1 |
62 |
marcus.erl |
/*
|
2 |
|
|
* linux/mm/memory.c
|
3 |
|
|
*
|
4 |
|
|
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
5 |
|
|
*/
|
6 |
|
|
|
7 |
|
|
/*
|
8 |
|
|
* demand-loading started 01.12.91 - seems it is high on the list of
|
9 |
|
|
* things wanted, and it should be easy to implement. - Linus
|
10 |
|
|
*/
|
11 |
|
|
|
12 |
|
|
/*
|
13 |
|
|
* Ok, demand-loading was easy, shared pages a little bit tricker. Shared
|
14 |
|
|
* pages started 02.12.91, seems to work. - Linus.
|
15 |
|
|
*
|
16 |
|
|
* Tested sharing by executing about 30 /bin/sh: under the old kernel it
|
17 |
|
|
* would have taken more than the 6M I have free, but it worked well as
|
18 |
|
|
* far as I could see.
|
19 |
|
|
*
|
20 |
|
|
* Also corrected some "invalidate()"s - I wasn't doing enough of them.
|
21 |
|
|
*/
|
22 |
|
|
|
23 |
|
|
/*
|
24 |
|
|
* Real VM (paging to/from disk) started 18.12.91. Much more work and
|
25 |
|
|
* thought has to go into this. Oh, well..
|
26 |
|
|
* 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
|
27 |
|
|
* Found it. Everything seems to work now.
|
28 |
|
|
* 20.12.91 - Ok, making the swap-device changeable like the root.
|
29 |
|
|
*/
|
30 |
|
|
|
31 |
|
|
/*
|
32 |
|
|
* 05.04.94 - Multi-page memory management added for v1.1.
|
33 |
|
|
* Idea by Alex Bligh (alex@cconcepts.co.uk)
|
34 |
|
|
*
|
35 |
|
|
* 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
|
36 |
|
|
* (Gerhard.Wichert@pdb.siemens.de)
|
37 |
|
|
*
|
38 |
|
|
* Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
|
39 |
|
|
*/
|
40 |
|
|
|
41 |
|
|
#include <linux/kernel_stat.h>
|
42 |
|
|
#include <linux/mm.h>
|
43 |
|
|
#include <linux/hugetlb.h>
|
44 |
|
|
#include <linux/mman.h>
|
45 |
|
|
#include <linux/swap.h>
|
46 |
|
|
#include <linux/highmem.h>
|
47 |
|
|
#include <linux/pagemap.h>
|
48 |
|
|
#include <linux/rmap.h>
|
49 |
|
|
#include <linux/module.h>
|
50 |
|
|
#include <linux/delayacct.h>
|
51 |
|
|
#include <linux/init.h>
|
52 |
|
|
#include <linux/writeback.h>
|
53 |
|
|
|
54 |
|
|
#include <asm/pgalloc.h>
|
55 |
|
|
#include <asm/uaccess.h>
|
56 |
|
|
#include <asm/tlb.h>
|
57 |
|
|
#include <asm/tlbflush.h>
|
58 |
|
|
#include <asm/pgtable.h>
|
59 |
|
|
|
60 |
|
|
#include <linux/swapops.h>
|
61 |
|
|
#include <linux/elf.h>
|
62 |
|
|
|
63 |
|
|
#ifndef CONFIG_NEED_MULTIPLE_NODES
|
64 |
|
|
/* use the per-pgdat data instead for discontigmem - mbligh */
|
65 |
|
|
unsigned long max_mapnr;
|
66 |
|
|
struct page *mem_map;
|
67 |
|
|
|
68 |
|
|
EXPORT_SYMBOL(max_mapnr);
|
69 |
|
|
EXPORT_SYMBOL(mem_map);
|
70 |
|
|
#endif
|
71 |
|
|
|
72 |
|
|
unsigned long num_physpages;
|
73 |
|
|
/*
|
74 |
|
|
* A number of key systems in x86 including ioremap() rely on the assumption
|
75 |
|
|
* that high_memory defines the upper bound on direct map memory, then end
|
76 |
|
|
* of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
|
77 |
|
|
* highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
|
78 |
|
|
* and ZONE_HIGHMEM.
|
79 |
|
|
*/
|
80 |
|
|
void * high_memory;
|
81 |
|
|
|
82 |
|
|
EXPORT_SYMBOL(num_physpages);
|
83 |
|
|
EXPORT_SYMBOL(high_memory);
|
84 |
|
|
|
85 |
|
|
int randomize_va_space __read_mostly = 1;
|
86 |
|
|
|
87 |
|
|
static int __init disable_randmaps(char *s)
|
88 |
|
|
{
|
89 |
|
|
randomize_va_space = 0;
|
90 |
|
|
return 1;
|
91 |
|
|
}
|
92 |
|
|
__setup("norandmaps", disable_randmaps);
|
93 |
|
|
|
94 |
|
|
|
95 |
|
|
/*
|
96 |
|
|
* If a p?d_bad entry is found while walking page tables, report
|
97 |
|
|
* the error, before resetting entry to p?d_none. Usually (but
|
98 |
|
|
* very seldom) called out from the p?d_none_or_clear_bad macros.
|
99 |
|
|
*/
|
100 |
|
|
|
101 |
|
|
void pgd_clear_bad(pgd_t *pgd)
|
102 |
|
|
{
|
103 |
|
|
pgd_ERROR(*pgd);
|
104 |
|
|
pgd_clear(pgd);
|
105 |
|
|
}
|
106 |
|
|
|
107 |
|
|
void pud_clear_bad(pud_t *pud)
|
108 |
|
|
{
|
109 |
|
|
pud_ERROR(*pud);
|
110 |
|
|
pud_clear(pud);
|
111 |
|
|
}
|
112 |
|
|
|
113 |
|
|
void pmd_clear_bad(pmd_t *pmd)
|
114 |
|
|
{
|
115 |
|
|
pmd_ERROR(*pmd);
|
116 |
|
|
pmd_clear(pmd);
|
117 |
|
|
}
|
118 |
|
|
|
119 |
|
|
/*
|
120 |
|
|
* Note: this doesn't free the actual pages themselves. That
|
121 |
|
|
* has been handled earlier when unmapping all the memory regions.
|
122 |
|
|
*/
|
123 |
|
|
static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
|
124 |
|
|
{
|
125 |
|
|
struct page *page = pmd_page(*pmd);
|
126 |
|
|
pmd_clear(pmd);
|
127 |
|
|
pte_lock_deinit(page);
|
128 |
|
|
pte_free_tlb(tlb, page);
|
129 |
|
|
dec_zone_page_state(page, NR_PAGETABLE);
|
130 |
|
|
tlb->mm->nr_ptes--;
|
131 |
|
|
}
|
132 |
|
|
|
133 |
|
|
static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
|
134 |
|
|
unsigned long addr, unsigned long end,
|
135 |
|
|
unsigned long floor, unsigned long ceiling)
|
136 |
|
|
{
|
137 |
|
|
pmd_t *pmd;
|
138 |
|
|
unsigned long next;
|
139 |
|
|
unsigned long start;
|
140 |
|
|
|
141 |
|
|
start = addr;
|
142 |
|
|
pmd = pmd_offset(pud, addr);
|
143 |
|
|
do {
|
144 |
|
|
next = pmd_addr_end(addr, end);
|
145 |
|
|
if (pmd_none_or_clear_bad(pmd))
|
146 |
|
|
continue;
|
147 |
|
|
free_pte_range(tlb, pmd);
|
148 |
|
|
} while (pmd++, addr = next, addr != end);
|
149 |
|
|
|
150 |
|
|
start &= PUD_MASK;
|
151 |
|
|
if (start < floor)
|
152 |
|
|
return;
|
153 |
|
|
if (ceiling) {
|
154 |
|
|
ceiling &= PUD_MASK;
|
155 |
|
|
if (!ceiling)
|
156 |
|
|
return;
|
157 |
|
|
}
|
158 |
|
|
if (end - 1 > ceiling - 1)
|
159 |
|
|
return;
|
160 |
|
|
|
161 |
|
|
pmd = pmd_offset(pud, start);
|
162 |
|
|
pud_clear(pud);
|
163 |
|
|
pmd_free_tlb(tlb, pmd);
|
164 |
|
|
}
|
165 |
|
|
|
166 |
|
|
static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
|
167 |
|
|
unsigned long addr, unsigned long end,
|
168 |
|
|
unsigned long floor, unsigned long ceiling)
|
169 |
|
|
{
|
170 |
|
|
pud_t *pud;
|
171 |
|
|
unsigned long next;
|
172 |
|
|
unsigned long start;
|
173 |
|
|
|
174 |
|
|
start = addr;
|
175 |
|
|
pud = pud_offset(pgd, addr);
|
176 |
|
|
do {
|
177 |
|
|
next = pud_addr_end(addr, end);
|
178 |
|
|
if (pud_none_or_clear_bad(pud))
|
179 |
|
|
continue;
|
180 |
|
|
free_pmd_range(tlb, pud, addr, next, floor, ceiling);
|
181 |
|
|
} while (pud++, addr = next, addr != end);
|
182 |
|
|
|
183 |
|
|
start &= PGDIR_MASK;
|
184 |
|
|
if (start < floor)
|
185 |
|
|
return;
|
186 |
|
|
if (ceiling) {
|
187 |
|
|
ceiling &= PGDIR_MASK;
|
188 |
|
|
if (!ceiling)
|
189 |
|
|
return;
|
190 |
|
|
}
|
191 |
|
|
if (end - 1 > ceiling - 1)
|
192 |
|
|
return;
|
193 |
|
|
|
194 |
|
|
pud = pud_offset(pgd, start);
|
195 |
|
|
pgd_clear(pgd);
|
196 |
|
|
pud_free_tlb(tlb, pud);
|
197 |
|
|
}
|
198 |
|
|
|
199 |
|
|
/*
|
200 |
|
|
* This function frees user-level page tables of a process.
|
201 |
|
|
*
|
202 |
|
|
* Must be called with pagetable lock held.
|
203 |
|
|
*/
|
204 |
|
|
void free_pgd_range(struct mmu_gather **tlb,
|
205 |
|
|
unsigned long addr, unsigned long end,
|
206 |
|
|
unsigned long floor, unsigned long ceiling)
|
207 |
|
|
{
|
208 |
|
|
pgd_t *pgd;
|
209 |
|
|
unsigned long next;
|
210 |
|
|
unsigned long start;
|
211 |
|
|
|
212 |
|
|
/*
|
213 |
|
|
* The next few lines have given us lots of grief...
|
214 |
|
|
*
|
215 |
|
|
* Why are we testing PMD* at this top level? Because often
|
216 |
|
|
* there will be no work to do at all, and we'd prefer not to
|
217 |
|
|
* go all the way down to the bottom just to discover that.
|
218 |
|
|
*
|
219 |
|
|
* Why all these "- 1"s? Because 0 represents both the bottom
|
220 |
|
|
* of the address space and the top of it (using -1 for the
|
221 |
|
|
* top wouldn't help much: the masks would do the wrong thing).
|
222 |
|
|
* The rule is that addr 0 and floor 0 refer to the bottom of
|
223 |
|
|
* the address space, but end 0 and ceiling 0 refer to the top
|
224 |
|
|
* Comparisons need to use "end - 1" and "ceiling - 1" (though
|
225 |
|
|
* that end 0 case should be mythical).
|
226 |
|
|
*
|
227 |
|
|
* Wherever addr is brought up or ceiling brought down, we must
|
228 |
|
|
* be careful to reject "the opposite 0" before it confuses the
|
229 |
|
|
* subsequent tests. But what about where end is brought down
|
230 |
|
|
* by PMD_SIZE below? no, end can't go down to 0 there.
|
231 |
|
|
*
|
232 |
|
|
* Whereas we round start (addr) and ceiling down, by different
|
233 |
|
|
* masks at different levels, in order to test whether a table
|
234 |
|
|
* now has no other vmas using it, so can be freed, we don't
|
235 |
|
|
* bother to round floor or end up - the tests don't need that.
|
236 |
|
|
*/
|
237 |
|
|
|
238 |
|
|
addr &= PMD_MASK;
|
239 |
|
|
if (addr < floor) {
|
240 |
|
|
addr += PMD_SIZE;
|
241 |
|
|
if (!addr)
|
242 |
|
|
return;
|
243 |
|
|
}
|
244 |
|
|
if (ceiling) {
|
245 |
|
|
ceiling &= PMD_MASK;
|
246 |
|
|
if (!ceiling)
|
247 |
|
|
return;
|
248 |
|
|
}
|
249 |
|
|
if (end - 1 > ceiling - 1)
|
250 |
|
|
end -= PMD_SIZE;
|
251 |
|
|
if (addr > end - 1)
|
252 |
|
|
return;
|
253 |
|
|
|
254 |
|
|
start = addr;
|
255 |
|
|
pgd = pgd_offset((*tlb)->mm, addr);
|
256 |
|
|
do {
|
257 |
|
|
next = pgd_addr_end(addr, end);
|
258 |
|
|
if (pgd_none_or_clear_bad(pgd))
|
259 |
|
|
continue;
|
260 |
|
|
free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
|
261 |
|
|
} while (pgd++, addr = next, addr != end);
|
262 |
|
|
}
|
263 |
|
|
|
264 |
|
|
void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
|
265 |
|
|
unsigned long floor, unsigned long ceiling)
|
266 |
|
|
{
|
267 |
|
|
while (vma) {
|
268 |
|
|
struct vm_area_struct *next = vma->vm_next;
|
269 |
|
|
unsigned long addr = vma->vm_start;
|
270 |
|
|
|
271 |
|
|
/*
|
272 |
|
|
* Hide vma from rmap and vmtruncate before freeing pgtables
|
273 |
|
|
*/
|
274 |
|
|
anon_vma_unlink(vma);
|
275 |
|
|
unlink_file_vma(vma);
|
276 |
|
|
|
277 |
|
|
if (is_vm_hugetlb_page(vma)) {
|
278 |
|
|
hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
|
279 |
|
|
floor, next? next->vm_start: ceiling);
|
280 |
|
|
} else {
|
281 |
|
|
/*
|
282 |
|
|
* Optimization: gather nearby vmas into one call down
|
283 |
|
|
*/
|
284 |
|
|
while (next && next->vm_start <= vma->vm_end + PMD_SIZE
|
285 |
|
|
&& !is_vm_hugetlb_page(next)) {
|
286 |
|
|
vma = next;
|
287 |
|
|
next = vma->vm_next;
|
288 |
|
|
anon_vma_unlink(vma);
|
289 |
|
|
unlink_file_vma(vma);
|
290 |
|
|
}
|
291 |
|
|
free_pgd_range(tlb, addr, vma->vm_end,
|
292 |
|
|
floor, next? next->vm_start: ceiling);
|
293 |
|
|
}
|
294 |
|
|
vma = next;
|
295 |
|
|
}
|
296 |
|
|
}
|
297 |
|
|
|
298 |
|
|
int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
|
299 |
|
|
{
|
300 |
|
|
struct page *new = pte_alloc_one(mm, address);
|
301 |
|
|
if (!new)
|
302 |
|
|
return -ENOMEM;
|
303 |
|
|
|
304 |
|
|
pte_lock_init(new);
|
305 |
|
|
spin_lock(&mm->page_table_lock);
|
306 |
|
|
if (pmd_present(*pmd)) { /* Another has populated it */
|
307 |
|
|
pte_lock_deinit(new);
|
308 |
|
|
pte_free(new);
|
309 |
|
|
} else {
|
310 |
|
|
mm->nr_ptes++;
|
311 |
|
|
inc_zone_page_state(new, NR_PAGETABLE);
|
312 |
|
|
pmd_populate(mm, pmd, new);
|
313 |
|
|
}
|
314 |
|
|
spin_unlock(&mm->page_table_lock);
|
315 |
|
|
return 0;
|
316 |
|
|
}
|
317 |
|
|
|
318 |
|
|
int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
|
319 |
|
|
{
|
320 |
|
|
pte_t *new = pte_alloc_one_kernel(&init_mm, address);
|
321 |
|
|
if (!new)
|
322 |
|
|
return -ENOMEM;
|
323 |
|
|
|
324 |
|
|
spin_lock(&init_mm.page_table_lock);
|
325 |
|
|
if (pmd_present(*pmd)) /* Another has populated it */
|
326 |
|
|
pte_free_kernel(new);
|
327 |
|
|
else
|
328 |
|
|
pmd_populate_kernel(&init_mm, pmd, new);
|
329 |
|
|
spin_unlock(&init_mm.page_table_lock);
|
330 |
|
|
return 0;
|
331 |
|
|
}
|
332 |
|
|
|
333 |
|
|
static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
|
334 |
|
|
{
|
335 |
|
|
if (file_rss)
|
336 |
|
|
add_mm_counter(mm, file_rss, file_rss);
|
337 |
|
|
if (anon_rss)
|
338 |
|
|
add_mm_counter(mm, anon_rss, anon_rss);
|
339 |
|
|
}
|
340 |
|
|
|
341 |
|
|
/*
|
342 |
|
|
* This function is called to print an error when a bad pte
|
343 |
|
|
* is found. For example, we might have a PFN-mapped pte in
|
344 |
|
|
* a region that doesn't allow it.
