OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [lib/] [bitmap.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * lib/bitmap.c
3
 * Helper functions for bitmap.h.
4
 *
5
 * This source code is licensed under the GNU General Public License,
6
 * Version 2.  See the file COPYING for more details.
7
 */
8
#include <linux/module.h>
9
#include <linux/ctype.h>
10
#include <linux/errno.h>
11
#include <linux/bitmap.h>
12
#include <linux/bitops.h>
13
#include <asm/uaccess.h>
14
 
15
/*
16
 * bitmaps provide an array of bits, implemented using an an
17
 * array of unsigned longs.  The number of valid bits in a
18
 * given bitmap does _not_ need to be an exact multiple of
19
 * BITS_PER_LONG.
20
 *
21
 * The possible unused bits in the last, partially used word
22
 * of a bitmap are 'don't care'.  The implementation makes
23
 * no particular effort to keep them zero.  It ensures that
24
 * their value will not affect the results of any operation.
25
 * The bitmap operations that return Boolean (bitmap_empty,
26
 * for example) or scalar (bitmap_weight, for example) results
27
 * carefully filter out these unused bits from impacting their
28
 * results.
29
 *
30
 * These operations actually hold to a slightly stronger rule:
31
 * if you don't input any bitmaps to these ops that have some
32
 * unused bits set, then they won't output any set unused bits
33
 * in output bitmaps.
34
 *
35
 * The byte ordering of bitmaps is more natural on little
36
 * endian architectures.  See the big-endian headers
37
 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
38
 * for the best explanations of this ordering.
39
 */
40
 
41
int __bitmap_empty(const unsigned long *bitmap, int bits)
42
{
43
        int k, lim = bits/BITS_PER_LONG;
44
        for (k = 0; k < lim; ++k)
45
                if (bitmap[k])
46
                        return 0;
47
 
48
        if (bits % BITS_PER_LONG)
49
                if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
50
                        return 0;
51
 
52
        return 1;
53
}
54
EXPORT_SYMBOL(__bitmap_empty);
55
 
56
int __bitmap_full(const unsigned long *bitmap, int bits)
57
{
58
        int k, lim = bits/BITS_PER_LONG;
59
        for (k = 0; k < lim; ++k)
60
                if (~bitmap[k])
61
                        return 0;
62
 
63
        if (bits % BITS_PER_LONG)
64
                if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
65
                        return 0;
66
 
67
        return 1;
68
}
69
EXPORT_SYMBOL(__bitmap_full);
70
 
71
int __bitmap_equal(const unsigned long *bitmap1,
72
                const unsigned long *bitmap2, int bits)
73
{
74
        int k, lim = bits/BITS_PER_LONG;
75
        for (k = 0; k < lim; ++k)
76
                if (bitmap1[k] != bitmap2[k])
77
                        return 0;
78
 
79
        if (bits % BITS_PER_LONG)
80
                if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
81
                        return 0;
82
 
83
        return 1;
84
}
85
EXPORT_SYMBOL(__bitmap_equal);
86
 
87
void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
88
{
89
        int k, lim = bits/BITS_PER_LONG;
90
        for (k = 0; k < lim; ++k)
91
                dst[k] = ~src[k];
92
 
93
        if (bits % BITS_PER_LONG)
94
                dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
95
}
96
EXPORT_SYMBOL(__bitmap_complement);
97
 
98
/**
99
 * __bitmap_shift_right - logical right shift of the bits in a bitmap
100
 *   @dst : destination bitmap
101
 *   @src : source bitmap
102
 *   @shift : shift by this many bits
103
 *   @bits : bitmap size, in bits
104
 *
105
 * Shifting right (dividing) means moving bits in the MS -> LS bit
106
 * direction.  Zeros are fed into the vacated MS positions and the
107
 * LS bits shifted off the bottom are lost.
108
 */
109
void __bitmap_shift_right(unsigned long *dst,
110
                        const unsigned long *src, int shift, int bits)
111
{
112
        int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
113
        int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
114
        unsigned long mask = (1UL << left) - 1;
115
        for (k = 0; off + k < lim; ++k) {
116
                unsigned long upper, lower;
117
 
