1 |
62 |
marcus.erl |
/*
|
2 |
|
|
* linux/kernel/timer.c
|
3 |
|
|
*
|
4 |
|
|
* Kernel internal timers, basic process system calls
|
5 |
|
|
*
|
6 |
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
7 |
|
|
*
|
8 |
|
|
* 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
|
9 |
|
|
*
|
10 |
|
|
* 1997-09-10 Updated NTP code according to technical memorandum Jan '96
|
11 |
|
|
* "A Kernel Model for Precision Timekeeping" by Dave Mills
|
12 |
|
|
* 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
|
13 |
|
|
* serialize accesses to xtime/lost_ticks).
|
14 |
|
|
* Copyright (C) 1998 Andrea Arcangeli
|
15 |
|
|
* 1999-03-10 Improved NTP compatibility by Ulrich Windl
|
16 |
|
|
* 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
|
17 |
|
|
* 2000-10-05 Implemented scalable SMP per-CPU timer handling.
|
18 |
|
|
* Copyright (C) 2000, 2001, 2002 Ingo Molnar
|
19 |
|
|
* Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
|
20 |
|
|
*/
|
21 |
|
|
|
22 |
|
|
#include <linux/kernel_stat.h>
|
23 |
|
|
#include <linux/module.h>
|
24 |
|
|
#include <linux/interrupt.h>
|
25 |
|
|
#include <linux/percpu.h>
|
26 |
|
|
#include <linux/init.h>
|
27 |
|
|
#include <linux/mm.h>
|
28 |
|
|
#include <linux/swap.h>
|
29 |
|
|
#include <linux/pid_namespace.h>
|
30 |
|
|
#include <linux/notifier.h>
|
31 |
|
|
#include <linux/thread_info.h>
|
32 |
|
|
#include <linux/time.h>
|
33 |
|
|
#include <linux/jiffies.h>
|
34 |
|
|
#include <linux/posix-timers.h>
|
35 |
|
|
#include <linux/cpu.h>
|
36 |
|
|
#include <linux/syscalls.h>
|
37 |
|
|
#include <linux/delay.h>
|
38 |
|
|
#include <linux/tick.h>
|
39 |
|
|
#include <linux/kallsyms.h>
|
40 |
|
|
|
41 |
|
|
#include <asm/uaccess.h>
|
42 |
|
|
#include <asm/unistd.h>
|
43 |
|
|
#include <asm/div64.h>
|
44 |
|
|
#include <asm/timex.h>
|
45 |
|
|
#include <asm/io.h>
|
46 |
|
|
|
47 |
|
|
u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
|
48 |
|
|
|
49 |
|
|
EXPORT_SYMBOL(jiffies_64);
|
50 |
|
|
|
51 |
|
|
/*
|
52 |
|
|
* per-CPU timer vector definitions:
|
53 |
|
|
*/
|
54 |
|
|
#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
|
55 |
|
|
#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
|
56 |
|
|
#define TVN_SIZE (1 << TVN_BITS)
|
57 |
|
|
#define TVR_SIZE (1 << TVR_BITS)
|
58 |
|
|
#define TVN_MASK (TVN_SIZE - 1)
|
59 |
|
|
#define TVR_MASK (TVR_SIZE - 1)
|
60 |
|
|
|
61 |
|
|
typedef struct tvec_s {
|
62 |
|
|
struct list_head vec[TVN_SIZE];
|
63 |
|
|
} tvec_t;
|
64 |
|
|
|
65 |
|
|
typedef struct tvec_root_s {
|
66 |
|
|
struct list_head vec[TVR_SIZE];
|
67 |
|
|
} tvec_root_t;
|
68 |
|
|
|
69 |
|
|
struct tvec_t_base_s {
|
70 |
|
|
spinlock_t lock;
|
71 |
|
|
struct timer_list *running_timer;
|
72 |
|
|
unsigned long timer_jiffies;
|
73 |
|
|
tvec_root_t tv1;
|
74 |
|
|
tvec_t tv2;
|
75 |
|
|
tvec_t tv3;
|
76 |
|
|
tvec_t tv4;
|
77 |
|
|
tvec_t tv5;
|
78 |
|
|
} ____cacheline_aligned;
|
79 |
|
|
|
80 |
|
|
typedef struct tvec_t_base_s tvec_base_t;
|
81 |
|
|
|
82 |
|
|
tvec_base_t boot_tvec_bases;
|
83 |
|
|
EXPORT_SYMBOL(boot_tvec_bases);
|
84 |
|
|
static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = &boot_tvec_bases;
|
85 |
|
|
|
86 |
|
|
/*
|
87 |
|
|
* Note that all tvec_bases is 2 byte aligned and lower bit of
|
88 |
|
|
* base in timer_list is guaranteed to be zero. Use the LSB for
|
89 |
|
|
* the new flag to indicate whether the timer is deferrable
|
90 |
|
|
*/
|
91 |
|
|
#define TBASE_DEFERRABLE_FLAG (0x1)
|
92 |
|
|
|
93 |
|
|
/* Functions below help us manage 'deferrable' flag */
|
94 |
|
|
static inline unsigned int tbase_get_deferrable(tvec_base_t *base)
|
95 |
|
|
{
|
96 |
|
|
return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
|
97 |
|
|
}
|
98 |
|
|
|
99 |
|
|
static inline tvec_base_t *tbase_get_base(tvec_base_t *base)
|
100 |
|
|
{
|
101 |
|
|
return ((tvec_base_t *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
|
102 |
|
|
}
|
103 |
|
|
|
104 |
|
|
static inline void timer_set_deferrable(struct timer_list *timer)
|
105 |
|
|
{
|
106 |
|
|
timer->base = ((tvec_base_t *)((unsigned long)(timer->base) |
|
107 |
|
|
TBASE_DEFERRABLE_FLAG));
|
108 |
|
|
}
|
109 |
|
|
|
110 |
|
|
static inline void
|
111 |
|
|
timer_set_base(struct timer_list *timer, tvec_base_t *new_base)
|
112 |
|
|
{
|
113 |
|
|
timer->base = (tvec_base_t *)((unsigned long)(new_base) |
|
114 |
|
|
tbase_get_deferrable(timer->base));
|
115 |
|
|
}
|
116 |
|
|
|
117 |
|
|
/**
|
118 |
|
|
* __round_jiffies - function to round jiffies to a full second
|
119 |
|
|
* @j: the time in (absolute) jiffies that should be rounded
|
120 |
|
|
* @cpu: the processor number on which the timeout will happen
|
121 |
|
|
*
|
122 |
|
|
* __round_jiffies() rounds an absolute time in the future (in jiffies)
|
123 |
|
|
* up or down to (approximately) full seconds. This is useful for timers
|
124 |
|
|
* for which the exact time they fire does not matter too much, as long as
|
125 |
|
|
* they fire approximately every X seconds.
|
126 |
|
|
*
|
127 |
|
|
* By rounding these timers to whole seconds, all such timers will fire
|
128 |
|
|
* at the same time, rather than at various times spread out. The goal
|
129 |
|
|
* of this is to have the CPU wake up less, which saves power.
|
130 |
|
|
*
|
131 |
|
|
* The exact rounding is skewed for each processor to avoid all
|
132 |
|
|
* processors firing at the exact same time, which could lead
|
133 |
|
|
* to lock contention or spurious cache line bouncing.
|
134 |
|
|
*
|
135 |
|
|
* The return value is the rounded version of the @j parameter.
|
136 |
|
|
*/
|
137 |
|
|
unsigned long __round_jiffies(unsigned long j, int cpu)
|
138 |
|
|
{
|
139 |
|
|
int rem;
|
140 |
|
|
unsigned long original = j;
|
141 |
|
|
|
142 |
|
|
/*
|
143 |
|
|
* We don't want all cpus firing their timers at once hitting the
|
144 |
|
|
* same lock or cachelines, so we skew each extra cpu with an extra
|
145 |
|
|
* 3 jiffies. This 3 jiffies came originally from the mm/ code which
|
146 |
|
|
* already did this.
|
147 |
|
|
* The skew is done by adding 3*cpunr, then round, then subtract this
|
148 |
|
|
* extra offset again.
|
149 |
|
|
*/
|
150 |
|
|
j += cpu * 3;
|
151 |
|
|
|
152 |
|
|
rem = j % HZ;
|
153 |
|
|
|
154 |
|
|
/*
|
155 |
|
|
* If the target jiffie is just after a whole second (which can happen
|
156 |
|
|
* due to delays of the timer irq, long irq off times etc etc) then
|
157 |
|
|
* we should round down to the whole second, not up. Use 1/4th second
|
158 |
|
|
* as cutoff for this rounding as an extreme upper bound for this.