|
345 |
|
|
*
|
346 |
|
|
* The calling function must still handle the error.
|
347 |
|
|
*/
|
348 |
|
|
void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
|
349 |
|
|
{
|
350 |
|
|
printk(KERN_ERR "Bad pte = %08llx, process = %s, "
|
351 |
|
|
"vm_flags = %lx, vaddr = %lx\n",
|
352 |
|
|
(long long)pte_val(pte),
|
353 |
|
|
(vma->vm_mm == current->mm ? current->comm : "???"),
|
354 |
|
|
vma->vm_flags, vaddr);
|
355 |
|
|
dump_stack();
|
356 |
|
|
}
|
357 |
|
|
|
358 |
|
|
static inline int is_cow_mapping(unsigned int flags)
|
359 |
|
|
{
|
360 |
|
|
return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
|
361 |
|
|
}
|
362 |
|
|
|
363 |
|
|
/*
|
364 |
|
|
* This function gets the "struct page" associated with a pte.
|
365 |
|
|
*
|
366 |
|
|
* NOTE! Some mappings do not have "struct pages". A raw PFN mapping
|
367 |
|
|
* will have each page table entry just pointing to a raw page frame
|
368 |
|
|
* number, and as far as the VM layer is concerned, those do not have
|
369 |
|
|
* pages associated with them - even if the PFN might point to memory
|
370 |
|
|
* that otherwise is perfectly fine and has a "struct page".
|
371 |
|
|
*
|
372 |
|
|
* The way we recognize those mappings is through the rules set up
|
373 |
|
|
* by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
|
374 |
|
|
* and the vm_pgoff will point to the first PFN mapped: thus every
|
375 |
|
|
* page that is a raw mapping will always honor the rule
|
376 |
|
|
*
|
377 |
|
|
* pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
|
378 |
|
|
*
|
379 |
|
|
* and if that isn't true, the page has been COW'ed (in which case it
|
380 |
|
|
* _does_ have a "struct page" associated with it even if it is in a
|
381 |
|
|
* VM_PFNMAP range).
|
382 |
|
|
*/
|
383 |
|
|
struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
|
384 |
|
|
{
|
385 |
|
|
unsigned long pfn = pte_pfn(pte);
|
386 |
|
|
|
387 |
|
|
if (unlikely(vma->vm_flags & VM_PFNMAP)) {
|
388 |
|
|
unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
|
389 |
|
|
if (pfn == vma->vm_pgoff + off)
|
390 |
|
|
return NULL;
|
391 |
|
|
if (!is_cow_mapping(vma->vm_flags))
|
392 |
|
|
return NULL;
|
393 |
|
|
}
|
394 |
|
|
|
395 |
|
|
#ifdef CONFIG_DEBUG_VM
|
396 |
|
|
/*
|
397 |
|
|
* Add some anal sanity checks for now. Eventually,
|
398 |
|
|
* we should just do "return pfn_to_page(pfn)", but
|
399 |
|
|
* in the meantime we check that we get a valid pfn,
|
400 |
|
|
* and that the resulting page looks ok.
|
401 |
|
|
*/
|
402 |
|
|
if (unlikely(!pfn_valid(pfn))) {
|
403 |
|
|
print_bad_pte(vma, pte, addr);
|
404 |
|
|
return NULL;
|
405 |
|
|
}
|
406 |
|
|
#endif
|
407 |
|
|
|
408 |
|
|
/*
|
409 |
|
|
* NOTE! We still have PageReserved() pages in the page
|
410 |
|
|
* tables.
|
411 |
|
|
*
|
412 |
|
|
* The PAGE_ZERO() pages and various VDSO mappings can
|
413 |
|
|
* cause them to exist.
|
414 |
|
|
*/
|
415 |
|
|
return pfn_to_page(pfn);
|
416 |
|
|
}
|
417 |
|
|
|
418 |
|
|
/*
|
419 |
|
|
* copy one vm_area from one task to the other. Assumes the page tables
|
420 |
|
|
* already present in the new task to be cleared in the whole range
|
421 |
|
|
* covered by this vma.
|
422 |
|
|
*/
|
423 |
|
|
|
424 |
|
|
static inline void
|
425 |
|
|
copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
|
426 |
|
|
pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
|
427 |
|
|
unsigned long addr, int *rss)
|
428 |
|
|
{
|
429 |
|
|
unsigned long vm_flags = vma->vm_flags;
|
430 |
|
|
pte_t pte = *src_pte;
|
431 |
|
|
struct page *page;
|
432 |
|
|
|
433 |
|
|
/* pte contains position in swap or file, so copy. */
|
434 |
|
|
if (unlikely(!pte_present(pte))) {
|
435 |
|
|
if (!pte_file(pte)) {
|
436 |
|
|
swp_entry_t entry = pte_to_swp_entry(pte);
|
437 |
|
|
|
438 |
|
|
swap_duplicate(entry);
|
439 |
|
|
/* make sure dst_mm is on swapoff's mmlist. */
|
440 |
|
|
if (unlikely(list_empty(&dst_mm->mmlist))) {
|
441 |
|
|
spin_lock(&mmlist_lock);
|
442 |
|
|
if (list_empty(&dst_mm->mmlist))
|
443 |
|
|
list_add(&dst_mm->mmlist,
|
444 |
|
|
&src_mm->mmlist);
|
445 |
|
|
spin_unlock(&mmlist_lock);
|
446 |
|
|
}
|
447 |
|
|
if (is_write_migration_entry(entry) &&
|
448 |
|
|
is_cow_mapping(vm_flags)) {
|
449 |
|
|
/*
|
450 |
|
|
* COW mappings require pages in both parent
|
451 |
|
|
* and child to be set to read.
|
452 |
|
|
*/
|
453 |
|
|
make_migration_entry_read(&entry);
|
454 |
|
|
pte = swp_entry_to_pte(entry);
|
455 |
|
|
set_pte_at(src_mm, addr, src_pte, pte);
|
456 |
|
|
}
|
457 |
|
|
}
|
458 |
|
|
goto out_set_pte;
|
459 |
|
|
}
|
460 |
|
|
|
461 |
|
|
/*
|
462 |
|
|
* If it's a COW mapping, write protect it both
|
463 |
|
|
* in the parent and the child
|
464 |
|
|
*/
|
465 |
|
|
if (is_cow_mapping(vm_flags)) {
|
466 |
|
|
ptep_set_wrprotect(src_mm, addr, src_pte);
|
467 |
|
|
pte = pte_wrprotect(pte);
|
468 |
|
|
}
|
469 |
|
|
|
470 |
|
|
/*
|
471 |
|
|
* If it's a shared mapping, mark it clean in
|
472 |
|
|
* the child
|
473 |
|
|
*/
|
474 |
|
|
if (vm_flags & VM_SHARED)
|
475 |
|
|
pte = pte_mkclean(pte);
|
476 |
|
|
pte = pte_mkold(pte);
|
477 |
|
|
|
478 |
|
|
page = vm_normal_page(vma, addr, pte);
|
479 |
|
|
if (page) {
|
480 |
|
|
get_page(page);
|
481 |
|
|
page_dup_rmap(page, vma, addr);
|
482 |
|
|
rss[!!PageAnon(page)]++;
|
483 |
|
|
}
|
484 |
|
|
|
485 |
|
|
out_set_pte:
|
486 |
|
|
set_pte_at(dst_mm, addr, dst_pte, pte);
|
487 |
|
|
}
|
488 |
|
|
|
489 |
|
|
static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
|
490 |
|
|
pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
|
491 |
|
|
unsigned long addr, unsigned long end)
|
492 |
|
|
{
|
493 |
|
|
pte_t *src_pte, *dst_pte;
|
494 |
|
|
spinlock_t *src_ptl, *dst_ptl;
|
495 |
|
|
int progress = 0;
|
496 |
|
|
int rss[2];
|
497 |
|
|
|
498 |
|
|
again:
|
499 |
|
|
rss[1] = rss[0] = 0;
|
500 |
|
|
dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
|
501 |
|
|
if (!dst_pte)
|
502 |
|
|
return -ENOMEM;
|
503 |
|
|
src_pte = pte_offset_map_nested(src_pmd, addr);
|
504 |
|
|
src_ptl = pte_lockptr(src_mm, src_pmd);
|
505 |
|
|
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
|
506 |
|
|
arch_enter_lazy_mmu_mode();
|
507 |
|
|
|
508 |
|
|
do {
|
509 |
|
|
/*
|
510 |
|
|
* We are holding two locks at this point - either of them
|
511 |
|
|
* could generate latencies in another task on another CPU.
|
512 |
|
|
*/
|
513 |
|
|
if (progress >= 32) {
|
514 |
|
|
progress = 0;
|
515 |
|
|
if (need_resched() ||
|
516 |
|
|
need_lockbreak(src_ptl) ||
|
517 |
|
|
need_lockbreak(dst_ptl))
|
518 |
|
|
break;
|
519 |
|
|
}
|
520 |
|
|
if (pte_none(*src_pte)) {
|
521 |
|
|
progress++;
|
522 |
|
|
continue;
|
523 |
|
|
}
|
524 |
|
|
copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
|
525 |
|
|
progress += 8;
|
526 |
|
|
} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
|
527 |
|
|
|
528 |
|
|
arch_leave_lazy_mmu_mode();
|
529 |
|
|
spin_unlock(src_ptl);
|
530 |
|
|
pte_unmap_nested(src_pte - 1);
|
531 |
|
|
add_mm_rss(dst_mm, rss[0], rss[1]);
|
532 |
|
|
pte_unmap_unlock(dst_pte - 1, dst_ptl);
|
533 |
|
|
cond_resched();
|
534 |
|
|
if (addr != end)
|
535 |
|
|
goto again;
|
536 |
|
|
return 0;
|
537 |
|
|
}
|
538 |
|
|
|
539 |
|
|
static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
|
540 |
|
|
pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
|
541 |
|
|
unsigned long addr, unsigned long end)
|
542 |
|
|
{
|
543 |
|
|
pmd_t *src_pmd, *dst_pmd;
|
544 |
|
|
unsigned long next;
|
545 |
|
|
|
546 |
|
|
dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
|
547 |
|
|
if (!dst_pmd)
|
548 |
|
|
return -ENOMEM;
|
549 |
|
|
src_pmd = pmd_offset(src_pud, addr);
|
550 |
|
|
do {
|
551 |
|
|
next = pmd_addr_end(addr, end);
|
552 |
|
|
if (pmd_none_or_clear_bad(src_pmd))
|
553 |
|
|
continue;
|
554 |
|
|
if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
|
555 |
|
|
vma, addr, next))
|
556 |
|
|
return -ENOMEM;
|
557 |
|
|
} while (dst_pmd++, src_pmd++, addr = next, addr != end);
|
558 |
|
|
return 0;
|
559 |
|
|
}
|
560 |
|
|
|
561 |
|
|
static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
|
562 |
|
|
pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
|
563 |
|
|
unsigned long addr, unsigned long end)
|
564 |
|
|
{
|
565 |
|
|
pud_t *src_pud, *dst_pud;
|
566 |
|
|
unsigned long next;
|
567 |
|
|
|
568 |
|
|
dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
|
569 |
|
|
if (!dst_pud)
|
570 |
|
|
return -ENOMEM;
|
571 |
|
|
src_pud = pud_offset(src_pgd, addr);
|
572 |
|
|
do {
|
573 |
|
|
next = pud_addr_end(addr, end);
|
574 |
|
|
if (pud_none_or_clear_bad(src_pud))
|
575 |
|
|
continue;
|
576 |
|
|
if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
|
577 |
|
|
vma, addr, next))
|
578 |
|
|
return -ENOMEM;
|
579 |
|
|
} while (dst_pud++, src_pud++, addr = next, addr != end);
|
580 |
|
|
return 0;
|
581 |
|
|
}
|
582 |
|
|
|
583 |
|
|
int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
|
584 |
|
|
struct vm_area_struct *vma)
|
585 |
|
|
{
|
586 |
|
|
pgd_t *src_pgd, *dst_pgd;
|
587 |
|
|
unsigned long next;
|
588 |
|
|
unsigned long addr = vma->vm_start;
|
589 |
|
|
unsigned long end = vma->vm_end;
|
590 |
|
|
|
591 |
|
|
/*
|
592 |
|
|
* Don't copy ptes where a page fault will fill them correctly.
|
593 |
|
|
* Fork becomes much lighter when there are big shared or private
|
594 |
|
|
* readonly mappings. The tradeoff is that copy_page_range is more
|
595 |
|
|
* efficient than faulting.
|
596 |
|
|
*/
|
597 |
|
|
if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
|
598 |
|
|
if (!vma->anon_vma)
|
599 |
|
|
return 0;
|
600 |
|
|
}
|
601 |
|
|
|
602 |
|
|
if (is_vm_hugetlb_page(vma))
|
603 |
|
|
return copy_hugetlb_page_range(dst_mm, src_mm, vma);
|
604 |
|
|
|
605 |
|
|
dst_pgd = pgd_offset(dst_mm, addr);
|
606 |
|
|
src_pgd = pgd_offset(src_mm, addr);
|
607 |
|
|
do {
|
608 |
|
|
next = pgd_addr_end(addr, end);
|
609 |
|
|
if (pgd_none_or_clear_bad(src_pgd))
|
610 |
|
|
continue;
|
611 |
|
|
if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
|
612 |
|
|
vma, addr, next))
|
613 |
|
|
return -ENOMEM;
|
614 |
|
|
} while (dst_pgd++, src_pgd++, addr = next, addr != end);
|
615 |
|
|
return 0;
|
616 |
|
|
}
|
617 |
|
|
|
618 |
|
|
static unsigned long zap_pte_range(struct mmu_gather *tlb,
|
619 |
|
|
struct vm_area_struct *vma, pmd_t *pmd,
|
620 |
|
|
unsigned long addr, unsigned long end,
|
621 |
|
|
long *zap_work, struct zap_details *details)
|
622 |
|
|
{
|
623 |
|
|
struct mm_struct *mm = tlb->mm;
|
624 |
|
|
pte_t *pte;
|
625 |
|
|
spinlock_t *ptl;
|
626 |
|
|
int file_rss = 0;
|
627 |
|
|
int anon_rss = 0;
|
628 |
|
|
|
629 |
|
|
pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
|
630 |
|
|
arch_enter_lazy_mmu_mode();
|
631 |
|
|
do {
|
632 |
|
|
pte_t ptent = *pte;
|
633 |
|
|
if (pte_none(ptent)) {
|
634 |
|
|
(*zap_work)--;
|
635 |
|
|
continue;
|
636 |
|
|
}
|
637 |
|
|
|
638 |
|
|
(*zap_work) -= PAGE_SIZE;
|
639 |
|
|
|
640 |
|
|
if (pte_present(ptent)) {
|
641 |
|
|
struct page *page;
|
642 |
|
|
|
643 |
|
|
page = vm_normal_page(vma, addr, ptent);
|
644 |
|
|
if (unlikely(details) && page) {
|
645 |
|
|
/*
|
646 |
|
|
* unmap_shared_mapping_pages() wants to
|
647 |
|
|
* invalidate cache without truncating:
|
648 |
|
|
* unmap shared but keep private pages.