118
                /*
119
                 * If shift is not word aligned, take lower rem bits of
120
                 * word above and make them the top rem bits of result.
121
                 */
122
                if (!rem || off + k + 1 >= lim)
123
                        upper = 0;
124
                else {
125
                        upper = src[off + k + 1];
126
                        if (off + k + 1 == lim - 1 && left)
127
                                upper &= mask;
128
                }
129
                lower = src[off + k];
130
                if (left && off + k == lim - 1)
131
                        lower &= mask;
132
                dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
133
                if (left && k == lim - 1)
134
                        dst[k] &= mask;
135
        }
136
        if (off)
137
                memset(&dst[lim - off], 0, off*sizeof(unsigned long));
138
}
139
EXPORT_SYMBOL(__bitmap_shift_right);
140
 
141
 
142
/**
143
 * __bitmap_shift_left - logical left shift of the bits in a bitmap
144
 *   @dst : destination bitmap
145
 *   @src : source bitmap
146
 *   @shift : shift by this many bits
147
 *   @bits : bitmap size, in bits
148
 *
149
 * Shifting left (multiplying) means moving bits in the LS -> MS
150
 * direction.  Zeros are fed into the vacated LS bit positions
151
 * and those MS bits shifted off the top are lost.
152
 */
153
 
154
void __bitmap_shift_left(unsigned long *dst,
155
                        const unsigned long *src, int shift, int bits)
156
{
157
        int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
158
        int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
159
        for (k = lim - off - 1; k >= 0; --k) {
160
                unsigned long upper, lower;
161
 
162
                /*
163
                 * If shift is not word aligned, take upper rem bits of
164
                 * word below and make them the bottom rem bits of result.
165
                 */
166
                if (rem && k > 0)
167
                        lower = src[k - 1];
168
                else
169
                        lower = 0;
170
                upper = src[k];
171
                if (left && k == lim - 1)
172
                        upper &= (1UL << left) - 1;
173
                dst[k + off] = lower  >> (BITS_PER_LONG - rem) | upper << rem;
174
                if (left && k + off == lim - 1)
175
                        dst[k + off] &= (1UL << left) - 1;
176
        }
177
        if (off)
178
                memset(dst, 0, off*sizeof(unsigned long));
179
}
180
EXPORT_SYMBOL(__bitmap_shift_left);
181
 
182
void __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
183
                                const unsigned long *bitmap2, int bits)
184
{
185
        int k;
186
        int nr = BITS_TO_LONGS(bits);
187
 
188
        for (k = 0; k < nr; k++)
189
                dst[k] = bitmap1[k] & bitmap2[k];
190
}
191
EXPORT_SYMBOL(__bitmap_and);
192
 
193
void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
194
                                const unsigned long *bitmap2, int bits)
195
{
196
        int k;
197
        int nr = BITS_TO_LONGS(bits);
198
 
199
        for (k = 0; k < nr; k++)
200
                dst[k] = bitmap1[k] | bitmap2[k];
201
}
202
EXPORT_SYMBOL(__bitmap_or);
203
 
204
void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
205
                                const unsigned long *bitmap2, int bits)
206
{
207
        int k;
208
        int nr = BITS_TO_LONGS(bits);
209
 
210
        for (k = 0; k < nr; k++)
211
                dst[k] = bitmap1[k] ^ bitmap2[k];
212
}
213
EXPORT_SYMBOL(__bitmap_xor);
214
 
215
void __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
216
                                const unsigned long *bitmap2, int bits)
217
{
218
        int k;
219
        int nr = BITS_TO_LONGS(bits);
220
 
221
        for (k = 0; k < nr; k++)
222
                dst[k] = bitmap1[k] & ~bitmap2[k];
223
}
224
EXPORT_SYMBOL(__bitmap_andnot);
225
 