|
159 |
|
|
*/
|
160 |
|
|
if (rem < HZ/4) /* round down */
|
161 |
|
|
j = j - rem;
|
162 |
|
|
else /* round up */
|
163 |
|
|
j = j - rem + HZ;
|
164 |
|
|
|
165 |
|
|
/* now that we have rounded, subtract the extra skew again */
|
166 |
|
|
j -= cpu * 3;
|
167 |
|
|
|
168 |
|
|
if (j <= jiffies) /* rounding ate our timeout entirely; */
|
169 |
|
|
return original;
|
170 |
|
|
return j;
|
171 |
|
|
}
|
172 |
|
|
EXPORT_SYMBOL_GPL(__round_jiffies);
|
173 |
|
|
|
174 |
|
|
/**
|
175 |
|
|
* __round_jiffies_relative - function to round jiffies to a full second
|
176 |
|
|
* @j: the time in (relative) jiffies that should be rounded
|
177 |
|
|
* @cpu: the processor number on which the timeout will happen
|
178 |
|
|
*
|
179 |
|
|
* __round_jiffies_relative() rounds a time delta in the future (in jiffies)
|
180 |
|
|
* up or down to (approximately) full seconds. This is useful for timers
|
181 |
|
|
* for which the exact time they fire does not matter too much, as long as
|
182 |
|
|
* they fire approximately every X seconds.
|
183 |
|
|
*
|
184 |
|
|
* By rounding these timers to whole seconds, all such timers will fire
|
185 |
|
|
* at the same time, rather than at various times spread out. The goal
|
186 |
|
|
* of this is to have the CPU wake up less, which saves power.
|
187 |
|
|
*
|
188 |
|
|
* The exact rounding is skewed for each processor to avoid all
|
189 |
|
|
* processors firing at the exact same time, which could lead
|
190 |
|
|
* to lock contention or spurious cache line bouncing.
|
191 |
|
|
*
|
192 |
|
|
* The return value is the rounded version of the @j parameter.
|
193 |
|
|
*/
|
194 |
|
|
unsigned long __round_jiffies_relative(unsigned long j, int cpu)
|
195 |
|
|
{
|
196 |
|
|
/*
|
197 |
|
|
* In theory the following code can skip a jiffy in case jiffies
|
198 |
|
|
* increments right between the addition and the later subtraction.
|
199 |
|
|
* However since the entire point of this function is to use approximate
|
200 |
|
|
* timeouts, it's entirely ok to not handle that.
|
201 |
|
|
*/
|
202 |
|
|
return __round_jiffies(j + jiffies, cpu) - jiffies;
|
203 |
|
|
}
|
204 |
|
|
EXPORT_SYMBOL_GPL(__round_jiffies_relative);
|
205 |
|
|
|
206 |
|
|
/**
|
207 |
|
|
* round_jiffies - function to round jiffies to a full second
|
208 |
|
|
* @j: the time in (absolute) jiffies that should be rounded
|
209 |
|
|
*
|
210 |
|
|
* round_jiffies() rounds an absolute time in the future (in jiffies)
|
211 |
|
|
* up or down to (approximately) full seconds. This is useful for timers
|
212 |
|
|
* for which the exact time they fire does not matter too much, as long as
|
213 |
|
|
* they fire approximately every X seconds.
|
214 |
|
|
*
|
215 |
|
|
* By rounding these timers to whole seconds, all such timers will fire
|
216 |
|
|
* at the same time, rather than at various times spread out. The goal
|
217 |
|
|
* of this is to have the CPU wake up less, which saves power.
|
218 |
|
|
*
|
219 |
|
|
* The return value is the rounded version of the @j parameter.
|
220 |
|
|
*/
|
221 |
|
|
unsigned long round_jiffies(unsigned long j)
|
222 |
|
|
{
|
223 |
|
|
return __round_jiffies(j, raw_smp_processor_id());
|
224 |
|
|
}
|
225 |
|
|
EXPORT_SYMBOL_GPL(round_jiffies);
|
226 |
|
|
|
227 |
|
|
/**
|
228 |
|
|
* round_jiffies_relative - function to round jiffies to a full second
|
229 |
|
|
* @j: the time in (relative) jiffies that should be rounded
|
230 |
|
|
*
|
231 |
|
|
* round_jiffies_relative() rounds a time delta in the future (in jiffies)
|
232 |
|
|
* up or down to (approximately) full seconds. This is useful for timers
|
233 |
|
|
* for which the exact time they fire does not matter too much, as long as
|
234 |
|
|
* they fire approximately every X seconds.
|
235 |
|
|
*
|
236 |
|
|
* By rounding these timers to whole seconds, all such timers will fire
|
237 |
|
|
* at the same time, rather than at various times spread out. The goal
|
238 |
|
|
* of this is to have the CPU wake up less, which saves power.
|
239 |
|
|
*
|
240 |
|
|
* The return value is the rounded version of the @j parameter.
|
241 |
|
|
*/
|
242 |
|
|
unsigned long round_jiffies_relative(unsigned long j)
|
243 |
|
|
{
|
244 |
|
|
return __round_jiffies_relative(j, raw_smp_processor_id());
|
245 |
|
|
}
|
246 |
|
|
EXPORT_SYMBOL_GPL(round_jiffies_relative);
|
247 |
|
|
|
248 |
|
|
|
249 |
|
|
static inline void set_running_timer(tvec_base_t *base,
|
250 |
|
|
struct timer_list *timer)
|
251 |
|
|
{
|
252 |
|
|
#ifdef CONFIG_SMP
|
253 |
|
|
base->running_timer = timer;
|
254 |
|
|
#endif
|
255 |
|
|
}
|
256 |
|
|
|
257 |
|
|
static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
|
258 |
|
|
{
|
259 |
|
|
unsigned long expires = timer->expires;
|
260 |
|
|
unsigned long idx = expires - base->timer_jiffies;
|
261 |
|
|
struct list_head *vec;
|
262 |
|
|
|
263 |
|
|
if (idx < TVR_SIZE) {
|
264 |
|
|
int i = expires & TVR_MASK;
|
265 |
|
|
vec = base->tv1.vec + i;
|
266 |
|
|
} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
|
267 |
|
|
int i = (expires >> TVR_BITS) & TVN_MASK;
|
268 |
|
|
vec = base->tv2.vec + i;
|
269 |
|
|
} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
|
270 |
|
|
int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
|
271 |
|
|
vec = base->tv3.vec + i;
|
272 |
|
|
} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
|
273 |
|
|
int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
|
274 |
|
|
vec = base->tv4.vec + i;
|
275 |
|
|
} else if ((signed long) idx < 0) {
|
276 |
|
|
/*
|
277 |
|
|
* Can happen if you add a timer with expires == jiffies,
|
278 |
|
|
* or you set a timer to go off in the past
|
279 |
|
|
*/
|
280 |
|
|
vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
|
281 |
|
|
} else {
|
282 |
|
|
int i;
|
283 |
|
|
/* If the timeout is larger than 0xffffffff on 64-bit
|
284 |
|
|
* architectures then we use the maximum timeout:
|
285 |
|
|
*/
|
286 |
|
|
if (idx > 0xffffffffUL) {
|
287 |
|
|
idx = 0xffffffffUL;
|
288 |
|
|
expires = idx + base->timer_jiffies;
|
289 |
|
|
}
|
290 |
|
|
i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
|
291 |
|
|
vec = base->tv5.vec + i;
|
292 |
|
|
}
|
293 |
|
|
/*
|
294 |
|
|
* Timers are FIFO:
|
295 |
|
|
*/
|
296 |
|
|
list_add_tail(&timer->entry, vec);
|
297 |
|
|
}
|
298 |
|
|
|
299 |
|
|
#ifdef CONFIG_TIMER_STATS
|
300 |
|
|
void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
|
301 |
|
|
{
|
302 |
|
|
if (timer->start_site)
|
303 |
|
|
return;
|
304 |
|
|
|
305 |
|
|
timer->start_site = addr;
|
306 |
|
|
memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
|
307 |
|
|
timer->start_pid = current->pid;
|
308 |
|
|
}
|
309 |
|
|
|
310 |
|
|
static void timer_stats_account_timer(struct timer_list *timer)
|
311 |
|
|
{
|
312 |
|
|
unsigned int flag = 0;
|
313 |
|
|
|
314 |
|
|
if (unlikely(tbase_get_deferrable(timer->base)))
|
315 |
|
|
flag |= TIMER_STATS_FLAG_DEFERRABLE;
|
316 |
|
|
|
317 |
|
|
timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
|
318 |
|
|
timer->function, timer->start_comm, flag);
|
319 |
|
|
}
|
320 |
|
|
|
321 |
|
|
#else
|
322 |
|
|
static void timer_stats_account_timer(struct timer_list *timer) {}
|
323 |
|
|
#endif
|
324 |
|
|
|
325 |
|
|
/**
|
326 |
|
|
* init_timer - initialize a timer.
|
327 |
|
|
* @timer: the timer to be initialized
|
328 |
|
|
*
|
329 |
|
|
* init_timer() must be done to a timer prior calling *any* of the
|
330 |
|
|
* other timer functions.