|
649 |
|
|
*/
|
650 |
|
|
if (details->check_mapping &&
|
651 |
|
|
details->check_mapping != page->mapping)
|
652 |
|
|
continue;
|
653 |
|
|
/*
|
654 |
|
|
* Each page->index must be checked when
|
655 |
|
|
* invalidating or truncating nonlinear.
|
656 |
|
|
*/
|
657 |
|
|
if (details->nonlinear_vma &&
|
658 |
|
|
(page->index < details->first_index ||
|
659 |
|
|
page->index > details->last_index))
|
660 |
|
|
continue;
|
661 |
|
|
}
|
662 |
|
|
ptent = ptep_get_and_clear_full(mm, addr, pte,
|
663 |
|
|
tlb->fullmm);
|
664 |
|
|
tlb_remove_tlb_entry(tlb, pte, addr);
|
665 |
|
|
if (unlikely(!page))
|
666 |
|
|
continue;
|
667 |
|
|
if (unlikely(details) && details->nonlinear_vma
|
668 |
|
|
&& linear_page_index(details->nonlinear_vma,
|
669 |
|
|
addr) != page->index)
|
670 |
|
|
set_pte_at(mm, addr, pte,
|
671 |
|
|
pgoff_to_pte(page->index));
|
672 |
|
|
if (PageAnon(page))
|
673 |
|
|
anon_rss--;
|
674 |
|
|
else {
|
675 |
|
|
if (pte_dirty(ptent))
|
676 |
|
|
set_page_dirty(page);
|
677 |
|
|
if (pte_young(ptent))
|
678 |
|
|
SetPageReferenced(page);
|
679 |
|
|
file_rss--;
|
680 |
|
|
}
|
681 |
|
|
page_remove_rmap(page, vma);
|
682 |
|
|
tlb_remove_page(tlb, page);
|
683 |
|
|
continue;
|
684 |
|
|
}
|
685 |
|
|
/*
|
686 |
|
|
* If details->check_mapping, we leave swap entries;
|
687 |
|
|
* if details->nonlinear_vma, we leave file entries.
|
688 |
|
|
*/
|
689 |
|
|
if (unlikely(details))
|
690 |
|
|
continue;
|
691 |
|
|
if (!pte_file(ptent))
|
692 |
|
|
free_swap_and_cache(pte_to_swp_entry(ptent));
|
693 |
|
|
pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
|
694 |
|
|
} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
|
695 |
|
|
|
696 |
|
|
add_mm_rss(mm, file_rss, anon_rss);
|
697 |
|
|
arch_leave_lazy_mmu_mode();
|
698 |
|
|
pte_unmap_unlock(pte - 1, ptl);
|
699 |
|
|
|
700 |
|
|
return addr;
|
701 |
|
|
}
|
702 |
|
|
|
703 |
|
|
static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
|
704 |
|
|
struct vm_area_struct *vma, pud_t *pud,
|
705 |
|
|
unsigned long addr, unsigned long end,
|
706 |
|
|
long *zap_work, struct zap_details *details)
|
707 |
|
|
{
|
708 |
|
|
pmd_t *pmd;
|
709 |
|
|
unsigned long next;
|
710 |
|
|
|
711 |
|
|
pmd = pmd_offset(pud, addr);
|
712 |
|
|
do {
|
713 |
|
|
next = pmd_addr_end(addr, end);
|
714 |
|
|
if (pmd_none_or_clear_bad(pmd)) {
|
715 |
|
|
(*zap_work)--;
|
716 |
|
|
continue;
|
717 |
|
|
}
|
718 |
|
|
next = zap_pte_range(tlb, vma, pmd, addr, next,
|
719 |
|
|
zap_work, details);
|
720 |
|
|
} while (pmd++, addr = next, (addr != end && *zap_work > 0));
|
721 |
|
|
|
722 |
|
|
return addr;
|
723 |
|
|
}
|
724 |
|
|
|
725 |
|
|
static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
|
726 |
|
|
struct vm_area_struct *vma, pgd_t *pgd,
|
727 |
|
|
unsigned long addr, unsigned long end,
|
728 |
|
|
long *zap_work, struct zap_details *details)
|
729 |
|
|
{
|
730 |
|
|
pud_t *pud;
|
731 |
|
|
unsigned long next;
|
732 |
|
|
|
733 |
|
|
pud = pud_offset(pgd, addr);
|
734 |
|
|
do {
|
735 |
|
|
next = pud_addr_end(addr, end);
|
736 |
|
|
if (pud_none_or_clear_bad(pud)) {
|
737 |
|
|
(*zap_work)--;
|
738 |
|
|
continue;
|
739 |
|
|
}
|
740 |
|
|
next = zap_pmd_range(tlb, vma, pud, addr, next,
|
741 |
|
|
zap_work, details);
|
742 |
|
|
} while (pud++, addr = next, (addr != end && *zap_work > 0));
|
743 |
|
|
|
744 |
|
|
return addr;
|
745 |
|
|
}
|
746 |
|
|
|
747 |
|
|
static unsigned long unmap_page_range(struct mmu_gather *tlb,
|
748 |
|
|
struct vm_area_struct *vma,
|
749 |
|
|
unsigned long addr, unsigned long end,
|
750 |
|
|
long *zap_work, struct zap_details *details)
|
751 |
|
|
{
|
752 |
|
|
pgd_t *pgd;
|
753 |
|
|
unsigned long next;
|
754 |
|
|
|
755 |
|
|
if (details && !details->check_mapping && !details->nonlinear_vma)
|
756 |
|
|
details = NULL;
|
757 |
|
|
|
758 |
|
|
BUG_ON(addr >= end);
|
759 |
|
|
tlb_start_vma(tlb, vma);
|
760 |
|
|
pgd = pgd_offset(vma->vm_mm, addr);
|
761 |
|
|
do {
|
762 |
|
|
next = pgd_addr_end(addr, end);
|
763 |
|
|
if (pgd_none_or_clear_bad(pgd)) {
|
764 |
|
|
(*zap_work)--;
|
765 |
|
|
continue;
|
766 |
|
|
}
|
767 |
|
|
next = zap_pud_range(tlb, vma, pgd, addr, next,
|
768 |
|
|
zap_work, details);
|
769 |
|
|
} while (pgd++, addr = next, (addr != end && *zap_work > 0));
|
770 |
|
|
tlb_end_vma(tlb, vma);
|
771 |
|
|
|
772 |
|
|
return addr;
|
773 |
|
|
}
|
774 |
|
|
|
775 |
|
|
#ifdef CONFIG_PREEMPT
|
776 |
|
|
# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
|
777 |
|
|
#else
|
778 |
|
|
/* No preempt: go for improved straight-line efficiency */
|
779 |
|
|
# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
|
780 |
|
|
#endif
|
781 |
|
|
|
782 |
|
|
/**
|
783 |
|
|
* unmap_vmas - unmap a range of memory covered by a list of vma's
|
784 |
|
|
* @tlbp: address of the caller's struct mmu_gather
|
785 |
|
|
* @vma: the starting vma
|
786 |
|
|
* @start_addr: virtual address at which to start unmapping
|
787 |
|
|
* @end_addr: virtual address at which to end unmapping
|
788 |
|
|
* @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
|
789 |
|
|
* @details: details of nonlinear truncation or shared cache invalidation
|
790 |
|
|
*
|
791 |
|
|
* Returns the end address of the unmapping (restart addr if interrupted).
|
792 |
|
|
*
|
793 |
|
|
* Unmap all pages in the vma list.
|
794 |
|
|
*
|
795 |
|
|
* We aim to not hold locks for too long (for scheduling latency reasons).
|
796 |
|
|
* So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
|
797 |
|
|
* return the ending mmu_gather to the caller.
|
798 |
|
|
*
|
799 |
|
|
* Only addresses between `start' and `end' will be unmapped.
|
800 |
|
|
*
|
801 |
|
|
* The VMA list must be sorted in ascending virtual address order.
|
802 |
|
|
*
|
803 |
|
|
* unmap_vmas() assumes that the caller will flush the whole unmapped address
|
804 |
|
|
* range after unmap_vmas() returns. So the only responsibility here is to
|
805 |
|
|
* ensure that any thus-far unmapped pages are flushed before unmap_vmas()
|
806 |
|
|
* drops the lock and schedules.
|
807 |
|
|
*/
|
808 |
|
|
unsigned long unmap_vmas(struct mmu_gather **tlbp,
|
809 |
|
|
struct vm_area_struct *vma, unsigned long start_addr,
|
810 |
|
|
unsigned long end_addr, unsigned long *nr_accounted,
|
811 |
|
|
struct zap_details *details)
|
812 |
|
|
{
|
813 |
|
|
long zap_work = ZAP_BLOCK_SIZE;
|
814 |
|
|
unsigned long tlb_start = 0; /* For tlb_finish_mmu */
|
815 |
|
|
int tlb_start_valid = 0;
|
816 |
|
|
unsigned long start = start_addr;
|
817 |
|
|
spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
|
818 |
|
|
int fullmm = (*tlbp)->fullmm;
|
819 |
|
|
|
820 |
|
|
for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
|
821 |
|
|
unsigned long end;
|
822 |
|
|
|
823 |
|
|
start = max(vma->vm_start, start_addr);
|
824 |
|
|
if (start >= vma->vm_end)
|
825 |
|
|
continue;
|
826 |
|
|
end = min(vma->vm_end, end_addr);
|
827 |
|
|
if (end <= vma->vm_start)
|
828 |
|
|
continue;
|
829 |
|
|
|
830 |
|
|
if (vma->vm_flags & VM_ACCOUNT)
|
831 |
|
|
*nr_accounted += (end - start) >> PAGE_SHIFT;
|
832 |
|
|
|
833 |
|
|
while (start != end) {
|
834 |
|
|
if (!tlb_start_valid) {
|
835 |
|
|
tlb_start = start;
|
836 |
|
|
tlb_start_valid = 1;
|
837 |
|
|
}
|
838 |
|
|
|
839 |
|
|
if (unlikely(is_vm_hugetlb_page(vma))) {
|
840 |
|
|
unmap_hugepage_range(vma, start, end);
|
841 |
|
|
zap_work -= (end - start) /
|
842 |
|
|
(HPAGE_SIZE / PAGE_SIZE);
|
843 |
|
|
start = end;
|
844 |
|
|
} else
|
845 |
|
|
start = unmap_page_range(*tlbp, vma,
|
846 |
|
|
start, end, &zap_work, details);
|
847 |
|
|
|
848 |
|
|
if (zap_work > 0) {
|
849 |
|
|
BUG_ON(start != end);
|
850 |
|
|
break;
|
851 |
|
|
}
|
852 |
|
|
|
853 |
|
|
tlb_finish_mmu(*tlbp, tlb_start, start);
|
854 |
|
|
|
855 |
|
|
if (need_resched() ||
|
856 |
|
|
(i_mmap_lock && need_lockbreak(i_mmap_lock))) {
|
857 |
|
|
if (i_mmap_lock) {
|
858 |
|
|
*tlbp = NULL;
|
859 |
|
|
goto out;
|
860 |
|
|
}
|
861 |
|
|
cond_resched();
|
862 |
|
|
}
|
863 |
|
|
|
864 |
|
|
*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
|
865 |
|
|
tlb_start_valid = 0;
|
866 |
|
|
zap_work = ZAP_BLOCK_SIZE;
|
867 |
|
|
}
|
868 |
|
|
}
|
869 |
|
|
out:
|
870 |
|
|
return start; /* which is now the end (or restart) address */
|
871 |
|
|
}
|
872 |
|
|
|
873 |
|
|
/**
|
874 |
|
|
* zap_page_range - remove user pages in a given range
|
875 |
|
|
* @vma: vm_area_struct holding the applicable pages
|
876 |
|
|
* @address: starting address of pages to zap
|
877 |
|
|
* @size: number of bytes to zap
|
878 |
|
|
* @details: details of nonlinear truncation or shared cache invalidation
|
879 |
|
|
*/
|
880 |
|
|
unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
|
881 |
|
|
unsigned long size, struct zap_details *details)
|
882 |
|
|
{
|
883 |
|
|
struct mm_struct *mm = vma->vm_mm;
|
884 |
|
|
struct mmu_gather *tlb;
|
885 |
|
|
unsigned long end = address + size;
|
886 |
|
|
unsigned long nr_accounted = 0;
|
887 |
|
|
|
888 |
|
|
lru_add_drain();
|
889 |
|
|
tlb = tlb_gather_mmu(mm, 0);
|
890 |
|
|
update_hiwater_rss(mm);
|
891 |
|
|
end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
|
892 |
|
|
if (tlb)
|
893 |
|
|
tlb_finish_mmu(tlb, address, end);
|
894 |
|
|
return end;
|
895 |
|
|
}
|
896 |
|
|
|
897 |
|
|
/*
|
898 |
|
|
* Do a quick page-table lookup for a single page.
|
899 |
|
|
*/
|
900 |
|
|
struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
|
901 |
|
|
unsigned int flags)
|
902 |
|
|
{
|
903 |
|
|
pgd_t *pgd;
|
904 |
|
|
pud_t *pud;
|
905 |
|
|
pmd_t *pmd;
|
906 |
|
|
pte_t *ptep, pte;
|
907 |
|
|
spinlock_t *ptl;
|
908 |
|
|
struct page *page;
|
909 |
|
|
struct mm_struct *mm = vma->vm_mm;
|
910 |
|
|
|
911 |
|
|
page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
|
912 |
|
|
if (!IS_ERR(page)) {
|
913 |
|
|
BUG_ON(flags & FOLL_GET);
|
914 |
|
|
goto out;
|
915 |
|
|
}
|
916 |
|
|
|
917 |
|
|
page = NULL;
|
918 |
|
|
pgd = pgd_offset(mm, address);
|
919 |
|
|
if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
|
920 |
|
|
goto no_page_table;
|
921 |
|
|
|
922 |
|
|
pud = pud_offset(pgd, address);
|
923 |
|
|
if (pud_none(*pud) || unlikely(pud_bad(*pud)))
|
924 |
|
|
goto no_page_table;
|
925 |
|
|
|
926 |
|
|
pmd = pmd_offset(pud, address);
|
927 |
|
|
if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
|
928 |
|
|
goto no_page_table;
|
929 |
|
|
|
930 |
|
|
if (pmd_huge(*pmd)) {
|
931 |
|
|
BUG_ON(flags & FOLL_GET);
|
932 |
|
|
page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
|
933 |
|
|
goto out;
|
934 |
|
|
}
|
935 |
|
|
|
936 |
|
|
ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
|
937 |
|
|
if (!ptep)
|
938 |
|
|
goto out;
|
939 |
|
|
|
940 |
|
|
pte = *ptep;
|
941 |
|
|
if (!pte_present(pte))
|
942 |
|
|
goto unlock;
|
943 |
|
|
if ((flags & FOLL_WRITE) && !pte_write(pte))
|
944 |
|
|
goto unlock;
|
945 |
|
|
page = vm_normal_page(vma, address, pte);
|
946 |
|
|
if (unlikely(!page))
|
947 |
|
|
goto unlock;
|
948 |
|
|
|
949 |
|
|
if (flags & FOLL_GET)
|
950 |
|
|
get_page(page);
|
951 |
|
|
if (flags & FOLL_TOUCH) {
|
952 |
|
|
if ((flags & FOLL_WRITE) &&
|
953 |
|
|
!pte_dirty(pte) && !PageDirty(page))
|
954 |
|
|
set_page_dirty(page);
|
955 |
|
|
mark_page_accessed(page);
|
956 |
|
|
}
|
957 |
|
|
unlock:
|
958 |
|
|
pte_unmap_unlock(ptep, ptl);
|
959 |
|
|
out:
|
960 |
|
|
return page;
|
961 |
|
|
|
962 |
|
|
no_page_table:
|
963 |
|
|
/*
|
964 |
|
|
* When core dumping an enormous anonymous area that nobody
|
965 |
|
|
* has touched so far, we don't want to allocate page tables.