226
int __bitmap_intersects(const unsigned long *bitmap1,
227
                                const unsigned long *bitmap2, int bits)
228
{
229
        int k, lim = bits/BITS_PER_LONG;
230
        for (k = 0; k < lim; ++k)
231
                if (bitmap1[k] & bitmap2[k])
232
                        return 1;
233
 
234
        if (bits % BITS_PER_LONG)
235
                if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
236
                        return 1;
237
        return 0;
238
}
239
EXPORT_SYMBOL(__bitmap_intersects);
240
 
241
int __bitmap_subset(const unsigned long *bitmap1,
242
                                const unsigned long *bitmap2, int bits)
243
{
244
        int k, lim = bits/BITS_PER_LONG;
245
        for (k = 0; k < lim; ++k)
246
                if (bitmap1[k] & ~bitmap2[k])
247
                        return 0;
248
 
249
        if (bits % BITS_PER_LONG)
250
                if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
251
                        return 0;
252
        return 1;
253
}
254
EXPORT_SYMBOL(__bitmap_subset);
255
 
256
int __bitmap_weight(const unsigned long *bitmap, int bits)
257
{
258
        int k, w = 0, lim = bits/BITS_PER_LONG;
259
 
260
        for (k = 0; k < lim; k++)
261
                w += hweight_long(bitmap[k]);
262
 
263
        if (bits % BITS_PER_LONG)
264
                w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
265
 
266
        return w;
267
}
268
EXPORT_SYMBOL(__bitmap_weight);
269
 
270
/*
271
 * Bitmap printing & parsing functions: first version by Bill Irwin,
272
 * second version by Paul Jackson, third by Joe Korty.
273
 */
274
 
275
#define CHUNKSZ                         32
276
#define nbits_to_hold_value(val)        fls(val)
277
#define unhex(c)                        (isdigit(c) ? (c - '0') : (toupper(c) - 'A' + 10))
278
#define BASEDEC 10              /* fancier cpuset lists input in decimal */
279
 
280
/**
281
 * bitmap_scnprintf - convert bitmap to an ASCII hex string.
282
 * @buf: byte buffer into which string is placed
283
 * @buflen: reserved size of @buf, in bytes
284
 * @maskp: pointer to bitmap to convert
285
 * @nmaskbits: size of bitmap, in bits
286
 *
287
 * Exactly @nmaskbits bits are displayed.  Hex digits are grouped into
288
 * comma-separated sets of eight digits per set.
289
 */
290
int bitmap_scnprintf(char *buf, unsigned int buflen,
291
        const unsigned long *maskp, int nmaskbits)
292
{
293
        int i, word, bit, len = 0;
294
        unsigned long val;
295
        const char *sep = "";
296
        int chunksz;
297
        u32 chunkmask;
298
 
299
        chunksz = nmaskbits & (CHUNKSZ - 1);
300
        if (chunksz == 0)
301
                chunksz = CHUNKSZ;
302
 
303
        i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
304
        for (; i >= 0; i -= CHUNKSZ) {
305
                chunkmask = ((1ULL << chunksz) - 1);
306
                word = i / BITS_PER_LONG;
307
                bit = i % BITS_PER_LONG;
308
                val = (maskp[word] >> bit) & chunkmask;
309
                len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
310
                        (chunksz+3)/4, val);
311
                chunksz = CHUNKSZ;
312
                sep = ",";
313
        }
314
        return len;
315
}
316
EXPORT_SYMBOL(bitmap_scnprintf);
317
 