|
331 |
|
|
*/
|
332 |
|
|
void fastcall init_timer(struct timer_list *timer)
|
333 |
|
|
{
|
334 |
|
|
timer->entry.next = NULL;
|
335 |
|
|
timer->base = __raw_get_cpu_var(tvec_bases);
|
336 |
|
|
#ifdef CONFIG_TIMER_STATS
|
337 |
|
|
timer->start_site = NULL;
|
338 |
|
|
timer->start_pid = -1;
|
339 |
|
|
memset(timer->start_comm, 0, TASK_COMM_LEN);
|
340 |
|
|
#endif
|
341 |
|
|
}
|
342 |
|
|
EXPORT_SYMBOL(init_timer);
|
343 |
|
|
|
344 |
|
|
void fastcall init_timer_deferrable(struct timer_list *timer)
|
345 |
|
|
{
|
346 |
|
|
init_timer(timer);
|
347 |
|
|
timer_set_deferrable(timer);
|
348 |
|
|
}
|
349 |
|
|
EXPORT_SYMBOL(init_timer_deferrable);
|
350 |
|
|
|
351 |
|
|
static inline void detach_timer(struct timer_list *timer,
|
352 |
|
|
int clear_pending)
|
353 |
|
|
{
|
354 |
|
|
struct list_head *entry = &timer->entry;
|
355 |
|
|
|
356 |
|
|
__list_del(entry->prev, entry->next);
|
357 |
|
|
if (clear_pending)
|
358 |
|
|
entry->next = NULL;
|
359 |
|
|
entry->prev = LIST_POISON2;
|
360 |
|
|
}
|
361 |
|
|
|
362 |
|
|
/*
|
363 |
|
|
* We are using hashed locking: holding per_cpu(tvec_bases).lock
|
364 |
|
|
* means that all timers which are tied to this base via timer->base are
|
365 |
|
|
* locked, and the base itself is locked too.
|
366 |
|
|
*
|
367 |
|
|
* So __run_timers/migrate_timers can safely modify all timers which could
|
368 |
|
|
* be found on ->tvX lists.
|
369 |
|
|
*
|
370 |
|
|
* When the timer's base is locked, and the timer removed from list, it is
|
371 |
|
|
* possible to set timer->base = NULL and drop the lock: the timer remains
|
372 |
|
|
* locked.
|
373 |
|
|
*/
|
374 |
|
|
static tvec_base_t *lock_timer_base(struct timer_list *timer,
|
375 |
|
|
unsigned long *flags)
|
376 |
|
|
__acquires(timer->base->lock)
|
377 |
|
|
{
|
378 |
|
|
tvec_base_t *base;
|
379 |
|
|
|
380 |
|
|
for (;;) {
|
381 |
|
|
tvec_base_t *prelock_base = timer->base;
|
382 |
|
|
base = tbase_get_base(prelock_base);
|
383 |
|
|
if (likely(base != NULL)) {
|
384 |
|
|
spin_lock_irqsave(&base->lock, *flags);
|
385 |
|
|
if (likely(prelock_base == timer->base))
|
386 |
|
|
return base;
|
387 |
|
|
/* The timer has migrated to another CPU */
|
388 |
|
|
spin_unlock_irqrestore(&base->lock, *flags);
|
389 |
|
|
}
|
390 |
|
|
cpu_relax();
|
391 |
|
|
}
|
392 |
|
|
}
|
393 |
|
|
|
394 |
|
|
int __mod_timer(struct timer_list *timer, unsigned long expires)
|
395 |
|
|
{
|
396 |
|
|
tvec_base_t *base, *new_base;
|
397 |
|
|
unsigned long flags;
|
398 |
|
|
int ret = 0;
|
399 |
|
|
|
400 |
|
|
timer_stats_timer_set_start_info(timer);
|
401 |
|
|
BUG_ON(!timer->function);
|
402 |
|
|
|
403 |
|
|
base = lock_timer_base(timer, &flags);
|
404 |
|
|
|
405 |
|
|
if (timer_pending(timer)) {
|
406 |
|
|
detach_timer(timer, 0);
|
407 |
|
|
ret = 1;
|
408 |
|
|
}
|
409 |
|
|
|
410 |
|
|
new_base = __get_cpu_var(tvec_bases);
|
411 |
|
|
|
412 |
|
|
if (base != new_base) {
|
413 |
|
|
/*
|
414 |
|
|
* We are trying to schedule the timer on the local CPU.
|
415 |
|
|
* However we can't change timer's base while it is running,
|
416 |
|
|
* otherwise del_timer_sync() can't detect that the timer's
|
417 |
|
|
* handler yet has not finished. This also guarantees that
|
418 |
|
|
* the timer is serialized wrt itself.
|
419 |
|
|
*/
|
420 |
|
|
if (likely(base->running_timer != timer)) {
|
421 |
|
|
/* See the comment in lock_timer_base() */
|
422 |
|
|
timer_set_base(timer, NULL);
|
423 |
|
|
spin_unlock(&base->lock);
|
424 |
|
|
base = new_base;
|
425 |
|
|
spin_lock(&base->lock);
|
426 |
|
|
timer_set_base(timer, base);
|
427 |
|
|
}
|
428 |
|
|
}
|
429 |
|
|
|
430 |
|
|
timer->expires = expires;
|
431 |
|
|
internal_add_timer(base, timer);
|
432 |
|
|
spin_unlock_irqrestore(&base->lock, flags);
|
433 |
|
|
|
434 |
|
|
return ret;
|
435 |
|
|
}
|
436 |
|
|
|
437 |
|
|
EXPORT_SYMBOL(__mod_timer);
|
438 |
|
|
|
439 |
|
|
/**
|
440 |
|
|
* add_timer_on - start a timer on a particular CPU
|
441 |
|
|
* @timer: the timer to be added
|
442 |
|
|
* @cpu: the CPU to start it on
|
443 |
|
|
*
|
444 |
|
|
* This is not very scalable on SMP. Double adds are not possible.
|
445 |
|
|
*/
|
446 |
|
|
void add_timer_on(struct timer_list *timer, int cpu)
|
447 |
|
|
{
|
448 |
|
|
tvec_base_t *base = per_cpu(tvec_bases, cpu);
|
449 |
|
|
unsigned long flags;
|
450 |
|
|
|
451 |
|
|
timer_stats_timer_set_start_info(timer);
|
452 |
|
|
BUG_ON(timer_pending(timer) || !timer->function);
|
453 |
|
|
spin_lock_irqsave(&base->lock, flags);
|
454 |
|
|
timer_set_base(timer, base);
|
455 |
|
|
internal_add_timer(base, timer);
|
456 |
|
|
spin_unlock_irqrestore(&base->lock, flags);
|
457 |
|
|
}
|
458 |
|
|
|
459 |
|
|
|
460 |
|
|
/**
|
461 |
|
|
* mod_timer - modify a timer's timeout
|
462 |
|
|
* @timer: the timer to be modified
|
463 |
|
|
* @expires: new timeout in jiffies
|
464 |
|
|
*
|
465 |
|
|
* mod_timer() is a more efficient way to update the expire field of an
|
466 |
|
|
* active timer (if the timer is inactive it will be activated)
|
467 |
|
|
*
|
468 |
|
|
* mod_timer(timer, expires) is equivalent to:
|
469 |
|
|
*
|
470 |
|
|
* del_timer(timer); timer->expires = expires; add_timer(timer);
|
471 |
|
|
*
|
472 |
|
|
* Note that if there are multiple unserialized concurrent users of the
|
473 |
|
|
* same timer, then mod_timer() is the only safe way to modify the timeout,
|
474 |
|
|
* since add_timer() cannot modify an already running timer.
|
475 |
|
|
*
|
476 |
|
|
* The function returns whether it has modified a pending timer or not.
|
477 |
|
|
* (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
|
478 |
|
|
* active timer returns 1.)
|
479 |
|
|
*/
|
480 |
|
|
int mod_timer(struct timer_list *timer, unsigned long expires)
|
481 |
|
|
{
|
482 |
|
|
BUG_ON(!timer->function);
|
483 |
|
|
|
484 |
|
|
timer_stats_timer_set_start_info(timer);
|
485 |
|
|
/*
|
486 |
|
|
* This is a common optimization triggered by the
|
487 |
|
|
* networking code - if the timer is re-modified
|
488 |
|
|
* to be the same thing then just return:
|
489 |
|
|
*/
|
490 |
|
|
if (timer->expires == expires && timer_pending(timer))
|
491 |
|
|
return 1;
|
492 |
|
|
|
493 |
|
|
return __mod_timer(timer, expires);
|
494 |
|
|
}
|
495 |
|
|
|
496 |
|
|
EXPORT_SYMBOL(mod_timer);
|
497 |
|
|
|
498 |
|
|
/**
|
499 |
|
|
* del_timer - deactive a timer.
|
500 |
|
|
* @timer: the timer to be deactivated
|
501 |
|
|
*
|
502 |
|
|
* del_timer() deactivates a timer - this works on both active and inactive
|
503 |
|
|
* timers.
|
504 |
|
|
*
|
505 |
|
|
* The function returns whether it has deactivated a pending timer or not.
|
506 |
|
|
* (ie. del_timer() of an inactive timer returns 0, del_timer() of an
|
507 |
|
|
* active timer returns 1.)
