 |
|
|
{
|
467 |
|
|
if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
|
468 |
|
|
return MAX_JIFFY_OFFSET;
|
469 |
|
|
#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
|
470 |
|
|
return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
|
471 |
|
|
#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
|
472 |
|
|
return u * (HZ / USEC_PER_SEC);
|
473 |
|
|
#else
|
474 |
|
|
return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC;
|
475 |
|
|
#endif
|
476 |
|
|
}
|
477 |
|
|
EXPORT_SYMBOL(usecs_to_jiffies);
|
478 |
|
|
|
479 |
|
|
/*
|
480 |
|
|
* The TICK_NSEC - 1 rounds up the value to the next resolution. Note
|
481 |
|
|
* that a remainder subtract here would not do the right thing as the
|
482 |
|
|
* resolution values don't fall on second boundries. I.e. the line:
|
483 |
|
|
* nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
|
484 |
|
|
*
|
485 |
|
|
* Rather, we just shift the bits off the right.
|
486 |
|
|
*
|
487 |
|
|
* The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
|
488 |
|
|
* value to a scaled second value.
|
489 |
|
|
*/
|
490 |
|
|
unsigned long
|
491 |
|
|
timespec_to_jiffies(const struct timespec *value)
|
492 |
|
|
{
|
493 |
|
|
unsigned long sec = value->tv_sec;
|
494 |
|
|
long nsec = value->tv_nsec + TICK_NSEC - 1;
|
495 |
|
|
|
496 |
|
|
if (sec >= MAX_SEC_IN_JIFFIES){
|
497 |
|
|
sec = MAX_SEC_IN_JIFFIES;
|
498 |
|
|
nsec = 0;
|
499 |
|
|
}
|
500 |
|
|
return (((u64)sec * SEC_CONVERSION) +
|
501 |
|
|
(((u64)nsec * NSEC_CONVERSION) >>
|
502 |
|
|
(NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
|
503 |
|
|
|
504 |
|
|
}
|
505 |
|
|
EXPORT_SYMBOL(timespec_to_jiffies);
|
506 |
|
|
|
507 |
|
|
void
|
508 |
|
|
jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
|
509 |
|
|
{
|
510 |
|
|
/*
|
511 |
|
|
* Convert jiffies to nanoseconds and separate with
|
512 |
|
|
* one divide.
|
513 |
|
|
*/
|
514 |
|
|
u64 nsec = (u64)jiffies * TICK_NSEC;
|
515 |
|
|
value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
|
516 |
|
|
}
|
517 |
|
|
EXPORT_SYMBOL(jiffies_to_timespec);
|
518 |
|
|
|
519 |
|
|
/* Same for "timeval"
|
520 |
|
|
*
|
521 |
|
|
* Well, almost. The problem here is that the real system resolution is
|
522 |
|
|
* in nanoseconds and the value being converted is in micro seconds.
|
523 |
|
|
* Also for some machines (those that use HZ = 1024, in-particular),
|
524 |
|
|
* there is a LARGE error in the tick size in microseconds.
|
525 |
|
|
|
526 |
|
|
* The solution we use is to do the rounding AFTER we convert the
|
527 |
|
|
* microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
|
528 |
|
|
* Instruction wise, this should cost only an additional add with carry
|
529 |
|
|
* instruction above the way it was done above.
|
530 |
|
|
*/
|
531 |
|
|
unsigned long
|
532 |
|
|
timeval_to_jiffies(const struct timeval *value)
|
533 |
|
|
{
|
534 |
|
|
unsigned long sec = value->tv_sec;
|
535 |
|
|
long usec = value->tv_usec;
|
536 |
|
|
|
537 |
|
|
if (sec >= MAX_SEC_IN_JIFFIES){
|
538 |
|
|
sec = MAX_SEC_IN_JIFFIES;
|
539 |
|
|
usec = 0;
|
540 |
|
|
}
|
541 |
|
|
return (((u64)sec * SEC_CONVERSION) +
|
542 |
|
|
(((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
|
543 |
|
|
(USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
|
544 |
|
|
}
|
545 |
|
|
EXPORT_SYMBOL(timeval_to_jiffies);
|
546 |
|
|
|
547 |
|
|
void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
|
548 |
|
|
{
|
549 |
|
|
/*
|
550 |
|
|
* Convert jiffies to nanoseconds and separate with
|
551 |
|
|
* one divide.
|
552 |
|
|
*/
|
553 |
|
|
u64 nsec = (u64)jiffies * TICK_NSEC;
|
554 |
|
|
long tv_usec;
|
555 |
|
|
|
556 |
|
|
value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
|
557 |
|
|
tv_usec /= NSEC_PER_USEC;
|
558 |
|
|
value->tv_usec = tv_usec;
|
559 |
|
|
}
|
560 |
|
|
EXPORT_SYMBOL(jiffies_to_timeval);
|
561 |
|
|
|
562 |
|
|
/*
|
563 |
|
|
* Convert jiffies/jiffies_64 to clock_t and back.