318
/**
319
 * __bitmap_parse - convert an ASCII hex string into a bitmap.
320
 * @buf: pointer to buffer containing string.
321
 * @buflen: buffer size in bytes.  If string is smaller than this
322
 *    then it must be terminated with a \0.
323
 * @is_user: location of buffer, 0 indicates kernel space
324
 * @maskp: pointer to bitmap array that will contain result.
325
 * @nmaskbits: size of bitmap, in bits.
326
 *
327
 * Commas group hex digits into chunks.  Each chunk defines exactly 32
328
 * bits of the resultant bitmask.  No chunk may specify a value larger
329
 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
330
 * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
331
 * characters and for grouping errors such as "1,,5", ",44", "," and "".
332
 * Leading and trailing whitespace accepted, but not embedded whitespace.
333
 */
334
int __bitmap_parse(const char *buf, unsigned int buflen,
335
                int is_user, unsigned long *maskp,
336
                int nmaskbits)
337
{
338
        int c, old_c, totaldigits, ndigits, nchunks, nbits;
339
        u32 chunk;
340
        const char __user *ubuf = buf;
341
 
342
        bitmap_zero(maskp, nmaskbits);
343
 
344
        nchunks = nbits = totaldigits = c = 0;
345
        do {
346
                chunk = ndigits = 0;
347
 
348
                /* Get the next chunk of the bitmap */
349
                while (buflen) {
350
                        old_c = c;
351
                        if (is_user) {
352
                                if (__get_user(c, ubuf++))
353
                                        return -EFAULT;
354
                        }
355
                        else
356
                                c = *buf++;
357
                        buflen--;
358
                        if (isspace(c))
359
                                continue;
360
 
361
                        /*
362
                         * If the last character was a space and the current
363
                         * character isn't '\0', we've got embedded whitespace.
364
                         * This is a no-no, so throw an error.
365
                         */
366
                        if (totaldigits && c && isspace(old_c))
367
                                return -EINVAL;
368
 
369
                        /* A '\0' or a ',' signal the end of the chunk */
370
                        if (c == '\0' || c == ',')
371
                                break;
372
 
373
                        if (!isxdigit(c))
374
                                return -EINVAL;
375
 
376
                        /*
377
                         * Make sure there are at least 4 free bits in 'chunk'.
378
                         * If not, this hexdigit will overflow 'chunk', so
379
                         * throw an error.
380
                         */
381
                        if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
382
                                return -EOVERFLOW;
383
 
384
                        chunk = (chunk << 4) | unhex(c);
385
                        ndigits++; totaldigits++;
386
                }
387
                if (ndigits == 0)
388
                        return -EINVAL;
389
                if (nchunks == 0 && chunk == 0)
390
                        continue;
391
 
392
                __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
393
                *maskp |= chunk;
394
                nchunks++;
395
                nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
396
                if (nbits > nmaskbits)
397
                        return -EOVERFLOW;
398
        } while (buflen && c == ',');
399
 
400
        return 0;
401
}
402
EXPORT_SYMBOL(__bitmap_parse);
403
 
404
/**
405
 * bitmap_parse_user()
406
 *
407
 * @ubuf: pointer to user buffer containing string.
408
 * @ulen: buffer size in bytes.  If string is smaller than this
409
 *    then it must be terminated with a \0.
410
 * @maskp: pointer to bitmap array that will contain result.
411
 * @nmaskbits: size of bitmap, in bits.
412
 *
413
 * Wrapper for __bitmap_parse(), providing it with user buffer.
414
 *
415
 * We cannot have this as an inline function in bitmap.h because it needs
416
 * linux/uaccess.h to get the access_ok() declaration and this causes
417
 * cyclic dependencies.
418
 */
419
int bitmap_parse_user(const char __user *ubuf,
420
                        unsigned int ulen, unsigned long *maskp,
421
                        int nmaskbits)
422
{
423
        if (!access_ok(VERIFY_READ, ubuf, ulen))
424
                return -EFAULT;
425
        return __bitmap_parse((const char *)ubuf, ulen, 1, maskp, nmaskbits);
426
}
427
EXPORT_SYMBOL(bitmap_parse_user);
428
 