|
508 |
|
|
*/
|
509 |
|
|
int del_timer(struct timer_list *timer)
|
510 |
|
|
{
|
511 |
|
|
tvec_base_t *base;
|
512 |
|
|
unsigned long flags;
|
513 |
|
|
int ret = 0;
|
514 |
|
|
|
515 |
|
|
timer_stats_timer_clear_start_info(timer);
|
516 |
|
|
if (timer_pending(timer)) {
|
517 |
|
|
base = lock_timer_base(timer, &flags);
|
518 |
|
|
if (timer_pending(timer)) {
|
519 |
|
|
detach_timer(timer, 1);
|
520 |
|
|
ret = 1;
|
521 |
|
|
}
|
522 |
|
|
spin_unlock_irqrestore(&base->lock, flags);
|
523 |
|
|
}
|
524 |
|
|
|
525 |
|
|
return ret;
|
526 |
|
|
}
|
527 |
|
|
|
528 |
|
|
EXPORT_SYMBOL(del_timer);
|
529 |
|
|
|
530 |
|
|
#ifdef CONFIG_SMP
|
531 |
|
|
/**
|
532 |
|
|
* try_to_del_timer_sync - Try to deactivate a timer
|
533 |
|
|
* @timer: timer do del
|
534 |
|
|
*
|
535 |
|
|
* This function tries to deactivate a timer. Upon successful (ret >= 0)
|
536 |
|
|
* exit the timer is not queued and the handler is not running on any CPU.
|
537 |
|
|
*
|
538 |
|
|
* It must not be called from interrupt contexts.
|
539 |
|
|
*/
|
540 |
|
|
int try_to_del_timer_sync(struct timer_list *timer)
|
541 |
|
|
{
|
542 |
|
|
tvec_base_t *base;
|
543 |
|
|
unsigned long flags;
|
544 |
|
|
int ret = -1;
|
545 |
|
|
|
546 |
|
|
base = lock_timer_base(timer, &flags);
|
547 |
|
|
|
548 |
|
|
if (base->running_timer == timer)
|
549 |
|
|
goto out;
|
550 |
|
|
|
551 |
|
|
ret = 0;
|
552 |
|
|
if (timer_pending(timer)) {
|
553 |
|
|
detach_timer(timer, 1);
|
554 |
|
|
ret = 1;
|
555 |
|
|
}
|
556 |
|
|
out:
|
557 |
|
|
spin_unlock_irqrestore(&base->lock, flags);
|
558 |
|
|
|
559 |
|
|
return ret;
|
560 |
|
|
}
|
561 |
|
|
|
562 |
|
|
EXPORT_SYMBOL(try_to_del_timer_sync);
|
563 |
|
|
|
564 |
|
|
/**
|
565 |
|
|
* del_timer_sync - deactivate a timer and wait for the handler to finish.
|
566 |
|
|
* @timer: the timer to be deactivated
|
567 |
|
|
*
|
568 |
|
|
* This function only differs from del_timer() on SMP: besides deactivating
|
569 |
|
|
* the timer it also makes sure the handler has finished executing on other
|
570 |
|
|
* CPUs.
|
571 |
|
|
*
|
572 |
|
|
* Synchronization rules: Callers must prevent restarting of the timer,
|
573 |
|
|
* otherwise this function is meaningless. It must not be called from
|
574 |
|
|
* interrupt contexts. The caller must not hold locks which would prevent
|
575 |
|
|
* completion of the timer's handler. The timer's handler must not call
|
576 |
|
|
* add_timer_on(). Upon exit the timer is not queued and the handler is
|
577 |
|
|
* not running on any CPU.
|
578 |
|
|
*
|
579 |
|
|
* The function returns whether it has deactivated a pending timer or not.
|
580 |
|
|
*/
|
581 |
|
|
int del_timer_sync(struct timer_list *timer)
|
582 |
|
|
{
|
583 |
|
|
for (;;) {
|
584 |
|
|
int ret = try_to_del_timer_sync(timer);
|
585 |
|
|
if (ret >= 0)
|
586 |
|
|
return ret;
|
587 |
|
|
cpu_relax();
|
588 |
|
|
}
|
589 |
|
|
}
|
590 |
|
|
|
591 |
|
|
EXPORT_SYMBOL(del_timer_sync);
|
592 |
|
|
#endif
|
593 |
|
|
|
594 |
|
|
static int cascade(tvec_base_t *base, tvec_t *tv, int index)
|
595 |
|
|
{
|
596 |
|
|
/* cascade all the timers from tv up one level */
|
597 |
|
|
struct timer_list *timer, *tmp;
|
598 |
|
|
struct list_head tv_list;
|
599 |
|
|
|
600 |
|
|
list_replace_init(tv->vec + index, &tv_list);
|
601 |
|
|
|
602 |
|
|
/*
|
603 |
|
|
* We are removing _all_ timers from the list, so we
|
604 |
|
|
* don't have to detach them individually.
|
605 |
|
|
*/
|
606 |
|
|
list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
|
607 |
|
|
BUG_ON(tbase_get_base(timer->base) != base);
|
608 |
|
|
internal_add_timer(base, timer);
|
609 |
|
|
}
|
610 |
|
|
|
611 |
|
|
return index;
|
612 |
|
|
}
|
613 |
|
|
|
614 |
|
|
#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
|
615 |
|
|
|
616 |
|
|
/**
|
617 |
|
|
* __run_timers - run all expired timers (if any) on this CPU.
|
618 |
|
|
* @base: the timer vector to be processed.
|
619 |
|
|
*
|
620 |
|
|
* This function cascades all vectors and executes all expired timer
|
621 |
|
|
* vectors.
|
622 |
|
|
*/
|
623 |
|
|
static inline void __run_timers(tvec_base_t *base)
|
624 |
|
|
{
|
625 |
|
|
struct timer_list *timer;
|
626 |
|
|
|
627 |
|
|
spin_lock_irq(&base->lock);
|
628 |
|
|
while (time_after_eq(jiffies, base->timer_jiffies)) {
|
629 |
|
|
struct list_head work_list;
|
630 |
|
|
struct list_head *head = &work_list;
|
631 |
|
|
int index = base->timer_jiffies & TVR_MASK;
|
632 |
|
|
|
633 |
|
|
/*
|
634 |
|
|
* Cascade timers:
|
635 |
|
|
*/
|
636 |
|
|
if (!index &&
|
637 |
|
|
(!cascade(base, &base->tv2, INDEX(0))) &&
|
638 |
|
|
(!cascade(base, &base->tv3, INDEX(1))) &&
|
639 |
|
|
!cascade(base, &base->tv4, INDEX(2)))
|
640 |
|
|
cascade(base, &base->tv5, INDEX(3));
|
641 |
|
|
++base->timer_jiffies;
|
642 |
|
|
list_replace_init(base->tv1.vec + index, &work_list);
|
643 |
|
|
while (!list_empty(head)) {
|
644 |
|
|
void (*fn)(unsigned long);
|
645 |
|
|
unsigned long data;
|
646 |
|
|
|
647 |
|
|
timer = list_first_entry(head, struct timer_list,entry);
|
648 |
|
|
fn = timer->function;
|
649 |
|
|
data = timer->data;
|
650 |
|
|
|
651 |
|
|
timer_stats_account_timer(timer);
|
652 |
|
|
|
653 |
|
|
set_running_timer(base, timer);
|
654 |
|
|
detach_timer(timer, 1);
|
655 |
|
|
spin_unlock_irq(&base->lock);
|
656 |
|
|
{
|
657 |
|
|
int preempt_count = preempt_count();
|
658 |
|
|
fn(data);
|
659 |
|
|
if (preempt_count != preempt_count()) {
|
660 |
|
|
printk(KERN_WARNING "huh, entered %p "
|
661 |
|
|
"with preempt_count %08x, exited"
|
662 |
|
|
" with %08x?\n",
|
663 |
|
|
fn, preempt_count,
|
664 |
|
|
preempt_count());
|
665 |
|
|
BUG();
|
666 |
|
|
}
|
667 |
|
|
}
|
668 |
|
|
spin_lock_irq(&base->lock);
|
669 |
|
|
}
|
670 |
|
|
}
|
671 |
|
|
set_running_timer(base, NULL);
|
672 |
|
|
spin_unlock_irq(&base->lock);
|
673 |
|
|
}
|
674 |
|
|
|
675 |
|
|
#if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
|
676 |
|
|
/*
|
677 |
|
|
* Find out when the next timer event is due to happen. This
|
678 |
|
|
* is used on S/390 to stop all activity when a cpus is idle.
|
679 |
|
|
* This functions needs to be called disabled.