|
564 |
|
|
*/
|
565 |
|
|
clock_t jiffies_to_clock_t(long x)
|
566 |
|
|
{
|
567 |
|
|
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
|
568 |
|
|
return x / (HZ / USER_HZ);
|
569 |
|
|
#else
|
570 |
|
|
u64 tmp = (u64)x * TICK_NSEC;
|
571 |
|
|
do_div(tmp, (NSEC_PER_SEC / USER_HZ));
|
572 |
|
|
return (long)tmp;
|
573 |
|
|
#endif
|
574 |
|
|
}
|
575 |
|
|
EXPORT_SYMBOL(jiffies_to_clock_t);
|
576 |
|
|
|
577 |
|
|
unsigned long clock_t_to_jiffies(unsigned long x)
|
578 |
|
|
{
|
579 |
|
|
#if (HZ % USER_HZ)==0
|
580 |
|
|
if (x >= ~0UL / (HZ / USER_HZ))
|
581 |
|
|
return ~0UL;
|
582 |
|
|
return x * (HZ / USER_HZ);
|
583 |
|
|
#else
|
584 |
|
|
u64 jif;
|
585 |
|
|
|
586 |
|
|
/* Don't worry about loss of precision here .. */
|
587 |
|
|
if (x >= ~0UL / HZ * USER_HZ)
|
588 |
|
|
return ~0UL;
|
589 |
|
|
|
590 |
|
|
/* .. but do try to contain it here */
|
591 |
|
|
jif = x * (u64) HZ;
|
592 |
|
|
do_div(jif, USER_HZ);
|
593 |
|
|
return jif;
|
594 |
|
|
#endif
|
595 |
|
|
}
|
596 |
|
|
EXPORT_SYMBOL(clock_t_to_jiffies);
|
597 |
|
|
|
598 |
|
|
u64 jiffies_64_to_clock_t(u64 x)
|
599 |
|
|
{
|
600 |
|
|
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
|
601 |
|
|
do_div(x, HZ / USER_HZ);
|
602 |
|
|
#else
|
603 |
|
|
/*
|
604 |
|
|
* There are better ways that don't overflow early,
|
605 |
|
|
* but even this doesn't overflow in hundreds of years
|
606 |
|
|
* in 64 bits, so..
|
607 |
|
|
*/
|
608 |
|
|
x *= TICK_NSEC;
|
609 |
|
|
do_div(x, (NSEC_PER_SEC / USER_HZ));
|
610 |
|
|
#endif
|
611 |
|
|
return x;
|
612 |
|
|
}
|
613 |
|
|
|
614 |
|
|
EXPORT_SYMBOL(jiffies_64_to_clock_t);
|
615 |
|
|
|
616 |
|
|
u64 nsec_to_clock_t(u64 x)
|
617 |
|
|
{
|
618 |
|
|
#if (NSEC_PER_SEC % USER_HZ) == 0
|
619 |
|
|
do_div(x, (NSEC_PER_SEC / USER_HZ));
|
620 |
|
|
#elif (USER_HZ % 512) == 0
|
621 |
|
|
x *= USER_HZ/512;
|
622 |
|
|
do_div(x, (NSEC_PER_SEC / 512));
|
623 |
|
|
#else
|
624 |
|
|
/*
|
625 |
|
|
* max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
|
626 |
|
|
* overflow after 64.99 years.
|
627 |
|
|
* exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
|
628 |
|
|
*/
|
629 |
|
|
x *= 9;
|
630 |
|
|
do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
|
631 |
|
|
USER_HZ));
|
632 |
|
|
#endif
|
633 |
|
|
return x;
|
634 |
|
|
}
|
635 |
|
|
|
636 |
|
|
#if (BITS_PER_LONG < 64)
|
637 |
|
|
u64 get_jiffies_64(void)
|
638 |
|
|
{
|
639 |
|
|
unsigned long seq;
|
640 |
|
|
u64 ret;
|
641 |
|
|
|
642 |
|
|
do {
|
643 |
|
|
seq = read_seqbegin(&xtime_lock);
|
644 |
|
|
ret = jiffies_64;
|
645 |
|
|
} while (read_seqretry(&xtime_lock, seq));
|
646 |
|
|
return ret;
|
647 |
|
|
}
|
648 |
|
|
|
649 |
|
|
EXPORT_SYMBOL(get_jiffies_64);
|
650 |
|
|
#endif
|
651 |
|
|
|
652 |
|
|
EXPORT_SYMBOL(jiffies);
|