429
/*
430
 * bscnl_emit(buf, buflen, rbot, rtop, bp)
431
 *
432
 * Helper routine for bitmap_scnlistprintf().  Write decimal number
433
 * or range to buf, suppressing output past buf+buflen, with optional
434
 * comma-prefix.  Return len of what would be written to buf, if it
435
 * all fit.
436
 */
437
static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
438
{
439
        if (len > 0)
440
                len += scnprintf(buf + len, buflen - len, ",");
441
        if (rbot == rtop)
442
                len += scnprintf(buf + len, buflen - len, "%d", rbot);
443
        else
444
                len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
445
        return len;
446
}
447
 
448
/**
449
 * bitmap_scnlistprintf - convert bitmap to list format ASCII string
450
 * @buf: byte buffer into which string is placed
451
 * @buflen: reserved size of @buf, in bytes
452
 * @maskp: pointer to bitmap to convert
453
 * @nmaskbits: size of bitmap, in bits
454
 *
455
 * Output format is a comma-separated list of decimal numbers and
456
 * ranges.  Consecutively set bits are shown as two hyphen-separated
457
 * decimal numbers, the smallest and largest bit numbers set in
458
 * the range.  Output format is compatible with the format
459
 * accepted as input by bitmap_parselist().
460
 *
461
 * The return value is the number of characters which would be
462
 * generated for the given input, excluding the trailing '\0', as
463
 * per ISO C99.
464
 */
465
int bitmap_scnlistprintf(char *buf, unsigned int buflen,
466
        const unsigned long *maskp, int nmaskbits)
467
{
468
        int len = 0;
469
        /* current bit is 'cur', most recently seen range is [rbot, rtop] */
470
        int cur, rbot, rtop;
471
 
472
        if (buflen == 0)
473
                return 0;
474
        buf[0] = 0;
475
 
476
        rbot = cur = find_first_bit(maskp, nmaskbits);
477
        while (cur < nmaskbits) {
478
                rtop = cur;
479
                cur = find_next_bit(maskp, nmaskbits, cur+1);
480
                if (cur >= nmaskbits || cur > rtop + 1) {
481
                        len = bscnl_emit(buf, buflen, rbot, rtop, len);
482
                        rbot = cur;
483
                }
484
        }
485
        return len;
486
}
487
EXPORT_SYMBOL(bitmap_scnlistprintf);
488
 
489
/**
490
 * bitmap_parselist - convert list format ASCII string to bitmap
491
 * @bp: read nul-terminated user string from this buffer
492
 * @maskp: write resulting mask here
493
 * @nmaskbits: number of bits in mask to be written
494
 *
495
 * Input format is a comma-separated list of decimal numbers and
496
 * ranges.  Consecutively set bits are shown as two hyphen-separated
497
 * decimal numbers, the smallest and largest bit numbers set in
498
 * the range.
499
 *
500
 * Returns 0 on success, -errno on invalid input strings.
501
 * Error values:
502
 *    %-EINVAL: second number in range smaller than first
503
 *    %-EINVAL: invalid character in string
504
 *    %-ERANGE: bit number specified too large for mask
505
 */
506
int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
507
{
508
        unsigned a, b;
509
 
510
        bitmap_zero(maskp, nmaskbits);
511
        do {
512
                if (!isdigit(*bp))
513
                        return -EINVAL;
514
                b = a = simple_strtoul(bp, (char **)&bp, BASEDEC);
515
                if (*bp == '-') {
516
                        bp++;
517
                        if (!isdigit(*bp))
518
                                return -EINVAL;
519
                        b = simple_strtoul(bp, (char **)&bp, BASEDEC);
520
                }
521
                if (!(a <= b))
522
                        return -EINVAL;
523
                if (b >= nmaskbits)
524
                        return -ERANGE;
525
                while (a <= b) {
526
                        set_bit(a, maskp);
527
                        a++;
528
                }
529
                if (*bp == ',')
530
                        bp++;
531
        } while (*bp != '\0' && *bp != '\n');
532
        return 0;
533
}
534
EXPORT_SYMBOL(bitmap_parselist);
535
 