|
680 |
|
|
*/
|
681 |
|
|
static unsigned long __next_timer_interrupt(tvec_base_t *base)
|
682 |
|
|
{
|
683 |
|
|
unsigned long timer_jiffies = base->timer_jiffies;
|
684 |
|
|
unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
|
685 |
|
|
int index, slot, array, found = 0;
|
686 |
|
|
struct timer_list *nte;
|
687 |
|
|
tvec_t *varray[4];
|
688 |
|
|
|
689 |
|
|
/* Look for timer events in tv1. */
|
690 |
|
|
index = slot = timer_jiffies & TVR_MASK;
|
691 |
|
|
do {
|
692 |
|
|
list_for_each_entry(nte, base->tv1.vec + slot, entry) {
|
693 |
|
|
if (tbase_get_deferrable(nte->base))
|
694 |
|
|
continue;
|
695 |
|
|
|
696 |
|
|
found = 1;
|
697 |
|
|
expires = nte->expires;
|
698 |
|
|
/* Look at the cascade bucket(s)? */
|
699 |
|
|
if (!index || slot < index)
|
700 |
|
|
goto cascade;
|
701 |
|
|
return expires;
|
702 |
|
|
}
|
703 |
|
|
slot = (slot + 1) & TVR_MASK;
|
704 |
|
|
} while (slot != index);
|
705 |
|
|
|
706 |
|
|
cascade:
|
707 |
|
|
/* Calculate the next cascade event */
|
708 |
|
|
if (index)
|
709 |
|
|
timer_jiffies += TVR_SIZE - index;
|
710 |
|
|
timer_jiffies >>= TVR_BITS;
|
711 |
|
|
|
712 |
|
|
/* Check tv2-tv5. */
|
713 |
|
|
varray[0] = &base->tv2;
|
714 |
|
|
varray[1] = &base->tv3;
|
715 |
|
|
varray[2] = &base->tv4;
|
716 |
|
|
varray[3] = &base->tv5;
|
717 |
|
|
|
718 |
|
|
for (array = 0; array < 4; array++) {
|
719 |
|
|
tvec_t *varp = varray[array];
|
720 |
|
|
|
721 |
|
|
index = slot = timer_jiffies & TVN_MASK;
|
722 |
|
|
do {
|
723 |
|
|
list_for_each_entry(nte, varp->vec + slot, entry) {
|
724 |
|
|
found = 1;
|
725 |
|
|
if (time_before(nte->expires, expires))
|
726 |
|
|
expires = nte->expires;
|
727 |
|
|
}
|
728 |
|
|
/*
|
729 |
|
|
* Do we still search for the first timer or are
|
730 |
|
|
* we looking up the cascade buckets ?
|
731 |
|
|
*/
|
732 |
|
|
if (found) {
|
733 |
|
|
/* Look at the cascade bucket(s)? */
|
734 |
|
|
if (!index || slot < index)
|
735 |
|
|
break;
|
736 |
|
|
return expires;
|
737 |
|
|
}
|
738 |
|
|
slot = (slot + 1) & TVN_MASK;
|
739 |
|
|
} while (slot != index);
|
740 |
|
|
|
741 |
|
|
if (index)
|
742 |
|
|
timer_jiffies += TVN_SIZE - index;
|
743 |
|
|
timer_jiffies >>= TVN_BITS;
|
744 |
|
|
}
|
745 |
|
|
return expires;
|
746 |
|
|
}
|
747 |
|
|
|
748 |
|
|
/*
|
749 |
|
|
* Check, if the next hrtimer event is before the next timer wheel
|
750 |
|
|
* event:
|
751 |
|
|
*/
|
752 |
|
|
static unsigned long cmp_next_hrtimer_event(unsigned long now,
|
753 |
|
|
unsigned long expires)
|
754 |
|
|
{
|
755 |
|
|
ktime_t hr_delta = hrtimer_get_next_event();
|
756 |
|
|
struct timespec tsdelta;
|
757 |
|
|
unsigned long delta;
|
758 |
|
|
|
759 |
|
|
if (hr_delta.tv64 == KTIME_MAX)
|
760 |
|
|
return expires;
|
761 |
|
|
|
762 |
|
|
/*
|
763 |
|
|
* Expired timer available, let it expire in the next tick
|
764 |
|
|
*/
|
765 |
|
|
if (hr_delta.tv64 <= 0)
|
766 |
|
|
return now + 1;
|
767 |
|
|
|
768 |
|
|
tsdelta = ktime_to_timespec(hr_delta);
|
769 |
|
|
delta = timespec_to_jiffies(&tsdelta);
|
770 |
|
|
|
771 |
|
|
/*
|
772 |
|
|
* Limit the delta to the max value, which is checked in
|
773 |
|
|
* tick_nohz_stop_sched_tick():
|
774 |
|
|
*/
|
775 |
|
|
if (delta > NEXT_TIMER_MAX_DELTA)
|
776 |
|
|
delta = NEXT_TIMER_MAX_DELTA;
|
777 |
|
|
|
778 |
|
|
/*
|
779 |
|
|
* Take rounding errors in to account and make sure, that it
|
780 |
|
|
* expires in the next tick. Otherwise we go into an endless
|
781 |
|
|
* ping pong due to tick_nohz_stop_sched_tick() retriggering
|
782 |
|
|
* the timer softirq
|
783 |
|
|
*/
|
784 |
|
|
if (delta < 1)
|
785 |
|
|
delta = 1;
|
786 |
|
|
now += delta;
|
787 |
|
|
if (time_before(now, expires))
|
788 |
|
|
return now;
|
789 |
|
|
return expires;
|
790 |
|
|
}
|
791 |
|
|
|
792 |
|
|
/**
|
793 |
|
|
* get_next_timer_interrupt - return the jiffy of the next pending timer
|
794 |
|
|
* @now: current time (in jiffies)
|
795 |
|
|
*/
|
796 |
|
|
unsigned long get_next_timer_interrupt(unsigned long now)
|
797 |
|
|
{
|
798 |
|
|
tvec_base_t *base = __get_cpu_var(tvec_bases);
|
799 |
|
|
unsigned long expires;
|
800 |
|
|
|
801 |
|
|
spin_lock(&base->lock);
|
802 |
|
|
expires = __next_timer_interrupt(base);
|
803 |
|
|
spin_unlock(&base->lock);
|
804 |
|
|
|
805 |
|
|
if (time_before_eq(expires, now))
|
806 |
|
|
return now;
|
807 |
|
|
|
808 |
|
|
return cmp_next_hrtimer_event(now, expires);
|
809 |
|
|
}
|
810 |
|
|
|
811 |
|
|
#ifdef CONFIG_NO_IDLE_HZ
|
812 |
|
|
unsigned long next_timer_interrupt(void)
|
813 |
|
|
{
|
814 |
|
|
return get_next_timer_interrupt(jiffies);
|
815 |
|
|
}
|
816 |
|
|
#endif
|
817 |
|
|
|
818 |
|
|
#endif
|
819 |
|
|
|
820 |
|
|
#ifndef CONFIG_VIRT_CPU_ACCOUNTING
|
821 |
|
|
void account_process_tick(struct task_struct *p, int user_tick)
|
822 |
|
|
{
|
823 |
|
|
if (user_tick) {
|
824 |
|
|
account_user_time(p, jiffies_to_cputime(1));
|
825 |
|
|
account_user_time_scaled(p, jiffies_to_cputime(1));
|
826 |
|
|
} else {
|
827 |
|
|
account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
|
828 |
|
|
account_system_time_scaled(p, jiffies_to_cputime(1));
|
829 |
|
|
}
|
830 |
|
|
}
|
831 |
|
|
#endif
|
832 |
|
|
|
833 |
|
|
/*
|
834 |
|
|
* Called from the timer interrupt handler to charge one tick to the current
|
835 |
|
|
* process. user_tick is 1 if the tick is user time, 0 for system.
|
836 |
|
|
*/
|
837 |
|
|
void update_process_times(int user_tick)
|
838 |
|
|
{
|
839 |
|
|
struct task_struct *p = current;
|
840 |
|
|
int cpu = smp_processor_id();
|
841 |
|
|
|
842 |
|
|
/* Note: this timer irq context must be accounted for as well. */
|
843 |
|
|
account_process_tick(p, user_tick);
|
844 |
|
|
run_local_timers();
|
845 |
|
|
if (rcu_pending(cpu))
|
846 |
|
|
rcu_check_callbacks(cpu, user_tick);
|
847 |
|
|
scheduler_tick();
|
848 |
|
|
run_posix_cpu_timers(p);
|
849 |
|
|
}
|
850 |
|
|
|
851 |
|
|
/*
|
852 |
|
|
* Nr of active tasks - counted in fixed-point numbers
|
853 |
|
|
*/
|
854 |
|
|
static unsigned long count_active_tasks(void)
|
855 |
|
|
{
|
856 |
|
|
return nr_active() * FIXED_1;
|
857 |
|
|
}
|
858 |
|
|
|
859 |
|
|
/*
|
860 |
|
|
* Hmm.. Changed this, as the GNU make sources (load.c) seems to
|
861 |
|
|
* imply that avenrun[] is the standard name for this kind of thing.
|
862 |
|
|
* Nothing else seems to be standardized: the fractional size etc
|
863 |
|
|
* all seem to differ on different machines.
|
864 |
|
|
*
|
865 |
|
|
* Requires xtime_lock to access.
|
866 |
|
|
*/
|
867 |
|
|
unsigned long avenrun[3];
|
868 |
|
|
|
869 |
|
|
EXPORT_SYMBOL(avenrun);
|
870 |
|
|
|
871 |
|
|
/*
|
872 |
|
|
* calc_load - given tick count, update the avenrun load estimates.