|
966 |
|
|
*/
|
967 |
|
|
if (flags & FOLL_ANON) {
|
968 |
|
|
page = ZERO_PAGE(0);
|
969 |
|
|
if (flags & FOLL_GET)
|
970 |
|
|
get_page(page);
|
971 |
|
|
BUG_ON(flags & FOLL_WRITE);
|
972 |
|
|
}
|
973 |
|
|
return page;
|
974 |
|
|
}
|
975 |
|
|
|
976 |
|
|
int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
|
977 |
|
|
unsigned long start, int len, int write, int force,
|
978 |
|
|
struct page **pages, struct vm_area_struct **vmas)
|
979 |
|
|
{
|
980 |
|
|
int i;
|
981 |
|
|
unsigned int vm_flags;
|
982 |
|
|
|
983 |
|
|
/*
|
984 |
|
|
* Require read or write permissions.
|
985 |
|
|
* If 'force' is set, we only require the "MAY" flags.
|
986 |
|
|
*/
|
987 |
|
|
vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
|
988 |
|
|
vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
|
989 |
|
|
i = 0;
|
990 |
|
|
|
991 |
|
|
do {
|
992 |
|
|
struct vm_area_struct *vma;
|
993 |
|
|
unsigned int foll_flags;
|
994 |
|
|
|
995 |
|
|
vma = find_extend_vma(mm, start);
|
996 |
|
|
if (!vma && in_gate_area(tsk, start)) {
|
997 |
|
|
unsigned long pg = start & PAGE_MASK;
|
998 |
|
|
struct vm_area_struct *gate_vma = get_gate_vma(tsk);
|
999 |
|
|
pgd_t *pgd;
|
1000 |
|
|
pud_t *pud;
|
1001 |
|
|
pmd_t *pmd;
|
1002 |
|
|
pte_t *pte;
|
1003 |
|
|
if (write) /* user gate pages are read-only */
|
1004 |
|
|
return i ? : -EFAULT;
|
1005 |
|
|
if (pg > TASK_SIZE)
|
1006 |
|
|
pgd = pgd_offset_k(pg);
|
1007 |
|
|
else
|
1008 |
|
|
pgd = pgd_offset_gate(mm, pg);
|
1009 |
|
|
BUG_ON(pgd_none(*pgd));
|
1010 |
|
|
pud = pud_offset(pgd, pg);
|
1011 |
|
|
BUG_ON(pud_none(*pud));
|
1012 |
|
|
pmd = pmd_offset(pud, pg);
|
1013 |
|
|
if (pmd_none(*pmd))
|
1014 |
|
|
return i ? : -EFAULT;
|
1015 |
|
|
pte = pte_offset_map(pmd, pg);
|
1016 |
|
|
if (pte_none(*pte)) {
|
1017 |
|
|
pte_unmap(pte);
|
1018 |
|
|
return i ? : -EFAULT;
|
1019 |
|
|
}
|
1020 |
|
|
if (pages) {
|
1021 |
|
|
struct page *page = vm_normal_page(gate_vma, start, *pte);
|
1022 |
|
|
pages[i] = page;
|
1023 |
|
|
if (page)
|
1024 |
|
|
get_page(page);
|
1025 |
|
|
}
|
1026 |
|
|
pte_unmap(pte);
|
1027 |
|
|
if (vmas)
|
1028 |
|
|
vmas[i] = gate_vma;
|
1029 |
|
|
i++;
|
1030 |
|
|
start += PAGE_SIZE;
|
1031 |
|
|
len--;
|
1032 |
|
|
continue;
|
1033 |
|
|
}
|
1034 |
|
|
|
1035 |
|
|
if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
|
1036 |
|
|
|| !(vm_flags & vma->vm_flags))
|
1037 |
|
|
return i ? : -EFAULT;
|
1038 |
|
|
|
1039 |
|
|
if (is_vm_hugetlb_page(vma)) {
|
1040 |
|
|
i = follow_hugetlb_page(mm, vma, pages, vmas,
|
1041 |
|
|
&start, &len, i, write);
|
1042 |
|
|
continue;
|
1043 |
|
|
}
|
1044 |
|
|
|
1045 |
|
|
foll_flags = FOLL_TOUCH;
|
1046 |
|
|
if (pages)
|
1047 |
|
|
foll_flags |= FOLL_GET;
|
1048 |
|
|
if (!write && !(vma->vm_flags & VM_LOCKED) &&
|
1049 |
|
|
(!vma->vm_ops || (!vma->vm_ops->nopage &&
|
1050 |
|
|
!vma->vm_ops->fault)))
|
1051 |
|
|
foll_flags |= FOLL_ANON;
|
1052 |
|
|
|
1053 |
|
|
do {
|
1054 |
|
|
struct page *page;
|
1055 |
|
|
|
1056 |
|
|
/*
|
1057 |
|
|
* If tsk is ooming, cut off its access to large memory
|
1058 |
|
|
* allocations. It has a pending SIGKILL, but it can't
|
1059 |
|
|
* be processed until returning to user space.
|
1060 |
|
|
*/
|
1061 |
|
|
if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
|
1062 |
|
|
return -ENOMEM;
|
1063 |
|
|
|
1064 |
|
|
if (write)
|
1065 |
|
|
foll_flags |= FOLL_WRITE;
|
1066 |
|
|
|
1067 |
|
|
cond_resched();
|
1068 |
|
|
while (!(page = follow_page(vma, start, foll_flags))) {
|
1069 |
|
|
int ret;
|
1070 |
|
|
ret = handle_mm_fault(mm, vma, start,
|
1071 |
|
|
foll_flags & FOLL_WRITE);
|
1072 |
|
|
if (ret & VM_FAULT_ERROR) {
|
1073 |
|
|
if (ret & VM_FAULT_OOM)
|
1074 |
|
|
return i ? i : -ENOMEM;
|
1075 |
|
|
else if (ret & VM_FAULT_SIGBUS)
|
1076 |
|
|
return i ? i : -EFAULT;
|
1077 |
|
|
BUG();
|
1078 |
|
|
}
|
1079 |
|
|
if (ret & VM_FAULT_MAJOR)
|
1080 |
|
|
tsk->maj_flt++;
|
1081 |
|
|
else
|
1082 |
|
|
tsk->min_flt++;
|
1083 |
|
|
|
1084 |
|
|
/*
|
1085 |
|
|
* The VM_FAULT_WRITE bit tells us that
|
1086 |
|
|
* do_wp_page has broken COW when necessary,
|
1087 |
|
|
* even if maybe_mkwrite decided not to set
|
1088 |
|
|
* pte_write. We can thus safely do subsequent
|
1089 |
|
|
* page lookups as if they were reads.
|
1090 |
|
|
*/
|
1091 |
|
|
if (ret & VM_FAULT_WRITE)
|
1092 |
|
|
foll_flags &= ~FOLL_WRITE;
|
1093 |
|
|
|
1094 |
|
|
cond_resched();
|
1095 |
|
|
}
|
1096 |
|
|
if (pages) {
|
1097 |
|
|
pages[i] = page;
|
1098 |
|
|
|
1099 |
|
|
flush_anon_page(vma, page, start);
|
1100 |
|
|
flush_dcache_page(page);
|
1101 |
|
|
}
|
1102 |
|
|
if (vmas)
|
1103 |
|
|
vmas[i] = vma;
|
1104 |
|
|
i++;
|
1105 |
|
|
start += PAGE_SIZE;
|
1106 |
|
|
len--;
|
1107 |
|
|
} while (len && start < vma->vm_end);
|
1108 |
|
|
} while (len);
|
1109 |
|
|
return i;
|
1110 |
|
|
}
|
1111 |
|
|
EXPORT_SYMBOL(get_user_pages);
|
1112 |
|
|
|
1113 |
|
|
pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
|
1114 |
|
|
{
|
1115 |
|
|
pgd_t * pgd = pgd_offset(mm, addr);
|
1116 |
|
|
pud_t * pud = pud_alloc(mm, pgd, addr);
|
1117 |
|
|
if (pud) {
|
1118 |
|
|
pmd_t * pmd = pmd_alloc(mm, pud, addr);
|
1119 |
|
|
if (pmd)
|
1120 |
|
|
return pte_alloc_map_lock(mm, pmd, addr, ptl);
|
1121 |
|
|
}
|
1122 |
|
|
return NULL;
|
1123 |
|
|
}
|
1124 |
|
|
|
1125 |
|
|
/*
|
1126 |
|
|
* This is the old fallback for page remapping.
|
1127 |
|
|
*
|
1128 |
|
|
* For historical reasons, it only allows reserved pages. Only
|
1129 |
|
|
* old drivers should use this, and they needed to mark their
|
1130 |
|
|
* pages reserved for the old functions anyway.
|
1131 |
|
|
*/
|
1132 |
|
|
static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
|
1133 |
|
|
{
|
1134 |
|
|
int retval;
|
1135 |
|
|
pte_t *pte;
|
1136 |
|
|
spinlock_t *ptl;
|
1137 |
|
|
|
1138 |
|
|
retval = -EINVAL;
|
1139 |
|
|
if (PageAnon(page))
|
1140 |
|
|
goto out;
|
1141 |
|
|
retval = -ENOMEM;
|
1142 |
|
|
flush_dcache_page(page);
|
1143 |
|
|
pte = get_locked_pte(mm, addr, &ptl);
|
1144 |
|
|
if (!pte)
|
1145 |
|
|
goto out;
|
1146 |
|
|
retval = -EBUSY;
|
1147 |
|
|
if (!pte_none(*pte))
|
1148 |
|
|
goto out_unlock;
|
1149 |
|
|
|
1150 |
|
|
/* Ok, finally just insert the thing.. */
|
1151 |
|
|
get_page(page);
|
1152 |
|
|
inc_mm_counter(mm, file_rss);
|
1153 |
|
|
page_add_file_rmap(page);
|
1154 |
|
|
set_pte_at(mm, addr, pte, mk_pte(page, prot));
|
1155 |
|
|
|
1156 |
|
|
retval = 0;
|
1157 |
|
|
out_unlock:
|
1158 |
|
|
pte_unmap_unlock(pte, ptl);
|
1159 |
|
|
out:
|
1160 |
|
|
return retval;
|
1161 |
|
|
}
|
1162 |
|
|
|
1163 |
|
|
/**
|
1164 |
|
|
* vm_insert_page - insert single page into user vma
|
1165 |
|
|
* @vma: user vma to map to
|
1166 |
|
|
* @addr: target user address of this page
|
1167 |
|
|
* @page: source kernel page
|
1168 |
|
|
*
|
1169 |
|
|
* This allows drivers to insert individual pages they've allocated
|
1170 |
|
|
* into a user vma.
|
1171 |
|
|
*
|
1172 |
|
|
* The page has to be a nice clean _individual_ kernel allocation.
|
1173 |
|
|
* If you allocate a compound page, you need to have marked it as
|
1174 |
|
|
* such (__GFP_COMP), or manually just split the page up yourself
|
1175 |
|
|
* (see split_page()).
|
1176 |
|
|
*
|
1177 |
|
|
* NOTE! Traditionally this was done with "remap_pfn_range()" which
|
1178 |
|
|
* took an arbitrary page protection parameter. This doesn't allow
|
1179 |
|
|
* that. Your vma protection will have to be set up correctly, which
|
1180 |
|
|
* means that if you want a shared writable mapping, you'd better
|
1181 |
|
|
* ask for a shared writable mapping!
|
1182 |
|
|
*
|
1183 |
|
|
* The page does not need to be reserved.
|
1184 |
|
|
*/
|
1185 |
|
|
int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
|
1186 |
|
|
{
|
1187 |
|
|
if (addr < vma->vm_start || addr >= vma->vm_end)
|
1188 |
|
|
return -EFAULT;
|
1189 |
|
|
if (!page_count(page))
|
1190 |
|
|
return -EINVAL;
|
1191 |
|
|
vma->vm_flags |= VM_INSERTPAGE;
|
1192 |
|
|
return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
|
1193 |
|
|
}
|
1194 |
|
|
EXPORT_SYMBOL(vm_insert_page);
|
1195 |
|
|
|
1196 |
|
|
/**
|
1197 |
|
|
* vm_insert_pfn - insert single pfn into user vma
|
1198 |
|
|
* @vma: user vma to map to
|
1199 |
|
|
* @addr: target user address of this page
|
1200 |
|
|
* @pfn: source kernel pfn
|
1201 |
|
|
*
|
1202 |
|
|
* Similar to vm_inert_page, this allows drivers to insert individual pages
|
1203 |
|
|
* they've allocated into a user vma. Same comments apply.
|
1204 |
|
|
*
|
1205 |
|
|
* This function should only be called from a vm_ops->fault handler, and
|
1206 |
|
|
* in that case the handler should return NULL.