536
/**
537
 * bitmap_pos_to_ord(buf, pos, bits)
538
 *      @buf: pointer to a bitmap
539
 *      @pos: a bit position in @buf (0 <= @pos < @bits)
540
 *      @bits: number of valid bit positions in @buf
541
 *
542
 * Map the bit at position @pos in @buf (of length @bits) to the
543
 * ordinal of which set bit it is.  If it is not set or if @pos
544
 * is not a valid bit position, map to -1.
545
 *
546
 * If for example, just bits 4 through 7 are set in @buf, then @pos
547
 * values 4 through 7 will get mapped to 0 through 3, respectively,
548
 * and other @pos values will get mapped to 0.  When @pos value 7
549
 * gets mapped to (returns) @ord value 3 in this example, that means
550
 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
551
 *
552
 * The bit positions 0 through @bits are valid positions in @buf.
553
 */
554
static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
555
{
556
        int i, ord;
557
 
558
        if (pos < 0 || pos >= bits || !test_bit(pos, buf))
559
                return -1;
560
 
561
        i = find_first_bit(buf, bits);
562
        ord = 0;
563
        while (i < pos) {
564
                i = find_next_bit(buf, bits, i + 1);
565
                ord++;
566
        }
567
        BUG_ON(i != pos);
568
 
569
        return ord;
570
}
571
 
572
/**
573
 * bitmap_ord_to_pos(buf, ord, bits)
574
 *      @buf: pointer to bitmap
575
 *      @ord: ordinal bit position (n-th set bit, n >= 0)
576
 *      @bits: number of valid bit positions in @buf
577
 *
578
 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
579
 * Value of @ord should be in range 0 <= @ord < weight(buf), else
580
 * results are undefined.
581
 *
582
 * If for example, just bits 4 through 7 are set in @buf, then @ord
583
 * values 0 through 3 will get mapped to 4 through 7, respectively,
584
 * and all other @ord values return undefined values.  When @ord value 3
585
 * gets mapped to (returns) @pos value 7 in this example, that means
586
 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
587
 *
588
 * The bit positions 0 through @bits are valid positions in @buf.
589
 */
590
static int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
591
{
592
        int pos = 0;
593
 
594
        if (ord >= 0 && ord < bits) {
595
                int i;
596
 
597
                for (i = find_first_bit(buf, bits);
598
                     i < bits && ord > 0;
599
                     i = find_next_bit(buf, bits, i + 1))
600
                        ord--;
601
                if (i < bits && ord == 0)
602
                        pos = i;
603
        }
604
 
605
        return pos;
606
}
607
 
608
/**
609
 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
610
 *      @dst: remapped result
611
 *      @src: subset to be remapped
612
 *      @old: defines domain of map
613
 *      @new: defines range of map
614
 *      @bits: number of bits in each of these bitmaps
615
 *
616
 * Let @old and @new define a mapping of bit positions, such that
617
 * whatever position is held by the n-th set bit in @old is mapped
618
 * to the n-th set bit in @new.  In the more general case, allowing
619
 * for the possibility that the weight 'w' of @new is less than the
620
 * weight of @old, map the position of the n-th set bit in @old to
621
 * the position of the m-th set bit in @new, where m == n % w.
622
 *
623
 * If either of the @old and @new bitmaps are empty, or if @src and
624
 * @dst point to the same location, then this routine copies @src
625
 * to @dst.
626
 *
627
 * The positions of unset bits in @old are mapped to themselves
628
 * (the identify map).
629
 *
630
 * Apply the above specified mapping to @src, placing the result in
631
 * @dst, clearing any bits previously set in @dst.
632
 *
633
 * For example, lets say that @old has bits 4 through 7 set, and
634
 * @new has bits 12 through 15 set.  This defines the mapping of bit
635
 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
636
 * bit positions unchanged.  So if say @src comes into this routine
637
 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
638
 * 13 and 15 set.
639
 */
640
void bitmap_remap(unsigned long *dst, const unsigned long *src,
641
                const unsigned long *old, const unsigned long *new,
642
                int bits)
643
{
644
        int oldbit, w;
645
 