|
873 |
|
|
* This is called while holding a write_lock on xtime_lock.
|
874 |
|
|
*/
|
875 |
|
|
static inline void calc_load(unsigned long ticks)
|
876 |
|
|
{
|
877 |
|
|
unsigned long active_tasks; /* fixed-point */
|
878 |
|
|
static int count = LOAD_FREQ;
|
879 |
|
|
|
880 |
|
|
count -= ticks;
|
881 |
|
|
if (unlikely(count < 0)) {
|
882 |
|
|
active_tasks = count_active_tasks();
|
883 |
|
|
do {
|
884 |
|
|
CALC_LOAD(avenrun[0], EXP_1, active_tasks);
|
885 |
|
|
CALC_LOAD(avenrun[1], EXP_5, active_tasks);
|
886 |
|
|
CALC_LOAD(avenrun[2], EXP_15, active_tasks);
|
887 |
|
|
count += LOAD_FREQ;
|
888 |
|
|
} while (count < 0);
|
889 |
|
|
}
|
890 |
|
|
}
|
891 |
|
|
|
892 |
|
|
/*
|
893 |
|
|
* This function runs timers and the timer-tq in bottom half context.
|
894 |
|
|
*/
|
895 |
|
|
static void run_timer_softirq(struct softirq_action *h)
|
896 |
|
|
{
|
897 |
|
|
tvec_base_t *base = __get_cpu_var(tvec_bases);
|
898 |
|
|
|
899 |
|
|
hrtimer_run_queues();
|
900 |
|
|
|
901 |
|
|
if (time_after_eq(jiffies, base->timer_jiffies))
|
902 |
|
|
__run_timers(base);
|
903 |
|
|
}
|
904 |
|
|
|
905 |
|
|
/*
|
906 |
|
|
* Called by the local, per-CPU timer interrupt on SMP.
|
907 |
|
|
*/
|
908 |
|
|
void run_local_timers(void)
|
909 |
|
|
{
|
910 |
|
|
raise_softirq(TIMER_SOFTIRQ);
|
911 |
|
|
softlockup_tick();
|
912 |
|
|
}
|
913 |
|
|
|
914 |
|
|
/*
|
915 |
|
|
* Called by the timer interrupt. xtime_lock must already be taken
|
916 |
|
|
* by the timer IRQ!
|
917 |
|
|
*/
|
918 |
|
|
static inline void update_times(unsigned long ticks)
|
919 |
|
|
{
|
920 |
|
|
update_wall_time();
|
921 |
|
|
calc_load(ticks);
|
922 |
|
|
}
|
923 |
|
|
|
924 |
|
|
/*
|
925 |
|
|
* The 64-bit jiffies value is not atomic - you MUST NOT read it
|
926 |
|
|
* without sampling the sequence number in xtime_lock.
|
927 |
|
|
* jiffies is defined in the linker script...
|
928 |
|
|
*/
|
929 |
|
|
|
930 |
|
|
void do_timer(unsigned long ticks)
|
931 |
|
|
{
|
932 |
|
|
jiffies_64 += ticks;
|
933 |
|
|
update_times(ticks);
|
934 |
|
|
}
|
935 |
|
|
|
936 |
|
|
#ifdef __ARCH_WANT_SYS_ALARM
|
937 |
|
|
|
938 |
|
|
/*
|
939 |
|
|
* For backwards compatibility? This can be done in libc so Alpha
|
940 |
|
|
* and all newer ports shouldn't need it.
|
941 |
|
|
*/
|
942 |
|
|
asmlinkage unsigned long sys_alarm(unsigned int seconds)
|
943 |
|
|
{
|
944 |
|
|
return alarm_setitimer(seconds);
|
945 |
|
|
}
|
946 |
|
|
|
947 |
|
|
#endif
|
948 |
|
|
|
949 |
|
|
#ifndef __alpha__
|
950 |
|
|
|
951 |
|
|
/*
|
952 |
|
|
* The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
|
953 |
|
|
* should be moved into arch/i386 instead?
|
954 |
|
|
*/
|
955 |
|
|
|
956 |
|
|
/**
|
957 |
|
|
* sys_getpid - return the thread group id of the current process
|
958 |
|
|
*
|
959 |
|
|
* Note, despite the name, this returns the tgid not the pid. The tgid and
|
960 |
|
|
* the pid are identical unless CLONE_THREAD was specified on clone() in
|
961 |
|
|
* which case the tgid is the same in all threads of the same group.
|
962 |
|
|
*
|
963 |
|
|
* This is SMP safe as current->tgid does not change.
|
964 |
|
|
*/
|
965 |
|
|
asmlinkage long sys_getpid(void)
|
966 |
|
|
{
|
967 |
|
|
return task_tgid_vnr(current);
|
968 |
|
|
}
|
969 |
|
|
|
970 |
|
|
/*
|
971 |
|
|
* Accessing ->real_parent is not SMP-safe, it could
|
972 |
|
|
* change from under us. However, we can use a stale
|
973 |
|
|
* value of ->real_parent under rcu_read_lock(), see
|
974 |
|
|
* release_task()->call_rcu(delayed_put_task_struct).
|
975 |
|
|
*/
|
976 |
|
|
asmlinkage long sys_getppid(void)
|
977 |
|
|
{
|
978 |
|
|
int pid;
|
979 |
|
|
|
980 |
|
|
rcu_read_lock();
|
981 |
|
|
pid = task_tgid_nr_ns(current->real_parent, current->nsproxy->pid_ns);
|
982 |
|
|
rcu_read_unlock();
|
983 |
|
|
|
984 |
|
|
return pid;
|
985 |
|
|
}
|
986 |
|
|
|
987 |
|
|
asmlinkage long sys_getuid(void)
|
988 |
|
|
{
|
989 |
|
|
/* Only we change this so SMP safe */
|
990 |
|
|
return current->uid;
|
991 |
|
|
}
|
992 |
|
|
|
993 |
|
|
asmlinkage long sys_geteuid(void)
|
994 |
|
|
{
|
995 |
|
|
/* Only we change this so SMP safe */
|
996 |
|
|
return current->euid;
|
997 |
|
|
}
|
998 |
|
|
|
999 |
|
|
asmlinkage long sys_getgid(void)
|
1000 |
|
|
{
|
1001 |
|
|
/* Only we change this so SMP safe */
|
1002 |
|
|
return current->gid;
|
1003 |
|
|
}
|
1004 |
|
|
|
1005 |
|
|
asmlinkage long sys_getegid(void)
|
1006 |
|
|
{
|
1007 |
|
|
/* Only we change this so SMP safe */
|
1008 |
|
|
return current->egid;
|
1009 |
|
|
}
|
1010 |
|
|
|
1011 |
|
|
#endif
|
1012 |
|
|
|
1013 |
|
|
static void process_timeout(unsigned long __data)
|
1014 |
|
|
{
|
1015 |
|
|
wake_up_process((struct task_struct *)__data);
|
1016 |
|
|
}
|
1017 |
|
|
|
1018 |
|
|
/**
|
1019 |
|
|
* schedule_timeout - sleep until timeout
|
1020 |
|
|
* @timeout: timeout value in jiffies
|
1021 |
|
|
*
|
1022 |
|
|
* Make the current task sleep until @timeout jiffies have
|
1023 |
|
|
* elapsed. The routine will return immediately unless
|
1024 |
|
|
* the current task state has been set (see set_current_state()).
|
1025 |
|
|
*
|
1026 |
|
|
* You can set the task state as follows -
|
1027 |
|
|
*
|
1028 |
|
|
* %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
|
1029 |
|
|
* pass before the routine returns. The routine will return 0
|
1030 |
|
|
*
|
1031 |
|
|
* %TASK_INTERRUPTIBLE - the routine may return early if a signal is
|
1032 |
|
|
* delivered to the current task. In this case the remaining time
|
1033 |
|
|
* in jiffies will be returned, or 0 if the timer expired in time
|
1034 |
|
|
*
|
1035 |
|
|
* The current task state is guaranteed to be TASK_RUNNING when this
|
1036 |
|
|
* routine returns.
|
1037 |
|
|
*
|
1038 |
|
|
* Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
|
1039 |
|
|
* the CPU away without a bound on the timeout. In this case the return
|
1040 |
|
|
* value will be %MAX_SCHEDULE_TIMEOUT.
|
1041 |
|
|
*
|
1042 |
|
|
* In all cases the return value is guaranteed to be non-negative.
|
1043 |
|
|
*/
|
1044 |
|
|
fastcall signed long __sched schedule_timeout(signed long timeout)
|
1045 |
|
|
{
|
1046 |
|
|
struct timer_list timer;
|
1047 |
|
|
unsigned long expire;
|
1048 |
|
|
|
1049 |
|
|
switch (timeout)
|
1050 |
|
|
{
|
1051 |
|
|
case MAX_SCHEDULE_TIMEOUT:
|
1052 |
|
|
/*
|
1053 |
|
|
* These two special cases are useful to be comfortable
|
1054 |
|
|
* in the caller. Nothing more. We could take
|
1055 |
|
|
* MAX_SCHEDULE_TIMEOUT from one of the negative value
|
1056 |
|
|
* but I' d like to return a valid offset (>=0) to allow
|
1057 |
|
|
* the caller to do everything it want with the retval.