|
1207 |
|
|
*/
|
1208 |
|
|
int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
|
1209 |
|
|
unsigned long pfn)
|
1210 |
|
|
{
|
1211 |
|
|
struct mm_struct *mm = vma->vm_mm;
|
1212 |
|
|
int retval;
|
1213 |
|
|
pte_t *pte, entry;
|
1214 |
|
|
spinlock_t *ptl;
|
1215 |
|
|
|
1216 |
|
|
BUG_ON(!(vma->vm_flags & VM_PFNMAP));
|
1217 |
|
|
BUG_ON(is_cow_mapping(vma->vm_flags));
|
1218 |
|
|
|
1219 |
|
|
retval = -ENOMEM;
|
1220 |
|
|
pte = get_locked_pte(mm, addr, &ptl);
|
1221 |
|
|
if (!pte)
|
1222 |
|
|
goto out;
|
1223 |
|
|
retval = -EBUSY;
|
1224 |
|
|
if (!pte_none(*pte))
|
1225 |
|
|
goto out_unlock;
|
1226 |
|
|
|
1227 |
|
|
/* Ok, finally just insert the thing.. */
|
1228 |
|
|
entry = pfn_pte(pfn, vma->vm_page_prot);
|
1229 |
|
|
set_pte_at(mm, addr, pte, entry);
|
1230 |
|
|
update_mmu_cache(vma, addr, entry);
|
1231 |
|
|
|
1232 |
|
|
retval = 0;
|
1233 |
|
|
out_unlock:
|
1234 |
|
|
pte_unmap_unlock(pte, ptl);
|
1235 |
|
|
|
1236 |
|
|
out:
|
1237 |
|
|
return retval;
|
1238 |
|
|
}
|
1239 |
|
|
EXPORT_SYMBOL(vm_insert_pfn);
|
1240 |
|
|
|
1241 |
|
|
/*
|
1242 |
|
|
* maps a range of physical memory into the requested pages. the old
|
1243 |
|
|
* mappings are removed. any references to nonexistent pages results
|
1244 |
|
|
* in null mappings (currently treated as "copy-on-access")
|
1245 |
|
|
*/
|
1246 |
|
|
static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
|
1247 |
|
|
unsigned long addr, unsigned long end,
|
1248 |
|
|
unsigned long pfn, pgprot_t prot)
|
1249 |
|
|
{
|
1250 |
|
|
pte_t *pte;
|
1251 |
|
|
spinlock_t *ptl;
|
1252 |
|
|
|
1253 |
|
|
pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
|
1254 |
|
|
if (!pte)
|
1255 |
|
|
return -ENOMEM;
|
1256 |
|
|
arch_enter_lazy_mmu_mode();
|
1257 |
|
|
do {
|
1258 |
|
|
BUG_ON(!pte_none(*pte));
|
1259 |
|
|
set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
|
1260 |
|
|
pfn++;
|
1261 |
|
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
1262 |
|
|
arch_leave_lazy_mmu_mode();
|
1263 |
|
|
pte_unmap_unlock(pte - 1, ptl);
|
1264 |
|
|
return 0;
|
1265 |
|
|
}
|
1266 |
|
|
|
1267 |
|
|
static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
|
1268 |
|
|
unsigned long addr, unsigned long end,
|
1269 |
|
|
unsigned long pfn, pgprot_t prot)
|
1270 |
|
|
{
|
1271 |
|
|
pmd_t *pmd;
|
1272 |
|
|
unsigned long next;
|
1273 |
|
|
|
1274 |
|
|
pfn -= addr >> PAGE_SHIFT;
|
1275 |
|
|
pmd = pmd_alloc(mm, pud, addr);
|
1276 |
|
|
if (!pmd)
|
1277 |
|
|
return -ENOMEM;
|
1278 |
|
|
do {
|
1279 |
|
|
next = pmd_addr_end(addr, end);
|
1280 |
|
|
if (remap_pte_range(mm, pmd, addr, next,
|
1281 |
|
|
pfn + (addr >> PAGE_SHIFT), prot))
|
1282 |
|
|
return -ENOMEM;
|
1283 |
|
|
} while (pmd++, addr = next, addr != end);
|
1284 |
|
|
return 0;
|
1285 |
|
|
}
|
1286 |
|
|
|
1287 |
|
|
static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
|
1288 |
|
|
unsigned long addr, unsigned long end,
|
1289 |
|
|
unsigned long pfn, pgprot_t prot)
|
1290 |
|
|
{
|
1291 |
|
|
pud_t *pud;
|
1292 |
|
|
unsigned long next;
|
1293 |
|
|
|
1294 |
|
|
pfn -= addr >> PAGE_SHIFT;
|
1295 |
|
|
pud = pud_alloc(mm, pgd, addr);
|
1296 |
|
|
if (!pud)
|
1297 |
|
|
return -ENOMEM;
|
1298 |
|
|
do {
|
1299 |
|
|
next = pud_addr_end(addr, end);
|
1300 |
|
|
if (remap_pmd_range(mm, pud, addr, next,
|
1301 |
|
|
pfn + (addr >> PAGE_SHIFT), prot))
|
1302 |
|
|
return -ENOMEM;
|
1303 |
|
|
} while (pud++, addr = next, addr != end);
|
1304 |
|
|
return 0;
|
1305 |
|
|
}
|
1306 |
|
|
|
1307 |
|
|
/**
|
1308 |
|
|
* remap_pfn_range - remap kernel memory to userspace
|
1309 |
|
|
* @vma: user vma to map to
|
1310 |
|
|
* @addr: target user address to start at
|
1311 |
|
|
* @pfn: physical address of kernel memory
|
1312 |
|
|
* @size: size of map area
|
1313 |
|
|
* @prot: page protection flags for this mapping
|
1314 |
|
|
*
|
1315 |
|
|
* Note: this is only safe if the mm semaphore is held when called.
|
1316 |
|
|
*/
|
1317 |
|
|
int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
|
1318 |
|
|
unsigned long pfn, unsigned long size, pgprot_t prot)
|
1319 |
|
|
{
|
1320 |
|
|
pgd_t *pgd;
|
1321 |
|
|
unsigned long next;
|
1322 |
|
|
unsigned long end = addr + PAGE_ALIGN(size);
|
1323 |
|
|
struct mm_struct *mm = vma->vm_mm;
|
1324 |
|
|
int err;
|
1325 |
|
|
|
1326 |
|
|
/*
|
1327 |
|
|
* Physically remapped pages are special. Tell the
|
1328 |
|
|
* rest of the world about it:
|
1329 |
|
|
* VM_IO tells people not to look at these pages
|
1330 |
|
|
* (accesses can have side effects).
|
1331 |
|
|
* VM_RESERVED is specified all over the place, because
|
1332 |
|
|
* in 2.4 it kept swapout's vma scan off this vma; but
|
1333 |
|
|
* in 2.6 the LRU scan won't even find its pages, so this
|
1334 |
|
|
* flag means no more than count its pages in reserved_vm,
|
1335 |
|
|
* and omit it from core dump, even when VM_IO turned off.
|
1336 |
|
|
* VM_PFNMAP tells the core MM that the base pages are just
|
1337 |
|
|
* raw PFN mappings, and do not have a "struct page" associated
|
1338 |
|
|
* with them.
|
1339 |
|
|
*
|
1340 |
|
|
* There's a horrible special case to handle copy-on-write
|
1341 |
|
|
* behaviour that some programs depend on. We mark the "original"
|
1342 |
|
|
* un-COW'ed pages by matching them up with "vma->vm_pgoff".
|
1343 |
|
|
*/
|
1344 |
|
|
if (is_cow_mapping(vma->vm_flags)) {
|
1345 |
|
|
if (addr != vma->vm_start || end != vma->vm_end)
|
1346 |
|
|
return -EINVAL;
|
1347 |
|
|
vma->vm_pgoff = pfn;
|
1348 |
|
|
}
|
1349 |
|
|
|
1350 |
|
|
vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
|
1351 |
|
|
|
1352 |
|
|
BUG_ON(addr >= end);
|
1353 |
|
|
pfn -= addr >> PAGE_SHIFT;
|
1354 |
|
|
pgd = pgd_offset(mm, addr);
|
1355 |
|
|
flush_cache_range(vma, addr, end);
|
1356 |
|
|
do {
|
1357 |
|
|
next = pgd_addr_end(addr, end);
|
1358 |
|
|
err = remap_pud_range(mm, pgd, addr, next,
|
1359 |
|
|
pfn + (addr >> PAGE_SHIFT), prot);
|
1360 |
|
|
if (err)
|
1361 |
|
|
break;
|
1362 |
|
|
} while (pgd++, addr = next, addr != end);
|
1363 |
|
|
return err;
|
1364 |
|
|
}
|
1365 |
|
|
EXPORT_SYMBOL(remap_pfn_range);
|
1366 |
|
|
|
1367 |
|
|
static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
|
1368 |
|
|
unsigned long addr, unsigned long end,
|
1369 |
|
|
pte_fn_t fn, void *data)
|
1370 |
|
|
{
|
1371 |
|
|
pte_t *pte;
|
1372 |
|
|
int err;
|
1373 |
|
|
struct page *pmd_page;
|
1374 |
|
|
spinlock_t *uninitialized_var(ptl);
|
1375 |
|
|
|
1376 |
|
|
pte = (mm == &init_mm) ?
|
1377 |
|
|
pte_alloc_kernel(pmd, addr) :
|
1378 |
|
|
pte_alloc_map_lock(mm, pmd, addr, &ptl);
|
1379 |
|
|
if (!pte)
|
1380 |
|
|
return -ENOMEM;
|
1381 |
|
|
|
1382 |
|
|
BUG_ON(pmd_huge(*pmd));
|
1383 |
|
|
|
1384 |
|
|
pmd_page = pmd_page(*pmd);
|
1385 |
|
|
|
1386 |
|
|
do {
|
1387 |
|
|
err = fn(pte, pmd_page, addr, data);
|
1388 |
|
|
if (err)
|
1389 |
|
|
break;
|
1390 |
|
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
1391 |
|
|
|
1392 |
|
|
if (mm != &init_mm)
|
1393 |
|
|
pte_unmap_unlock(pte-1, ptl);
|
1394 |
|
|
return err;
|
1395 |
|
|
}
|
1396 |
|
|
|
1397 |
|
|
static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
|
1398 |
|
|
unsigned long addr, unsigned long end,
|
1399 |
|
|
pte_fn_t fn, void *data)
|
1400 |
|
|
{
|
1401 |
|
|
pmd_t *pmd;
|
1402 |
|
|
unsigned long next;
|
1403 |
|
|
int err;
|
1404 |
|
|
|
1405 |
|
|
pmd = pmd_alloc(mm, pud, addr);
|
1406 |
|
|
if (!pmd)
|
1407 |
|
|
return -ENOMEM;
|
1408 |
|
|
do {
|
1409 |
|
|
next = pmd_addr_end(addr, end);
|
1410 |
|
|
err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
|
1411 |
|
|
if (err)
|
1412 |
|
|
break;
|
1413 |
|
|
} while (pmd++, addr = next, addr != end);
|
1414 |
|
|
return err;
|
1415 |
|
|
}
|
1416 |
|
|
|
1417 |
|
|
static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
|
1418 |
|
|
unsigned long addr, unsigned long end,
|
1419 |
|
|
pte_fn_t fn, void *data)
|
1420 |
|
|
{
|
1421 |
|
|
pud_t *pud;
|
1422 |
|
|
unsigned long next;
|
1423 |
|
|
int err;
|
1424 |
|
|
|
1425 |
|
|
pud = pud_alloc(mm, pgd, addr);
|
1426 |
|
|
if (!pud)
|
1427 |
|
|
return -ENOMEM;
|
1428 |
|
|
do {
|
1429 |
|
|
next = pud_addr_end(addr, end);
|
1430 |
|
|
err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
|
1431 |
|
|
if (err)
|
1432 |
|
|
break;
|
1433 |
|
|
} while (pud++, addr = next, addr != end);
|
1434 |
|
|
return err;
|
1435 |
|
|
}
|
1436 |
|
|
|
1437 |
|
|
/*
|
1438 |
|
|
* Scan a region of virtual memory, filling in page tables as necessary
|
1439 |
|
|
* and calling a provided function on each leaf page table.
|
1440 |
|
|
*/
|
1441 |
|
|
int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
|
1442 |
|
|
unsigned long size, pte_fn_t fn, void *data)
|
1443 |
|
|
{
|
1444 |
|
|
pgd_t *pgd;
|
1445 |
|
|
unsigned long next;
|
1446 |
|
|
unsigned long end = addr + size;
|
1447 |
|
|
int err;
|
1448 |
|
|
|
1449 |
|
|
BUG_ON(addr >= end);
|
1450 |
|
|
pgd = pgd_offset(mm, addr);
|
1451 |
|
|
do {
|
1452 |
|
|
next = pgd_addr_end(addr, end);
|
1453 |
|
|
err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
|
1454 |
|
|
if (err)
|
1455 |
|
|
break;
|
1456 |
|
|
} while (pgd++, addr = next, addr != end);
|
1457 |
|
|
return err;
|
1458 |
|
|
}
|
1459 |
|
|
EXPORT_SYMBOL_GPL(apply_to_page_range);
|
1460 |
|
|
|
1461 |
|
|
/*
|
1462 |
|
|
* handle_pte_fault chooses page fault handler according to an entry
|
1463 |
|
|
* which was read non-atomically. Before making any commitment, on
|
1464 |
|
|
* those architectures or configurations (e.g. i386 with PAE) which
|
1465 |
|
|
* might give a mix of unmatched parts, do_swap_page and do_file_page
|
1466 |
|
|
* must check under lock before unmapping the pte and proceeding
|
1467 |
|
|
* (but do_wp_page is only called after already making such a check;
|
1468 |
|
|
* and do_anonymous_page and do_no_page can safely check later on).
|
1469 |
|
|
*/
|
1470 |
|
|
static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
|
1471 |
|
|
pte_t *page_table, pte_t orig_pte)
|
1472 |
|
|
{
|
1473 |
|
|
int same = 1;
|
1474 |
|
|
#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
|
1475 |
|
|
if (sizeof(pte_t) > sizeof(unsigned long)) {
|
1476 |
|
|
spinlock_t *ptl = pte_lockptr(mm, pmd);
|
1477 |
|
|
spin_lock(ptl);
|
1478 |
|
|
same = pte_same(*page_table, orig_pte);
|
1479 |
|
|
spin_unlock(ptl);
|
1480 |
|
|
}
|
1481 |
|
|
#endif
|
1482 |
|
|
pte_unmap(page_table);
|
1483 |
|
|
return same;
|
1484 |
|
|
}
|
1485 |
|
|
|
1486 |
|
|
/*
|
1487 |
|
|
* Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
|
1488 |
|
|
* servicing faults for write access. In the normal case, do always want
|
1489 |
|
|
* pte_mkwrite. But get_user_pages can cause write faults for mappings
|
1490 |
|
|
* that do not have writing enabled, when used by access_process_vm.
|
1491 |
|
|
*/
|
1492 |
|
|
static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
|
1493 |
|
|
{
|
1494 |
|
|
if (likely(vma->vm_flags & VM_WRITE))
|
1495 |
|
|
pte = pte_mkwrite(pte);
|
1496 |
|
|
return pte;
|
1497 |
|
|
}
|
1498 |
|
|
|
1499 |
|
|
static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
|
1500 |
|
|
{
|
1501 |
|
|
/*
|
1502 |
|
|
* If the source page was a PFN mapping, we don't have
|
1503 |
|
|
* a "struct page" for it. We do a best-effort copy by
|
1504 |
|
|
* just copying from the original user address. If that
|
1505 |
|
|
* fails, we just zero-fill it. Live with it.
|
1506 |
|
|
*/
|
1507 |
|
|
if (unlikely(!src)) {
|
1508 |
|
|
void *kaddr = kmap_atomic(dst, KM_USER0);
|
1509 |
|
|
void __user *uaddr = (void __user *)(va & PAGE_MASK);
|
1510 |
|
|
|
1511 |
|
|
/*
|
1512 |
|
|
* This really shouldn't fail, because the page is there
|
1513 |
|
|
* in the page tables. But it might just be unreadable,
|
1514 |
|
|
* in which case we just give up and fill the result with
|
1515 |
|
|
* zeroes.
|
1516 |
|
|
*/
|
1517 |
|
|
if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
|
1518 |
|
|
memset(kaddr, 0, PAGE_SIZE);
|
1519 |
|
|
kunmap_atomic(kaddr, KM_USER0);
|
1520 |
|
|
flush_dcache_page(dst);
|
1521 |
|
|
return;
|
1522 |
|
|
|
1523 |
|
|
}
|
1524 |
|
|
copy_user_highpage(dst, src, va, vma);
|
1525 |
|
|
}
|
1526 |
|
|
|
1527 |
|
|
/*
|
1528 |
|
|
* This routine handles present pages, when users try to write
|
1529 |
|
|
* to a shared page. It is done by copying the page to a new address
|
1530 |
|
|
* and decrementing the shared-page counter for the old page.
|
1531 |
|
|
*
|
1532 |
|
|
* Note that this routine assumes that the protection checks have been
|
1533 |
|
|
* done by the caller (the low-level page fault routine in most cases).
|
1534 |
|
|
* Thus we can safely just mark it writable once we've done any necessary
|
1535 |
|
|
* COW.
|
1536 |
|
|
*
|
1537 |
|
|
* We also mark the page dirty at this point even though the page will
|
1538 |
|
|
* change only once the write actually happens. This avoids a few races,
|
1539 |
|
|
* and potentially makes it more efficient.
|
1540 |
|
|
*
|
1541 |
|
|
* We enter with non-exclusive mmap_sem (to exclude vma changes,
|
1542 |
|
|
* but allow concurrent faults), with pte both mapped and locked.
|
1543 |
|
|
* We return with mmap_sem still held, but pte unmapped and unlocked.
|
1544 |
|
|
*/
|
1545 |
|
|
static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
|
1546 |
|
|
unsigned long address, pte_t *page_table, pmd_t *pmd,
|
1547 |
|
|
spinlock_t *ptl, pte_t orig_pte)
|
1548 |
|
|
{
|
1549 |
|
|
struct page *old_page, *new_page;
|
1550 |
|
|
pte_t entry;
|
1551 |
|
|
int reuse = 0, ret = 0;
|
1552 |
|
|
int page_mkwrite = 0;
|
1553 |
|
|
struct page *dirty_page = NULL;
|
1554 |
|
|
|
1555 |
|
|
old_page = vm_normal_page(vma, address, orig_pte);
|
1556 |
|
|
if (!old_page)
|
1557 |
|
|
goto gotten;
|
1558 |
|
|
|
1559 |
|
|
/*
|
1560 |
|
|
* Take out anonymous pages first, anonymous shared vmas are
|
1561 |
|
|
* not dirty accountable.