646
        if (dst == src)         /* following doesn't handle inplace remaps */
647
                return;
648
        bitmap_zero(dst, bits);
649
 
650
        w = bitmap_weight(new, bits);
651
        for (oldbit = find_first_bit(src, bits);
652
             oldbit < bits;
653
             oldbit = find_next_bit(src, bits, oldbit + 1)) {
654
                int n = bitmap_pos_to_ord(old, oldbit, bits);
655
                if (n < 0 || w == 0)
656
                        set_bit(oldbit, dst);   /* identity map */
657
                else
658
                        set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
659
        }
660
}
661
EXPORT_SYMBOL(bitmap_remap);
662
 
663
/**
664
 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
665
 *      @oldbit: bit position to be mapped
666
 *      @old: defines domain of map
667
 *      @new: defines range of map
668
 *      @bits: number of bits in each of these bitmaps
669
 *
670
 * Let @old and @new define a mapping of bit positions, such that
671
 * whatever position is held by the n-th set bit in @old is mapped
672
 * to the n-th set bit in @new.  In the more general case, allowing
673
 * for the possibility that the weight 'w' of @new is less than the
674
 * weight of @old, map the position of the n-th set bit in @old to
675
 * the position of the m-th set bit in @new, where m == n % w.
676
 *
677
 * The positions of unset bits in @old are mapped to themselves
678
 * (the identify map).
679
 *
680
 * Apply the above specified mapping to bit position @oldbit, returning
681
 * the new bit position.
682
 *
683
 * For example, lets say that @old has bits 4 through 7 set, and
684
 * @new has bits 12 through 15 set.  This defines the mapping of bit
685
 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
686
 * bit positions unchanged.  So if say @oldbit is 5, then this routine
687
 * returns 13.
688
 */
689
int bitmap_bitremap(int oldbit, const unsigned long *old,
690
                                const unsigned long *new, int bits)
691
{
692
        int w = bitmap_weight(new, bits);
693
        int n = bitmap_pos_to_ord(old, oldbit, bits);
694
        if (n < 0 || w == 0)
695
                return oldbit;
696
        else
697
                return bitmap_ord_to_pos(new, n % w, bits);
698
}
699
EXPORT_SYMBOL(bitmap_bitremap);
700
 
701
/*
702
 * Common code for bitmap_*_region() routines.
703
 *      bitmap: array of unsigned longs corresponding to the bitmap
704
 *      pos: the beginning of the region
705
 *      order: region size (log base 2 of number of bits)
706
 *      reg_op: operation(s) to perform on that region of bitmap
707
 *
708
 * Can set, verify and/or release a region of bits in a bitmap,
709
 * depending on which combination of REG_OP_* flag bits is set.
710
 *
711
 * A region of a bitmap is a sequence of bits in the bitmap, of
712
 * some size '1 << order' (a power of two), aligned to that same
713
 * '1 << order' power of two.
714
 *
715
 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
716
 * Returns 0 in all other cases and reg_ops.
717
 */
718
 
719
enum {
720
        REG_OP_ISFREE,          /* true if region is all zero bits */
721
        REG_OP_ALLOC,           /* set all bits in region */
722
        REG_OP_RELEASE,         /* clear all bits in region */
723
};
724
 
725
static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
726
{
727
        int nbits_reg;          /* number of bits in region */
728
        int index;              /* index first long of region in bitmap */
729
        int offset;             /* bit offset region in bitmap[index] */
730
        int nlongs_reg;         /* num longs spanned by region in bitmap */
731
        int nbitsinlong;        /* num bits of region in each spanned long */
732
        unsigned long mask;     /* bitmask for one long of region */
733
        int i;                  /* scans bitmap by longs */
734
        int ret = 0;             /* return value */
735
 