|
1058 |
|
|
*/
|
1059 |
|
|
schedule();
|
1060 |
|
|
goto out;
|
1061 |
|
|
default:
|
1062 |
|
|
/*
|
1063 |
|
|
* Another bit of PARANOID. Note that the retval will be
|
1064 |
|
|
* 0 since no piece of kernel is supposed to do a check
|
1065 |
|
|
* for a negative retval of schedule_timeout() (since it
|
1066 |
|
|
* should never happens anyway). You just have the printk()
|
1067 |
|
|
* that will tell you if something is gone wrong and where.
|
1068 |
|
|
*/
|
1069 |
|
|
if (timeout < 0) {
|
1070 |
|
|
printk(KERN_ERR "schedule_timeout: wrong timeout "
|
1071 |
|
|
"value %lx\n", timeout);
|
1072 |
|
|
dump_stack();
|
1073 |
|
|
current->state = TASK_RUNNING;
|
1074 |
|
|
goto out;
|
1075 |
|
|
}
|
1076 |
|
|
}
|
1077 |
|
|
|
1078 |
|
|
expire = timeout + jiffies;
|
1079 |
|
|
|
1080 |
|
|
setup_timer(&timer, process_timeout, (unsigned long)current);
|
1081 |
|
|
__mod_timer(&timer, expire);
|
1082 |
|
|
schedule();
|
1083 |
|
|
del_singleshot_timer_sync(&timer);
|
1084 |
|
|
|
1085 |
|
|
timeout = expire - jiffies;
|
1086 |
|
|
|
1087 |
|
|
out:
|
1088 |
|
|
return timeout < 0 ? 0 : timeout;
|
1089 |
|
|
}
|
1090 |
|
|
EXPORT_SYMBOL(schedule_timeout);
|
1091 |
|
|
|
1092 |
|
|
/*
|
1093 |
|
|
* We can use __set_current_state() here because schedule_timeout() calls
|
1094 |
|
|
* schedule() unconditionally.
|
1095 |
|
|
*/
|
1096 |
|
|
signed long __sched schedule_timeout_interruptible(signed long timeout)
|
1097 |
|
|
{
|
1098 |
|
|
__set_current_state(TASK_INTERRUPTIBLE);
|
1099 |
|
|
return schedule_timeout(timeout);
|
1100 |
|
|
}
|
1101 |
|
|
EXPORT_SYMBOL(schedule_timeout_interruptible);
|
1102 |
|
|
|
1103 |
|
|
signed long __sched schedule_timeout_uninterruptible(signed long timeout)
|
1104 |
|
|
{
|
1105 |
|
|
__set_current_state(TASK_UNINTERRUPTIBLE);
|
1106 |
|
|
return schedule_timeout(timeout);
|
1107 |
|
|
}
|
1108 |
|
|
EXPORT_SYMBOL(schedule_timeout_uninterruptible);
|
1109 |
|
|
|
1110 |
|
|
/* Thread ID - the internal kernel "pid" */
|
1111 |
|
|
asmlinkage long sys_gettid(void)
|
1112 |
|
|
{
|
1113 |
|
|
return task_pid_vnr(current);
|
1114 |
|
|
}
|
1115 |
|
|
|
1116 |
|
|
/**
|
1117 |
|
|
* do_sysinfo - fill in sysinfo struct
|
1118 |
|
|
* @info: pointer to buffer to fill
|
1119 |
|
|
*/
|
1120 |
|
|
int do_sysinfo(struct sysinfo *info)
|
1121 |
|
|
{
|
1122 |
|
|
unsigned long mem_total, sav_total;
|
1123 |
|
|
unsigned int mem_unit, bitcount;
|
1124 |
|
|
unsigned long seq;
|
1125 |
|
|
|
1126 |
|
|
memset(info, 0, sizeof(struct sysinfo));
|
1127 |
|
|
|
1128 |
|
|
do {
|
1129 |
|
|
struct timespec tp;
|
1130 |
|
|
seq = read_seqbegin(&xtime_lock);
|
1131 |
|
|
|
1132 |
|
|
/*
|
1133 |
|
|
* This is annoying. The below is the same thing
|
1134 |
|
|
* posix_get_clock_monotonic() does, but it wants to
|
1135 |
|
|
* take the lock which we want to cover the loads stuff
|
1136 |
|
|
* too.
|
1137 |
|
|
*/
|
1138 |
|
|
|
1139 |
|
|
getnstimeofday(&tp);
|
1140 |
|
|
tp.tv_sec += wall_to_monotonic.tv_sec;
|
1141 |
|
|
tp.tv_nsec += wall_to_monotonic.tv_nsec;
|
1142 |
|
|
monotonic_to_bootbased(&tp);
|
1143 |
|
|
if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
|
1144 |
|
|
tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
|
1145 |
|
|
tp.tv_sec++;
|
1146 |
|
|
}
|
1147 |
|
|
info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
|
1148 |
|
|
|
1149 |
|
|
info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
|
1150 |
|
|
info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
|
1151 |
|
|
info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
|
1152 |
|
|
|
1153 |
|
|
info->procs = nr_threads;
|
1154 |
|
|
} while (read_seqretry(&xtime_lock, seq));
|
1155 |
|
|
|
1156 |
|
|
si_meminfo(info);
|
1157 |
|
|
si_swapinfo(info);
|
1158 |
|
|
|
1159 |
|
|
/*
|
1160 |
|
|
* If the sum of all the available memory (i.e. ram + swap)
|
1161 |
|
|
* is less than can be stored in a 32 bit unsigned long then
|
1162 |
|
|
* we can be binary compatible with 2.2.x kernels. If not,
|
1163 |
|
|
* well, in that case 2.2.x was broken anyways...
|
1164 |
|
|
*
|
1165 |
|
|
* -Erik Andersen <andersee@debian.org>
|
1166 |
|
|
*/
|
1167 |
|
|
|
1168 |
|
|
mem_total = info->totalram + info->totalswap;
|
1169 |
|
|
if (mem_total < info->totalram || mem_total < info->totalswap)
|
1170 |
|
|
goto out;
|
1171 |
|
|
bitcount = 0;
|
1172 |
|
|
mem_unit = info->mem_unit;
|
1173 |
|
|
while (mem_unit > 1) {
|
1174 |
|
|
bitcount++;
|
1175 |
|
|
mem_unit >>= 1;
|
1176 |
|
|
sav_total = mem_total;
|
1177 |
|
|
mem_total <<= 1;
|
1178 |
|
|
if (mem_total < sav_total)
|
1179 |
|
|
goto out;
|
1180 |
|
|
}
|
1181 |
|
|
|
1182 |
|
|
/*
|
1183 |
|
|
* If mem_total did not overflow, multiply all memory values by
|
1184 |
|
|
* info->mem_unit and set it to 1. This leaves things compatible
|
1185 |
|
|
* with 2.2.x, and also retains compatibility with earlier 2.4.x
|
1186 |
|
|
* kernels...
|
1187 |
|
|
*/
|
1188 |
|
|
|
1189 |
|
|
info->mem_unit = 1;
|
1190 |
|
|
info->totalram <<= bitcount;
|
1191 |
|
|
info->freeram <<= bitcount;
|
1192 |
|
|
info->sharedram <<= bitcount;
|
1193 |
|
|
info->bufferram <<= bitcount;
|
1194 |
|
|
info->totalswap <<= bitcount;
|
1195 |
|
|
info->freeswap <<= bitcount;
|
1196 |
|
|
info->totalhigh <<= bitcount;
|
1197 |
|
|
info->freehigh <<= bitcount;
|
1198 |
|
|
|
1199 |
|
|
out:
|
1200 |
|
|
return 0;
|
1201 |
|
|
}
|
1202 |
|
|
|
1203 |
|
|
asmlinkage long sys_sysinfo(struct sysinfo __user *info)
|
1204 |
|
|
{
|
1205 |
|
|
struct sysinfo val;
|
1206 |
|
|
|
1207 |
|
|
do_sysinfo(&val);
|
1208 |
|
|
|
1209 |
|
|
if (copy_to_user(info, &val, sizeof(struct sysinfo)))
|
1210 |
|
|
return -EFAULT;
|
1211 |
|
|
|
1212 |
|
|
return 0;
|
1213 |
|
|
}
|
1214 |
|
|
|
1215 |
|
|
/*
|
1216 |
|
|
* lockdep: we want to track each per-CPU base as a separate lock-class,
|
1217 |
|
|
* but timer-bases are kmalloc()-ed, so we need to attach separate
|
1218 |
|
|
* keys to them:
|
1219 |
|
|
*/
|
1220 |
|
|
static struct lock_class_key base_lock_keys[NR_CPUS];
|
1221 |
|
|
|
1222 |
|
|
static int __cpuinit init_timers_cpu(int cpu)
|
1223 |
|
|
{
|
1224 |
|
|
int j;
|
1225 |
|
|
tvec_base_t *base;
|
1226 |
|
|
static char __cpuinitdata tvec_base_done[NR_CPUS];
|
1227 |
|
|
|
1228 |
|
|
if (!tvec_base_done[cpu]) {
|
1229 |
|
|
static char boot_done;
|
1230 |
|
|
|
1231 |
|
|
if (boot_done) {
|
1232 |
|
|
/*
|
1233 |
|
|
* The APs use this path later in boot
|
1234 |
|
|
*/
|
1235 |
|
|
base = kmalloc_node(sizeof(*base),
|
1236 |
|
|
GFP_KERNEL | __GFP_ZERO,
|
1237 |
|
|
cpu_to_node(cpu));
|
1238 |
|
|
if (!base)
|
1239 |
|
|
return -ENOMEM;
|
1240 |
|
|
|
1241 |
|
|
/* Make sure that tvec_base is 2 byte aligned */
|
1242 |
|
|
if (tbase_get_deferrable(base)) {
|
1243 |
|
|
WARN_ON(1);
|
1244 |
|
|
kfree(base);
|
1245 |
|
|
return -ENOMEM;
|
1246 |
|
|
}
|
1247 |
|
|
per_cpu(tvec_bases, cpu) = base;
|
1248 |
|
|
} else {
|
1249 |
|
|
/*
|
1250 |
|
|
* This is for the boot CPU - we use compile-time
|
1251 |
|
|
* static initialisation because per-cpu memory isn't
|
1252 |
|
|
* ready yet and because the memory allocators are not
|
1253 |
|
|
* initialised either.