|
1562 |
|
|
*/
|
1563 |
|
|
if (PageAnon(old_page)) {
|
1564 |
|
|
if (!TestSetPageLocked(old_page)) {
|
1565 |
|
|
reuse = can_share_swap_page(old_page);
|
1566 |
|
|
unlock_page(old_page);
|
1567 |
|
|
}
|
1568 |
|
|
} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
|
1569 |
|
|
(VM_WRITE|VM_SHARED))) {
|
1570 |
|
|
/*
|
1571 |
|
|
* Only catch write-faults on shared writable pages,
|
1572 |
|
|
* read-only shared pages can get COWed by
|
1573 |
|
|
* get_user_pages(.write=1, .force=1).
|
1574 |
|
|
*/
|
1575 |
|
|
if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
|
1576 |
|
|
/*
|
1577 |
|
|
* Notify the address space that the page is about to
|
1578 |
|
|
* become writable so that it can prohibit this or wait
|
1579 |
|
|
* for the page to get into an appropriate state.
|
1580 |
|
|
*
|
1581 |
|
|
* We do this without the lock held, so that it can
|
1582 |
|
|
* sleep if it needs to.
|
1583 |
|
|
*/
|
1584 |
|
|
page_cache_get(old_page);
|
1585 |
|
|
pte_unmap_unlock(page_table, ptl);
|
1586 |
|
|
|
1587 |
|
|
if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
|
1588 |
|
|
goto unwritable_page;
|
1589 |
|
|
|
1590 |
|
|
/*
|
1591 |
|
|
* Since we dropped the lock we need to revalidate
|
1592 |
|
|
* the PTE as someone else may have changed it. If
|
1593 |
|
|
* they did, we just return, as we can count on the
|
1594 |
|
|
* MMU to tell us if they didn't also make it writable.
|
1595 |
|
|
*/
|
1596 |
|
|
page_table = pte_offset_map_lock(mm, pmd, address,
|
1597 |
|
|
&ptl);
|
1598 |
|
|
page_cache_release(old_page);
|
1599 |
|
|
if (!pte_same(*page_table, orig_pte))
|
1600 |
|
|
goto unlock;
|
1601 |
|
|
|
1602 |
|
|
page_mkwrite = 1;
|
1603 |
|
|
}
|
1604 |
|
|
dirty_page = old_page;
|
1605 |
|
|
get_page(dirty_page);
|
1606 |
|
|
reuse = 1;
|
1607 |
|
|
}
|
1608 |
|
|
|
1609 |
|
|
if (reuse) {
|
1610 |
|
|
flush_cache_page(vma, address, pte_pfn(orig_pte));
|
1611 |
|
|
entry = pte_mkyoung(orig_pte);
|
1612 |
|
|
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
|
1613 |
|
|
if (ptep_set_access_flags(vma, address, page_table, entry,1))
|
1614 |
|
|
update_mmu_cache(vma, address, entry);
|
1615 |
|
|
ret |= VM_FAULT_WRITE;
|
1616 |
|
|
goto unlock;
|
1617 |
|
|
}
|
1618 |
|
|
|
1619 |
|
|
/*
|
1620 |
|
|
* Ok, we need to copy. Oh, well..
|
1621 |
|
|
*/
|
1622 |
|
|
page_cache_get(old_page);
|
1623 |
|
|
gotten:
|
1624 |
|
|
pte_unmap_unlock(page_table, ptl);
|
1625 |
|
|
|
1626 |
|
|
if (unlikely(anon_vma_prepare(vma)))
|
1627 |
|
|
goto oom;
|
1628 |
|
|
VM_BUG_ON(old_page == ZERO_PAGE(0));
|
1629 |
|
|
new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
|
1630 |
|
|
if (!new_page)
|
1631 |
|
|
goto oom;
|
1632 |
|
|
cow_user_page(new_page, old_page, address, vma);
|
1633 |
|
|
|
1634 |
|
|
/*
|
1635 |
|
|
* Re-check the pte - we dropped the lock
|
1636 |
|
|
*/
|
1637 |
|
|
page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
|
1638 |
|
|
if (likely(pte_same(*page_table, orig_pte))) {
|
1639 |
|
|
if (old_page) {
|
1640 |
|
|
page_remove_rmap(old_page, vma);
|
1641 |
|
|
if (!PageAnon(old_page)) {
|
1642 |
|
|
dec_mm_counter(mm, file_rss);
|
1643 |
|
|
inc_mm_counter(mm, anon_rss);
|
1644 |
|
|
}
|
1645 |
|
|
} else
|
1646 |
|
|
inc_mm_counter(mm, anon_rss);
|
1647 |
|
|
flush_cache_page(vma, address, pte_pfn(orig_pte));
|
1648 |
|
|
entry = mk_pte(new_page, vma->vm_page_prot);
|
1649 |
|
|
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
|
1650 |
|
|
/*
|
1651 |
|
|
* Clear the pte entry and flush it first, before updating the
|
1652 |
|
|
* pte with the new entry. This will avoid a race condition
|
1653 |
|
|
* seen in the presence of one thread doing SMC and another
|
1654 |
|
|
* thread doing COW.
|
1655 |
|
|
*/
|
1656 |
|
|
ptep_clear_flush(vma, address, page_table);
|
1657 |
|
|
set_pte_at(mm, address, page_table, entry);
|
1658 |
|
|
update_mmu_cache(vma, address, entry);
|
1659 |
|
|
lru_cache_add_active(new_page);
|
1660 |
|
|
page_add_new_anon_rmap(new_page, vma, address);
|
1661 |
|
|
|
1662 |
|
|
/* Free the old page.. */
|
1663 |
|
|
new_page = old_page;
|
1664 |
|
|
ret |= VM_FAULT_WRITE;
|
1665 |
|
|
}
|
1666 |
|
|
if (new_page)
|
1667 |
|
|
page_cache_release(new_page);
|
1668 |
|
|
if (old_page)
|
1669 |
|
|
page_cache_release(old_page);
|
1670 |
|
|
unlock:
|
1671 |
|
|
pte_unmap_unlock(page_table, ptl);
|
1672 |
|
|
if (dirty_page) {
|
1673 |
|
|
if (vma->vm_file)
|
1674 |
|
|
file_update_time(vma->vm_file);
|
1675 |
|
|
|
1676 |
|
|
/*
|
1677 |
|
|
* Yes, Virginia, this is actually required to prevent a race
|
1678 |
|
|
* with clear_page_dirty_for_io() from clearing the page dirty
|
1679 |
|
|
* bit after it clear all dirty ptes, but before a racing
|
1680 |
|
|
* do_wp_page installs a dirty pte.
|
1681 |
|
|
*
|
1682 |
|
|
* do_no_page is protected similarly.
|
1683 |
|
|
*/
|
1684 |
|
|
wait_on_page_locked(dirty_page);
|
1685 |
|
|
set_page_dirty_balance(dirty_page, page_mkwrite);
|
1686 |
|
|
put_page(dirty_page);
|
1687 |
|
|
}
|
1688 |
|
|
return ret;
|
1689 |
|
|
oom:
|
1690 |
|
|
if (old_page)
|
1691 |
|
|
page_cache_release(old_page);
|
1692 |
|
|
return VM_FAULT_OOM;
|
1693 |
|
|
|
1694 |
|
|
unwritable_page:
|
1695 |
|
|
page_cache_release(old_page);
|
1696 |
|
|
return VM_FAULT_SIGBUS;
|
1697 |
|
|
}
|
1698 |
|
|
|
1699 |
|
|
/*
|
1700 |
|
|
* Helper functions for unmap_mapping_range().
|
1701 |
|
|
*
|
1702 |
|
|
* __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
|
1703 |
|
|
*
|
1704 |
|
|
* We have to restart searching the prio_tree whenever we drop the lock,
|
1705 |
|
|
* since the iterator is only valid while the lock is held, and anyway
|
1706 |
|
|
* a later vma might be split and reinserted earlier while lock dropped.
|
1707 |
|
|
*
|
1708 |
|
|
* The list of nonlinear vmas could be handled more efficiently, using
|
1709 |
|
|
* a placeholder, but handle it in the same way until a need is shown.
|
1710 |
|
|
* It is important to search the prio_tree before nonlinear list: a vma
|
1711 |
|
|
* may become nonlinear and be shifted from prio_tree to nonlinear list
|
1712 |
|
|
* while the lock is dropped; but never shifted from list to prio_tree.
|
1713 |
|
|
*
|
1714 |
|
|
* In order to make forward progress despite restarting the search,
|
1715 |
|
|
* vm_truncate_count is used to mark a vma as now dealt with, so we can
|
1716 |
|
|
* quickly skip it next time around. Since the prio_tree search only
|
1717 |
|
|
* shows us those vmas affected by unmapping the range in question, we
|
1718 |
|
|
* can't efficiently keep all vmas in step with mapping->truncate_count:
|
1719 |
|
|
* so instead reset them all whenever it wraps back to 0 (then go to 1).
|
1720 |
|
|
* mapping->truncate_count and vma->vm_truncate_count are protected by
|
1721 |
|
|
* i_mmap_lock.
|
1722 |
|
|
*
|
1723 |
|
|
* In order to make forward progress despite repeatedly restarting some
|
1724 |
|
|
* large vma, note the restart_addr from unmap_vmas when it breaks out:
|
1725 |
|
|
* and restart from that address when we reach that vma again. It might
|
1726 |
|
|
* have been split or merged, shrunk or extended, but never shifted: so
|
1727 |
|
|
* restart_addr remains valid so long as it remains in the vma's range.
|
1728 |
|
|
* unmap_mapping_range forces truncate_count to leap over page-aligned
|
1729 |
|
|
* values so we can save vma's restart_addr in its truncate_count field.
|
1730 |
|
|
*/
|
1731 |
|
|
#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
|
1732 |
|
|
|
1733 |
|
|
static void reset_vma_truncate_counts(struct address_space *mapping)
|
1734 |
|
|
{
|
1735 |
|
|
struct vm_area_struct *vma;
|
1736 |
|
|
struct prio_tree_iter iter;
|
1737 |
|
|
|
1738 |
|
|
vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
|
1739 |
|
|
vma->vm_truncate_count = 0;
|
1740 |
|
|
list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
|
1741 |
|
|
vma->vm_truncate_count = 0;
|
1742 |
|
|
}
|
1743 |
|
|
|
1744 |
|
|
static int unmap_mapping_range_vma(struct vm_area_struct *vma,
|
1745 |
|
|
unsigned long start_addr, unsigned long end_addr,
|
1746 |
|
|
struct zap_details *details)
|
1747 |
|
|
{
|
1748 |
|
|
unsigned long restart_addr;
|
1749 |
|
|
int need_break;
|
1750 |
|
|
|
1751 |
|
|
/*
|
1752 |
|
|
* files that support invalidating or truncating portions of the
|
1753 |
|
|
* file from under mmaped areas must have their ->fault function
|
1754 |
|
|
* return a locked page (and set VM_FAULT_LOCKED in the return).
|
1755 |
|
|
* This provides synchronisation against concurrent unmapping here.
|
1756 |
|
|
*/
|
1757 |
|
|
|
1758 |
|
|
again:
|
1759 |
|
|
restart_addr = vma->vm_truncate_count;
|
1760 |
|
|
if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
|
1761 |
|
|
start_addr = restart_addr;
|
1762 |
|
|
if (start_addr >= end_addr) {
|
1763 |
|
|
/* Top of vma has been split off since last time */
|
1764 |
|
|
vma->vm_truncate_count = details->truncate_count;
|
1765 |
|
|
return 0;
|
1766 |
|
|
}
|
1767 |
|
|
}
|
1768 |
|
|
|
1769 |
|
|
restart_addr = zap_page_range(vma, start_addr,
|
1770 |
|
|
end_addr - start_addr, details);
|
1771 |
|
|
need_break = need_resched() ||
|
1772 |
|
|
need_lockbreak(details->i_mmap_lock);
|
1773 |
|
|
|
1774 |
|
|
if (restart_addr >= end_addr) {
|
1775 |
|
|
/* We have now completed this vma: mark it so */
|
1776 |
|
|
vma->vm_truncate_count = details->truncate_count;
|
1777 |
|
|
if (!need_break)
|
1778 |
|
|
return 0;
|
1779 |
|
|
} else {
|
1780 |
|
|
/* Note restart_addr in vma's truncate_count field */
|
1781 |
|
|
vma->vm_truncate_count = restart_addr;
|
1782 |
|
|
if (!need_break)
|
1783 |
|
|
goto again;
|
1784 |
|
|
}
|
1785 |
|
|
|
1786 |
|
|
spin_unlock(details->i_mmap_lock);
|
1787 |
|
|
cond_resched();
|
1788 |
|
|
spin_lock(details->i_mmap_lock);
|
1789 |
|
|
return -EINTR;
|
1790 |
|
|
}
|
1791 |
|
|
|
1792 |
|
|
static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
|
1793 |
|
|
struct zap_details *details)
|
1794 |
|
|
{
|
1795 |
|
|
struct vm_area_struct *vma;
|
1796 |
|
|
struct prio_tree_iter iter;
|
1797 |
|
|
pgoff_t vba, vea, zba, zea;
|
1798 |
|
|
|
1799 |
|
|
restart:
|
1800 |
|
|
vma_prio_tree_foreach(vma, &iter, root,
|
1801 |
|
|
details->first_index, details->last_index) {
|
1802 |
|
|
/* Skip quickly over those we have already dealt with */
|
1803 |
|
|
if (vma->vm_truncate_count == details->truncate_count)
|
1804 |
|
|
continue;
|
1805 |
|
|
|
1806 |
|
|
vba = vma->vm_pgoff;
|
1807 |
|
|
vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
|
1808 |
|
|
/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
|
1809 |
|
|
zba = details->first_index;
|
1810 |
|
|
if (zba < vba)
|
1811 |
|
|
zba = vba;
|
1812 |
|
|
zea = details->last_index;
|
1813 |
|
|
if (zea > vea)
|
1814 |
|
|
zea = vea;
|
1815 |
|
|
|
1816 |
|
|
if (unmap_mapping_range_vma(vma,
|
1817 |
|
|
((zba - vba) << PAGE_SHIFT) + vma->vm_start,
|
1818 |
|
|
((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
|
1819 |
|
|
details) < 0)
|
1820 |
|
|
goto restart;
|
1821 |
|
|
}
|
1822 |
|
|
}
|
1823 |
|
|
|
1824 |
|
|
static inline void unmap_mapping_range_list(struct list_head *head,
|
1825 |
|
|
struct zap_details *details)
|
1826 |
|
|
{
|
1827 |
|
|
struct vm_area_struct *vma;
|
1828 |
|
|
|
1829 |
|
|
/*
|
1830 |
|
|
* In nonlinear VMAs there is no correspondence between virtual address
|
1831 |
|
|
* offset and file offset. So we must perform an exhaustive search
|
1832 |
|
|
* across *all* the pages in each nonlinear VMA, not just the pages
|
1833 |
|
|
* whose virtual address lies outside the file truncation point.
|
1834 |
|
|
*/
|
1835 |
|
|
restart:
|
1836 |
|
|
list_for_each_entry(vma, head, shared.vm_set.list) {
|
1837 |
|
|
/* Skip quickly over those we have already dealt with */
|
1838 |
|
|
if (vma->vm_truncate_count == details->truncate_count)
|
1839 |
|
|
continue;
|
1840 |
|
|
details->nonlinear_vma = vma;
|
1841 |
|
|
if (unmap_mapping_range_vma(vma, vma->vm_start,
|
1842 |
|
|
vma->vm_end, details) < 0)
|
1843 |
|
|
goto restart;
|
1844 |
|
|
}
|
1845 |
|
|
}
|
1846 |
|
|
|
1847 |
|
|
/**
|
1848 |
|
|
* unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
|
1849 |
|
|
* @mapping: the address space containing mmaps to be unmapped.