736
        /*
737
         * Either nlongs_reg == 1 (for small orders that fit in one long)
738
         * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
739
         */
740
        nbits_reg = 1 << order;
741
        index = pos / BITS_PER_LONG;
742
        offset = pos - (index * BITS_PER_LONG);
743
        nlongs_reg = BITS_TO_LONGS(nbits_reg);
744
        nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
745
 
746
        /*
747
         * Can't do "mask = (1UL << nbitsinlong) - 1", as that
748
         * overflows if nbitsinlong == BITS_PER_LONG.
749
         */
750
        mask = (1UL << (nbitsinlong - 1));
751
        mask += mask - 1;
752
        mask <<= offset;
753
 
754
        switch (reg_op) {
755
        case REG_OP_ISFREE:
756
                for (i = 0; i < nlongs_reg; i++) {
757
                        if (bitmap[index + i] & mask)
758
                                goto done;
759
                }
760
                ret = 1;        /* all bits in region free (zero) */
761
                break;
762
 
763
        case REG_OP_ALLOC:
764
                for (i = 0; i < nlongs_reg; i++)
765
                        bitmap[index + i] |= mask;
766
                break;
767
 
768
        case REG_OP_RELEASE:
769
                for (i = 0; i < nlongs_reg; i++)
770
                        bitmap[index + i] &= ~mask;
771
                break;
772
        }
773
done:
774
        return ret;
775
}
776
 
777
/**
778
 * bitmap_find_free_region - find a contiguous aligned mem region
779
 *      @bitmap: array of unsigned longs corresponding to the bitmap
780
 *      @bits: number of bits in the bitmap
781
 *      @order: region size (log base 2 of number of bits) to find
782
 *
783
 * Find a region of free (zero) bits in a @bitmap of @bits bits and
784
 * allocate them (set them to one).  Only consider regions of length
785
 * a power (@order) of two, aligned to that power of two, which
786
 * makes the search algorithm much faster.
787
 *
788
 * Return the bit offset in bitmap of the allocated region,
789
 * or -errno on failure.
790
 */
791
int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
792
{
793
        int pos;                /* scans bitmap by regions of size order */
794
 
795
        for (pos = 0; pos < bits; pos += (1 << order))
796
                if (__reg_op(bitmap, pos, order, REG_OP_ISFREE))
797
                        break;
798
        if (pos == bits)
799
                return -ENOMEM;
800
        __reg_op(bitmap, pos, order, REG_OP_ALLOC);
801
        return pos;
802
}
803
EXPORT_SYMBOL(bitmap_find_free_region);
804
 
805
/**
806
 * bitmap_release_region - release allocated bitmap region
807
 *      @bitmap: array of unsigned longs corresponding to the bitmap
808
 *      @pos: beginning of bit region to release
809
 *      @order: region size (log base 2 of number of bits) to release
810
 *
811
 * This is the complement to __bitmap_find_free_region() and releases
812
 * the found region (by clearing it in the bitmap).
813
 *
814
 * No return value.
815
 */
816
void bitmap_release_region(unsigned long *bitmap, int pos, int order)
817
{
818
        __reg_op(bitmap, pos, order, REG_OP_RELEASE);
819
}
820
EXPORT_SYMBOL(bitmap_release_region);
821
 
822
/**
823
 * bitmap_allocate_region - allocate bitmap region
824
 *      @bitmap: array of unsigned longs corresponding to the bitmap
825
 *      @pos: beginning of bit region to allocate
826
 *      @order: region size (log base 2 of number of bits) to allocate
827
 *
828
 * Allocate (set bits in) a specified region of a bitmap.
829
 *
830
 * Return 0 on success, or %-EBUSY if specified region wasn't
831
 * free (not all bits were zero).
832
 */
833
int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
834
{
835
        if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
836
                return -EBUSY;
837
        __reg_op(bitmap, pos, order, REG_OP_ALLOC);
838
        return 0;
839
}
840
EXPORT_SYMBOL(bitmap_allocate_region);

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.