|
1254 |
|
|
*/
|
1255 |
|
|
boot_done = 1;
|
1256 |
|
|
base = &boot_tvec_bases;
|
1257 |
|
|
}
|
1258 |
|
|
tvec_base_done[cpu] = 1;
|
1259 |
|
|
} else {
|
1260 |
|
|
base = per_cpu(tvec_bases, cpu);
|
1261 |
|
|
}
|
1262 |
|
|
|
1263 |
|
|
spin_lock_init(&base->lock);
|
1264 |
|
|
lockdep_set_class(&base->lock, base_lock_keys + cpu);
|
1265 |
|
|
|
1266 |
|
|
for (j = 0; j < TVN_SIZE; j++) {
|
1267 |
|
|
INIT_LIST_HEAD(base->tv5.vec + j);
|
1268 |
|
|
INIT_LIST_HEAD(base->tv4.vec + j);
|
1269 |
|
|
INIT_LIST_HEAD(base->tv3.vec + j);
|
1270 |
|
|
INIT_LIST_HEAD(base->tv2.vec + j);
|
1271 |
|
|
}
|
1272 |
|
|
for (j = 0; j < TVR_SIZE; j++)
|
1273 |
|
|
INIT_LIST_HEAD(base->tv1.vec + j);
|
1274 |
|
|
|
1275 |
|
|
base->timer_jiffies = jiffies;
|
1276 |
|
|
return 0;
|
1277 |
|
|
}
|
1278 |
|
|
|
1279 |
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
1280 |
|
|
static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
|
1281 |
|
|
{
|
1282 |
|
|
struct timer_list *timer;
|
1283 |
|
|
|
1284 |
|
|
while (!list_empty(head)) {
|
1285 |
|
|
timer = list_first_entry(head, struct timer_list, entry);
|
1286 |
|
|
detach_timer(timer, 0);
|
1287 |
|
|
timer_set_base(timer, new_base);
|
1288 |
|
|
internal_add_timer(new_base, timer);
|
1289 |
|
|
}
|
1290 |
|
|
}
|
1291 |
|
|
|
1292 |
|
|
static void __cpuinit migrate_timers(int cpu)
|
1293 |
|
|
{
|
1294 |
|
|
tvec_base_t *old_base;
|
1295 |
|
|
tvec_base_t *new_base;
|
1296 |
|
|
int i;
|
1297 |
|
|
|
1298 |
|
|
BUG_ON(cpu_online(cpu));
|
1299 |
|
|
old_base = per_cpu(tvec_bases, cpu);
|
1300 |
|
|
new_base = get_cpu_var(tvec_bases);
|
1301 |
|
|
|
1302 |
|
|
local_irq_disable();
|
1303 |
|
|
double_spin_lock(&new_base->lock, &old_base->lock,
|
1304 |
|
|
smp_processor_id() < cpu);
|
1305 |
|
|
|
1306 |
|
|
BUG_ON(old_base->running_timer);
|
1307 |
|
|
|
1308 |
|
|
for (i = 0; i < TVR_SIZE; i++)
|
1309 |
|
|
migrate_timer_list(new_base, old_base->tv1.vec + i);
|
1310 |
|
|
for (i = 0; i < TVN_SIZE; i++) {
|
1311 |
|
|
migrate_timer_list(new_base, old_base->tv2.vec + i);
|
1312 |
|
|
migrate_timer_list(new_base, old_base->tv3.vec + i);
|
1313 |
|
|
migrate_timer_list(new_base, old_base->tv4.vec + i);
|
1314 |
|
|
migrate_timer_list(new_base, old_base->tv5.vec + i);
|
1315 |
|
|
}
|
1316 |
|
|
|
1317 |
|
|
double_spin_unlock(&new_base->lock, &old_base->lock,
|
1318 |
|
|
smp_processor_id() < cpu);
|
1319 |
|
|
local_irq_enable();
|
1320 |
|
|
put_cpu_var(tvec_bases);
|
1321 |
|
|
}
|
1322 |
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
1323 |
|
|
|
1324 |
|
|
static int __cpuinit timer_cpu_notify(struct notifier_block *self,
|
1325 |
|
|
unsigned long action, void *hcpu)
|
1326 |
|
|
{
|
1327 |
|
|
long cpu = (long)hcpu;
|
1328 |
|
|
switch(action) {
|
1329 |
|
|
case CPU_UP_PREPARE:
|
1330 |
|
|
case CPU_UP_PREPARE_FROZEN:
|
1331 |
|
|
if (init_timers_cpu(cpu) < 0)
|
1332 |
|
|
return NOTIFY_BAD;
|
1333 |
|
|
break;
|
1334 |
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
1335 |
|
|
case CPU_DEAD:
|
1336 |
|
|
case CPU_DEAD_FROZEN:
|
1337 |
|
|
migrate_timers(cpu);
|
1338 |
|
|
break;
|
1339 |
|
|
#endif
|
1340 |
|
|
default:
|
1341 |
|
|
break;
|
1342 |
|
|
}
|
1343 |
|
|
return NOTIFY_OK;
|
1344 |
|
|
}
|
1345 |
|
|
|
1346 |
|
|
static struct notifier_block __cpuinitdata timers_nb = {
|
1347 |
|
|
.notifier_call = timer_cpu_notify,
|
1348 |
|
|
};
|
1349 |
|
|
|
1350 |
|
|
|
1351 |
|
|
void __init init_timers(void)
|
1352 |
|
|
{
|
1353 |
|
|
int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
|
1354 |
|
|
(void *)(long)smp_processor_id());
|
1355 |
|
|
|
1356 |
|
|
init_timer_stats();
|
1357 |
|
|
|
1358 |
|
|
BUG_ON(err == NOTIFY_BAD);
|
1359 |
|
|
register_cpu_notifier(&timers_nb);
|
1360 |
|
|
open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
|
1361 |
|
|
}
|
1362 |
|
|
|
1363 |
|
|
/**
|
1364 |
|
|
* msleep - sleep safely even with waitqueue interruptions
|
1365 |
|
|
* @msecs: Time in milliseconds to sleep for
|
1366 |
|
|
*/
|
1367 |
|
|
void msleep(unsigned int msecs)
|
1368 |
|
|
{
|
1369 |
|
|
unsigned long timeout = msecs_to_jiffies(msecs) + 1;
|
1370 |
|
|
|
1371 |
|
|
while (timeout)
|
1372 |
|
|
timeout = schedule_timeout_uninterruptible(timeout);
|
1373 |
|
|
}
|
1374 |
|
|
|
1375 |
|
|
EXPORT_SYMBOL(msleep);
|
1376 |
|
|
|
1377 |
|
|
/**
|
1378 |
|
|
* msleep_interruptible - sleep waiting for signals
|
1379 |
|
|
* @msecs: Time in milliseconds to sleep for
|
1380 |
|
|
*/
|
1381 |
|
|
unsigned long msleep_interruptible(unsigned int msecs)
|
1382 |
|
|
{
|
1383 |
|
|
unsigned long timeout = msecs_to_jiffies(msecs) + 1;
|
1384 |
|
|
|
1385 |
|
|
while (timeout && !signal_pending(current))
|
1386 |
|
|
timeout = schedule_timeout_interruptible(timeout);
|
1387 |
|
|
return jiffies_to_msecs(timeout);
|
1388 |
|
|
}
|
1389 |
|
|
|
1390 |
|
|
EXPORT_SYMBOL(msleep_interruptible);
|