|
1850 |
|
|
* @holebegin: byte in first page to unmap, relative to the start of
|
1851 |
|
|
* the underlying file. This will be rounded down to a PAGE_SIZE
|
1852 |
|
|
* boundary. Note that this is different from vmtruncate(), which
|
1853 |
|
|
* must keep the partial page. In contrast, we must get rid of
|
1854 |
|
|
* partial pages.
|
1855 |
|
|
* @holelen: size of prospective hole in bytes. This will be rounded
|
1856 |
|
|
* up to a PAGE_SIZE boundary. A holelen of zero truncates to the
|
1857 |
|
|
* end of the file.
|
1858 |
|
|
* @even_cows: 1 when truncating a file, unmap even private COWed pages;
|
1859 |
|
|
* but 0 when invalidating pagecache, don't throw away private data.
|
1860 |
|
|
*/
|
1861 |
|
|
void unmap_mapping_range(struct address_space *mapping,
|
1862 |
|
|
loff_t const holebegin, loff_t const holelen, int even_cows)
|
1863 |
|
|
{
|
1864 |
|
|
struct zap_details details;
|
1865 |
|
|
pgoff_t hba = holebegin >> PAGE_SHIFT;
|
1866 |
|
|
pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
1867 |
|
|
|
1868 |
|
|
/* Check for overflow. */
|
1869 |
|
|
if (sizeof(holelen) > sizeof(hlen)) {
|
1870 |
|
|
long long holeend =
|
1871 |
|
|
(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
1872 |
|
|
if (holeend & ~(long long)ULONG_MAX)
|
1873 |
|
|
hlen = ULONG_MAX - hba + 1;
|
1874 |
|
|
}
|
1875 |
|
|
|
1876 |
|
|
details.check_mapping = even_cows? NULL: mapping;
|
1877 |
|
|
details.nonlinear_vma = NULL;
|
1878 |
|
|
details.first_index = hba;
|
1879 |
|
|
details.last_index = hba + hlen - 1;
|
1880 |
|
|
if (details.last_index < details.first_index)
|
1881 |
|
|
details.last_index = ULONG_MAX;
|
1882 |
|
|
details.i_mmap_lock = &mapping->i_mmap_lock;
|
1883 |
|
|
|
1884 |
|
|
spin_lock(&mapping->i_mmap_lock);
|
1885 |
|
|
|
1886 |
|
|
/* Protect against endless unmapping loops */
|
1887 |
|
|
mapping->truncate_count++;
|
1888 |
|
|
if (unlikely(is_restart_addr(mapping->truncate_count))) {
|
1889 |
|
|
if (mapping->truncate_count == 0)
|
1890 |
|
|
reset_vma_truncate_counts(mapping);
|
1891 |
|
|
mapping->truncate_count++;
|
1892 |
|
|
}
|
1893 |
|
|
details.truncate_count = mapping->truncate_count;
|
1894 |
|
|
|
1895 |
|
|
if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
|
1896 |
|
|
unmap_mapping_range_tree(&mapping->i_mmap, &details);
|
1897 |
|
|
if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
|
1898 |
|
|
unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
|
1899 |
|
|
spin_unlock(&mapping->i_mmap_lock);
|
1900 |
|
|
}
|
1901 |
|
|
EXPORT_SYMBOL(unmap_mapping_range);
|
1902 |
|
|
|
1903 |
|
|
/**
|
1904 |
|
|
* vmtruncate - unmap mappings "freed" by truncate() syscall
|
1905 |
|
|
* @inode: inode of the file used
|
1906 |
|
|
* @offset: file offset to start truncating
|
1907 |
|
|
*
|
1908 |
|
|
* NOTE! We have to be ready to update the memory sharing
|
1909 |
|
|
* between the file and the memory map for a potential last
|
1910 |
|
|
* incomplete page. Ugly, but necessary.
|
1911 |
|
|
*/
|
1912 |
|
|
int vmtruncate(struct inode * inode, loff_t offset)
|
1913 |
|
|
{
|
1914 |
|
|
struct address_space *mapping = inode->i_mapping;
|
1915 |
|
|
unsigned long limit;
|
1916 |
|
|
|
1917 |
|
|
if (inode->i_size < offset)
|
1918 |
|
|
goto do_expand;
|
1919 |
|
|
/*
|
1920 |
|
|
* truncation of in-use swapfiles is disallowed - it would cause
|
1921 |
|
|
* subsequent swapout to scribble on the now-freed blocks.
|
1922 |
|
|
*/
|
1923 |
|
|
if (IS_SWAPFILE(inode))
|
1924 |
|
|
goto out_busy;
|
1925 |
|
|
i_size_write(inode, offset);
|
1926 |
|
|
|
1927 |
|
|
/*
|
1928 |
|
|
* unmap_mapping_range is called twice, first simply for efficiency
|
1929 |
|
|
* so that truncate_inode_pages does fewer single-page unmaps. However
|
1930 |
|
|
* after this first call, and before truncate_inode_pages finishes,
|
1931 |
|
|
* it is possible for private pages to be COWed, which remain after
|
1932 |
|
|
* truncate_inode_pages finishes, hence the second unmap_mapping_range
|
1933 |
|
|
* call must be made for correctness.
|
1934 |
|
|
*/
|
1935 |
|
|
unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
|
1936 |
|
|
truncate_inode_pages(mapping, offset);
|
1937 |
|
|
unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
|
1938 |
|
|
goto out_truncate;
|
1939 |
|
|
|
1940 |
|
|
do_expand:
|
1941 |
|
|
limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
|
1942 |
|
|
if (limit != RLIM_INFINITY && offset > limit)
|
1943 |
|
|
goto out_sig;
|
1944 |
|
|
if (offset > inode->i_sb->s_maxbytes)
|
1945 |
|
|
goto out_big;
|
1946 |
|
|
i_size_write(inode, offset);
|
1947 |
|
|
|
1948 |
|
|
out_truncate:
|
1949 |
|
|
if (inode->i_op && inode->i_op->truncate)
|
1950 |
|
|
inode->i_op->truncate(inode);
|
1951 |
|
|
return 0;
|
1952 |
|
|
out_sig:
|
1953 |
|
|
send_sig(SIGXFSZ, current, 0);
|
1954 |
|
|
out_big:
|
1955 |
|
|
return -EFBIG;
|
1956 |
|
|
out_busy:
|
1957 |
|
|
return -ETXTBSY;
|
1958 |
|
|
}
|
1959 |
|
|
EXPORT_SYMBOL(vmtruncate);
|
1960 |
|
|
|
1961 |
|
|
int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
|
1962 |
|
|
{
|
1963 |
|
|
struct address_space *mapping = inode->i_mapping;
|
1964 |
|
|
|
1965 |
|
|
/*
|
1966 |
|
|
* If the underlying filesystem is not going to provide
|
1967 |
|
|
* a way to truncate a range of blocks (punch a hole) -
|
1968 |
|
|
* we should return failure right now.
|
1969 |
|
|
*/
|
1970 |
|
|
if (!inode->i_op || !inode->i_op->truncate_range)
|
1971 |
|
|
return -ENOSYS;
|
1972 |
|
|
|
1973 |
|
|
mutex_lock(&inode->i_mutex);
|
1974 |
|
|
down_write(&inode->i_alloc_sem);
|
1975 |
|
|
unmap_mapping_range(mapping, offset, (end - offset), 1);
|
1976 |
|
|
truncate_inode_pages_range(mapping, offset, end);
|
1977 |
|
|
unmap_mapping_range(mapping, offset, (end - offset), 1);
|
1978 |
|
|
inode->i_op->truncate_range(inode, offset, end);
|
1979 |
|
|
up_write(&inode->i_alloc_sem);
|
1980 |
|
|
mutex_unlock(&inode->i_mutex);
|
1981 |
|
|
|
1982 |
|
|
return 0;
|
1983 |
|
|
}
|
1984 |
|
|
|
1985 |
|
|
/**
|
1986 |
|
|
* swapin_readahead - swap in pages in hope we need them soon
|
1987 |
|
|
* @entry: swap entry of this memory
|
1988 |
|
|
* @addr: address to start
|
1989 |
|
|
* @vma: user vma this addresses belong to
|
1990 |
|
|
*
|
1991 |
|
|
* Primitive swap readahead code. We simply read an aligned block of
|
1992 |
|
|
* (1 << page_cluster) entries in the swap area. This method is chosen
|
1993 |
|
|
* because it doesn't cost us any seek time. We also make sure to queue
|
1994 |
|
|
* the 'original' request together with the readahead ones...
|
1995 |
|
|
*
|
1996 |
|
|
* This has been extended to use the NUMA policies from the mm triggering
|
1997 |
|
|
* the readahead.
|
1998 |
|
|
*
|
1999 |
|
|
* Caller must hold down_read on the vma->vm_mm if vma is not NULL.
|
2000 |
|
|
*/
|
2001 |
|
|
void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
|
2002 |
|
|
{
|
2003 |
|
|
#ifdef CONFIG_NUMA
|
2004 |
|
|
struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
|
2005 |
|
|
#endif
|
2006 |
|
|
int i, num;
|
2007 |
|
|
struct page *new_page;
|
2008 |
|
|
unsigned long offset;
|
2009 |
|
|
|
2010 |
|
|
/*
|
2011 |
|
|
* Get the number of handles we should do readahead io to.
|
2012 |
|
|
*/
|
2013 |
|
|
num = valid_swaphandles(entry, &offset);
|
2014 |
|
|
for (i = 0; i < num; offset++, i++) {
|
2015 |
|
|
/* Ok, do the async read-ahead now */
|
2016 |
|
|
new_page = read_swap_cache_async(swp_entry(swp_type(entry),
|
2017 |
|
|
offset), vma, addr);
|
2018 |
|
|
if (!new_page)
|
2019 |
|
|
break;
|
2020 |
|
|
page_cache_release(new_page);
|
2021 |
|
|
#ifdef CONFIG_NUMA
|
2022 |
|
|
/*
|
2023 |
|
|
* Find the next applicable VMA for the NUMA policy.
|
2024 |
|
|
*/
|
2025 |
|
|
addr += PAGE_SIZE;
|
2026 |
|
|
if (addr == 0)
|
2027 |
|
|
vma = NULL;
|
2028 |
|
|
if (vma) {
|
2029 |
|
|
if (addr >= vma->vm_end) {
|
2030 |
|
|
vma = next_vma;
|
2031 |
|
|
next_vma = vma ? vma->vm_next : NULL;
|
2032 |
|
|
}
|
2033 |
|
|
if (vma && addr < vma->vm_start)
|
2034 |
|
|
vma = NULL;
|
2035 |
|
|
} else {
|
2036 |
|
|
if (next_vma && addr >= next_vma->vm_start) {
|
2037 |
|
|
vma = next_vma;
|
2038 |
|
|
next_vma = vma->vm_next;
|
2039 |
|
|
}
|
2040 |
|
|
}
|
2041 |
|
|
#endif
|
2042 |
|
|
}
|
2043 |
|
|
lru_add_drain(); /* Push any new pages onto the LRU now */
|
2044 |
|
|
}
|
2045 |
|
|
|
2046 |
|
|
/*
|
2047 |
|
|
* We enter with non-exclusive mmap_sem (to exclude vma changes,
|
2048 |
|
|
* but allow concurrent faults), and pte mapped but not yet locked.
|
2049 |
|
|
* We return with mmap_sem still held, but pte unmapped and unlocked.
|
2050 |
|
|
*/
|
2051 |
|
|
static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
|
2052 |
|
|
unsigned long address, pte_t *page_table, pmd_t *pmd,
|
2053 |
|
|
int write_access, pte_t orig_pte)
|
2054 |
|
|
{
|
2055 |
|
|
spinlock_t *ptl;
|
2056 |
|
|
struct page *page;
|
2057 |
|
|
swp_entry_t entry;
|
2058 |
|
|
pte_t pte;
|
2059 |
|
|
int ret = 0;
|
2060 |
|
|
|
2061 |
|
|
if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
|
2062 |
|
|
goto out;
|
2063 |
|
|
|
2064 |
|
|
entry = pte_to_swp_entry(orig_pte);
|
2065 |
|
|
if (is_migration_entry(entry)) {
|
2066 |
|
|
migration_entry_wait(mm, pmd, address);
|
2067 |
|
|
goto out;
|
2068 |
|
|
}
|
2069 |
|
|
delayacct_set_flag(DELAYACCT_PF_SWAPIN);
|
2070 |
|
|
page = lookup_swap_cache(entry);
|
2071 |
|
|
if (!page) {
|
2072 |
|
|
grab_swap_token(); /* Contend for token _before_ read-in */
|
2073 |
|
|
swapin_readahead(entry, address, vma);
|
2074 |
|
|
page = read_swap_cache_async(entry, vma, address);
|
2075 |
|
|
if (!page) {
|
2076 |
|
|
/*
|
2077 |
|
|
* Back out if somebody else faulted in this pte
|
2078 |
|
|
* while we released the pte lock.
|
2079 |
|
|
*/
|
2080 |
|
|
page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
|
2081 |
|
|
if (likely(pte_same(*page_table, orig_pte)))
|
2082 |
|
|
ret = VM_FAULT_OOM;
|
2083 |
|
|
delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
|
2084 |
|
|
goto unlock;
|
2085 |
|
|
}
|
2086 |
|
|
|
2087 |
|
|
/* Had to read the page from swap area: Major fault */
|
2088 |
|
|
ret = VM_FAULT_MAJOR;
|
2089 |
|
|
count_vm_event(PGMAJFAULT);
|
2090 |
|
|
}
|
2091 |
|
|
|
2092 |
|
|
mark_page_accessed(page);
|
2093 |
|
|
lock_page(page);
|
2094 |
|
|
delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
|
2095 |
|
|
|
2096 |
|
|
/*
|
2097 |
|
|
* Back out if somebody else already faulted in this pte.
|
2098 |
|
|
*/
|
2099 |
|
|
page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
|
2100 |
|
|
if (unlikely(!pte_same(*page_table, orig_pte)))
|
2101 |
|
|
goto out_nomap;
|
2102 |
|
|
|
2103 |
|
|
if (unlikely(!PageUptodate(page))) {
|
2104 |
|
|
ret = VM_FAULT_SIGBUS;
|
2105 |
|
|
goto out_nomap;
|
2106 |
|
|
}
|
2107 |
|
|
|
2108 |
|
|
/* The page isn't present yet, go ahead with the fault. */
|
2109 |
|
|
|
2110 |
|
|
inc_mm_counter(mm, anon_rss);
|
2111 |
|
|
pte = mk_pte(page, vma->vm_page_prot);
|
2112 |
|
|
if (write_access && can_share_swap_page(page)) {
|
2113 |
|
|
pte = maybe_mkwrite(pte_mkdirty(pte), vma);
|
2114 |
|
|
write_access = 0;
|
2115 |
|
|
}
|
2116 |
|
|
|
2117 |
|
|
flush_icache_page(vma, page);
|
2118 |
|
|
set_pte_at(mm, address, page_table, pte);
|
2119 |
|
|
page_add_anon_rmap(page, vma, address);
|
2120 |
|
|
|
2121 |
|
|
swap_free(entry);
|
2122 |
|
|
if (vm_swap_full())
|
2123 |
|
|
remove_exclusive_swap_page(page);
|
2124 |
|
|
unlock_page(page);
|
2125 |
|
|
|
2126 |
|
|
if (write_access) {
|
2127 |
|
|
/* XXX: We could OR the do_wp_page code with this one? */
|
2128 |
|
|
if (do_wp_page(mm, vma, address,
|
2129 |
|
|
page_table, pmd, ptl, pte) & VM_FAULT_OOM)
|
2130 |
|
|
ret = VM_FAULT_OOM;
|
2131 |
|
|
goto out;
|
2132 |
|
|
}
|
2133 |
|
|
|
2134 |
|
|
/* No need to invalidate - it was non-present before */
|
2135 |
|
|
update_mmu_cache(vma, address, pte);
|
2136 |
|
|
unlock:
|
2137 |
|
|
pte_unmap_unlock(page_table, ptl);
|
2138 |
|
|
out:
|
2139 |
|
|
return ret;
|
2140 |
|
|
out_nomap:
|
2141 |
|
|
pte_unmap_unlock(page_table, ptl);
|
2142 |
|
|
unlock_page(page);
|
2143 |
|
|
page_cache_release(page);
|
2144 |
|
|
return ret;
|
2145 |
|
|
}
|
2146 |
|
|
|
2147 |
|
|
/*
|
2148 |
|
|
* We enter with non-exclusive mmap_sem (to exclude vma changes,
|
2149 |
|
|
* but allow concurrent faults), and pte mapped but not yet locked.
|
2150 |
|
|
* We return with mmap_sem still held, but pte unmapped and unlocked.
|
2151 |
|
|
*/
|
2152 |
|
|
static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
|
2153 |
|
|
unsigned long address, pte_t *page_table, pmd_t *pmd,
|
2154 |
|
|
int write_access)
|
2155 |
|
|
{
|
2156 |
|
|
struct page *page;
|
2157 |
|
|
spinlock_t *ptl;
|
2158 |
|
|
pte_t entry;
|
2159 |
|
|
|
2160 |
|
|
/* Allocate our own private page. */
|
2161 |
|
|
pte_unmap(page_table);
|
2162 |
|
|
|
2163 |
|
|
if (unlikely(anon_vma_prepare(vma)))
|
2164 |
|
|
goto oom;
|
2165 |
|
|
page = alloc_zeroed_user_highpage_movable(vma, address);
|
2166 |
|
|
if (!page)
|
2167 |
|
|
goto oom;
|
2168 |
|
|
|
2169 |
|
|
entry = mk_pte(page, vma->vm_page_prot);
|
2170 |
|
|
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
|
2171 |
|
|
|
2172 |
|
|
page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
|
2173 |
|
|
if (!pte_none(*page_table))
|
2174 |
|
|
goto release;
|
2175 |
|
|
inc_mm_counter(mm, anon_rss);
|
2176 |
|
|
lru_cache_add_active(page);
|
2177 |
|
|
page_add_new_anon_rmap(page, vma, address);
|
2178 |
|
|
set_pte_at(mm, address, page_table, entry);
|
2179 |
|
|
|
2180 |
|
|
/* No need to invalidate - it was non-present before */
|
2181 |
|
|
update_mmu_cache(vma, address, entry);
|
2182 |
|
|
unlock:
|
2183 |
|
|
pte_unmap_unlock(page_table, ptl);
|
2184 |
|
|
return 0;
|
2185 |
|
|
release:
|
2186 |
|
|
page_cache_release(page);
|
2187 |
|
|
goto unlock;
|
2188 |
|
|
oom:
|
2189 |
|
|
return VM_FAULT_OOM;
|
2190 |
|
|
}
|
2191 |
|
|
|
2192 |
|
|
/*
|
2193 |
|
|
* __do_fault() tries to create a new page mapping. It aggressively
|
2194 |
|
|
* tries to share with existing pages, but makes a separate copy if
|
2195 |
|
|
* the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
|
2196 |
|
|
* the next page fault.
|
2197 |
|
|
*
|
2198 |
|
|
* As this is called only for pages that do not currently exist, we
|
2199 |
|
|
* do not need to flush old virtual caches or the TLB.
|
2200 |
|
|
*
|
2201 |
|
|
* We enter with non-exclusive mmap_sem (to exclude vma changes,
|
2202 |
|
|
* but allow concurrent faults), and pte neither mapped nor locked.
|
2203 |
|
|
* We return with mmap_sem still held, but pte unmapped and unlocked.
|
2204 |
|
|
*/
|
2205 |
|
|
static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
|
2206 |
|
|
unsigned long address, pmd_t *pmd,
|
2207 |
|
|
pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
|
2208 |
|
|
{
|
2209 |
|
|
pte_t *page_table;
|
2210 |
|
|
spinlock_t *ptl;
|
2211 |
|
|
struct page *page;
|
2212 |
|
|
pte_t entry;
|
2213 |
|
|
int anon = 0;
|
2214 |
|
|
struct page *dirty_page = NULL;
|
2215 |
|
|
struct vm_fault vmf;
|
2216 |
|
|
int ret;
|
2217 |
|
|
int page_mkwrite = 0;
|
2218 |
|
|
|
2219 |
|
|
vmf.virtual_address = (void __user *)(address & PAGE_MASK);
|
2220 |
|
|
vmf.pgoff = pgoff;
|
2221 |
|
|
vmf.flags = flags;
|
2222 |
|
|
vmf.page = NULL;
|
2223 |
|
|
|
2224 |
|
|
BUG_ON(vma->vm_flags & VM_PFNMAP);
|
2225 |
|
|
|
2226 |
|
|
if (likely(vma->vm_ops->fault)) {
|
2227 |
|
|
ret = vma->vm_ops->fault(vma, &vmf);
|
2228 |
|
|
if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
|
2229 |
|
|
return ret;
|
2230 |
|
|
} else {
|
2231 |
|
|
/* Legacy ->nopage path */
|
2232 |
|
|
ret = 0;
|
2233 |
|
|
vmf.page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
|
2234 |
|
|
/* no page was available -- either SIGBUS or OOM */
|
2235 |
|
|
if (unlikely(vmf.page == NOPAGE_SIGBUS))
|
2236 |
|
|
return VM_FAULT_SIGBUS;
|
2237 |
|
|
else if (unlikely(vmf.page == NOPAGE_OOM))
|
2238 |
|
|
return VM_FAULT_OOM;
|
2239 |
|
|
}
|
2240 |
|
|
|
2241 |
|
|
/*
|
2242 |
|
|
* For consistency in subsequent calls, make the faulted page always
|
2243 |
|
|
* locked.
|
2244 |
|
|
*/
|
2245 |
|
|
if (unlikely(!(ret & VM_FAULT_LOCKED)))
|
2246 |
|
|
lock_page(vmf.page);
|
2247 |
|
|
else
|
2248 |
|
|
VM_BUG_ON(!PageLocked(vmf.page));
|
2249 |
|
|
|
2250 |
|
|
/*
|
2251 |
|
|
* Should we do an early C-O-W break?
|
2252 |
|
|
*/
|
2253 |
|
|
page = vmf.page;
|
2254 |
|
|
if (flags & FAULT_FLAG_WRITE) {
|
2255 |
|
|
if (!(vma->vm_flags & VM_SHARED)) {
|
2256 |
|
|
anon = 1;
|
2257 |
|
|
if (unlikely(anon_vma_prepare(vma))) {
|
2258 |
|
|
ret = VM_FAULT_OOM;
|
2259 |
|
|
goto out;
|
2260 |
|
|
}
|
2261 |
|
|
page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
|
2262 |
|
|
vma, address);
|
2263 |
|
|
if (!page) {
|
2264 |
|
|
ret = VM_FAULT_OOM;
|
2265 |
|
|
goto out;
|
2266 |
|
|
}
|
2267 |
|
|
copy_user_highpage(page, vmf.page, address, vma);
|
2268 |
|
|
} else {
|
2269 |
|
|
/*
|
2270 |
|
|
* If the page will be shareable, see if the backing
|
2271 |
|
|
* address space wants to know that the page is about
|
2272 |
|
|
* to become writable
|
2273 |
|
|
*/
|
2274 |
|
|
if (vma->vm_ops->page_mkwrite) {
|
2275 |
|
|
unlock_page(page);
|
2276 |
|
|
if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
|
2277 |
|
|
ret = VM_FAULT_SIGBUS;
|
2278 |
|
|
anon = 1; /* no anon but release vmf.page */
|
2279 |
|
|
goto out_unlocked;
|
2280 |
|
|
}
|
2281 |
|
|
lock_page(page);
|
2282 |
|
|
/*
|
2283 |
|
|
* XXX: this is not quite right (racy vs
|
2284 |
|
|
* invalidate) to unlock and relock the page
|
2285 |
|
|
* like this, however a better fix requires
|
2286 |
|
|
* reworking page_mkwrite locking API, which
|
2287 |
|
|
* is better done later.
|
2288 |
|
|
*/
|
2289 |
|
|
if (!page->mapping) {
|
2290 |
|
|
ret = 0;
|
2291 |
|
|
anon = 1; /* no anon but release vmf.page */
|
2292 |
|
|
goto out;
|
2293 |
|
|
}
|
2294 |
|
|
page_mkwrite = 1;
|
2295 |
|
|
}
|
2296 |
|
|
}
|
2297 |
|
|
|
2298 |
|
|
}
|
2299 |
|
|
|
2300 |
|
|
page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
|
2301 |
|
|
|
2302 |
|
|
/*
|
2303 |
|
|
* This silly early PAGE_DIRTY setting removes a race
|
2304 |
|
|
* due to the bad i386 page protection. But it's valid
|
2305 |
|
|
* for other architectures too.
|
2306 |
|
|
*
|
2307 |
|
|
* Note that if write_access is true, we either now have
|
2308 |
|
|
* an exclusive copy of the page, or this is a shared mapping,
|
2309 |
|
|
* so we can make it writable and dirty to avoid having to
|
2310 |
|
|
* handle that later.
|
2311 |
|
|
*/
|
2312 |
|
|
/* Only go through if we didn't race with anybody else... */
|
2313 |
|
|
if (likely(pte_same(*page_table, orig_pte))) {
|
2314 |
|
|
flush_icache_page(vma, page);
|
2315 |
|
|
entry = mk_pte(page, vma->vm_page_prot);
|
2316 |
|
|
if (flags & FAULT_FLAG_WRITE)
|
2317 |
|
|
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
|
2318 |
|
|
set_pte_at(mm, address, page_table, entry);
|
2319 |
|
|
if (anon) {
|
2320 |
|
|
inc_mm_counter(mm, anon_rss);
|
2321 |
|
|
lru_cache_add_active(page);
|
2322 |
|
|
page_add_new_anon_rmap(page, vma, address);
|
2323 |
|
|
} else {
|
2324 |
|
|
inc_mm_counter(mm, file_rss);
|
2325 |
|
|
page_add_file_rmap(page);
|
2326 |
|
|
if (flags & FAULT_FLAG_WRITE) {
|
2327 |
|
|
dirty_page = page;
|
2328 |
|
|
get_page(dirty_page);
|
2329 |
|
|
}
|
2330 |
|
|
}
|
2331 |
|
|
|
2332 |
|
|
/* no need to invalidate: a not-present page won't be cached */
|
2333 |
|
|
update_mmu_cache(vma, address, entry);
|
2334 |
|
|
} else {
|
2335 |
|
|
if (anon)
|
2336 |
|
|
page_cache_release(page);
|
2337 |
|
|
else
|
2338 |
|
|
anon = 1; /* no anon but release faulted_page */
|
2339 |
|
|
}
|
2340 |
|
|
|
2341 |
|
|
pte_unmap_unlock(page_table, ptl);
|
2342 |
|
|
|
2343 |
|
|
out:
|
2344 |
|
|
unlock_page(vmf.page);
|
2345 |
|
|
out_unlocked:
|
2346 |
|
|
if (anon)
|
2347 |
|
|
page_cache_release(vmf.page);
|
2348 |
|
|
else if (dirty_page) {
|
2349 |
|
|
if (vma->vm_file)
|
2350 |
|
|
file_update_time(vma->vm_file);
|
2351 |
|
|
|
2352 |
|
|
set_page_dirty_balance(dirty_page, page_mkwrite);
|
2353 |
|
|
put_page(dirty_page);
|
2354 |
|
|
}
|
2355 |
|
|
|
2356 |
|
|
return ret;
|
2357 |
|
|
}
|
2358 |
|
|
|
2359 |
|
|
static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
|
2360 |
|
|
unsigned long address, pte_t *page_table, pmd_t *pmd,
|
2361 |
|
|
int write_access, pte_t orig_pte)
|
2362 |
|
|
{
|
2363 |
|
|
pgoff_t pgoff = (((address & PAGE_MASK)
|
2364 |
|
|
- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
|
2365 |
|
|
unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
|
2366 |
|
|
|
2367 |
|
|
pte_unmap(page_table);
|
2368 |
|
|
return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
|
2369 |
|
|
}
|
2370 |
|
|
|
2371 |
|
|
|
2372 |
|
|
/*
|
2373 |
|
|
* do_no_pfn() tries to create a new page mapping for a page without
|
2374 |
|
|
* a struct_page backing it
|
2375 |
|
|
*
|
2376 |
|
|
* As this is called only for pages that do not currently exist, we
|
2377 |
|
|
* do not need to flush old virtual caches or the TLB.
|
2378 |
|
|
*
|
2379 |
|
|
* We enter with non-exclusive mmap_sem (to exclude vma changes,
|
2380 |
|
|
* but allow concurrent faults), and pte mapped but not yet locked.
|
2381 |
|
|
* We return with mmap_sem still held, but pte unmapped and unlocked.
|
2382 |
|
|
*
|
2383 |
|
|
* It is expected that the ->nopfn handler always returns the same pfn
|
2384 |
|
|
* for a given virtual mapping.
|
2385 |
|
|
*
|
2386 |
|
|
* Mark this `noinline' to prevent it from bloating the main pagefault code.
|
2387 |
|
|
*/
|
2388 |
|
|
static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
|
2389 |
|
|
unsigned long address, pte_t *page_table, pmd_t *pmd,
|
2390 |
|
|
int write_access)
|
2391 |
|
|
{
|
2392 |
|
|
spinlock_t *ptl;
|
2393 |
|
|
pte_t entry;
|
2394 |
|
|
unsigned long pfn;
|
2395 |
|
|
|
2396 |
|
|
pte_unmap(page_table);
|
2397 |
|
|
BUG_ON(!(vma->vm_flags & VM_PFNMAP));
|
2398 |
|
|
BUG_ON(is_cow_mapping(vma->vm_flags));
|
2399 |
|
|
|
2400 |
|
|
pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
|
2401 |
|
|
if (unlikely(pfn == NOPFN_OOM))
|
2402 |
|
|
return VM_FAULT_OOM;
|
2403 |
|
|
else if (unlikely(pfn == NOPFN_SIGBUS))
|
2404 |
|
|
return VM_FAULT_SIGBUS;
|
2405 |
|
|
else if (unlikely(pfn == NOPFN_REFAULT))
|
2406 |
|
|
return 0;
|
2407 |
|
|
|
2408 |
|
|
page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
|
2409 |
|
|
|
2410 |
|
|
/* Only go through if we didn't race with anybody else... */
|
2411 |
|
|
if (pte_none(*page_table)) {
|
2412 |
|
|
entry = pfn_pte(pfn, vma->vm_page_prot);
|
2413 |
|
|
if (write_access)
|
2414 |
|
|
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
|
2415 |
|
|
set_pte_at(mm, address, page_table, entry);
|
2416 |
|
|
}
|
2417 |
|
|
pte_unmap_unlock(page_table, ptl);
|
2418 |
|
|
return 0;
|
2419 |
|
|
}
|
2420 |
|
|
|
2421 |
|
|
/*
|
2422 |
|
|
* Fault of a previously existing named mapping. Repopulate the pte
|
2423 |
|
|
* from the encoded file_pte if possible. This enables swappable
|
2424 |
|
|
* nonlinear vmas.
|
2425 |
|
|
*
|
2426 |
|
|
* We enter with non-exclusive mmap_sem (to exclude vma changes,
|
2427 |
|
|
* but allow concurrent faults), and pte mapped but not yet locked.
|
2428 |
|
|
* We return with mmap_sem still held, but pte unmapped and unlocked.
|
2429 |
|
|
*/
|
2430 |
|
|
static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
|
2431 |
|
|
unsigned long address, pte_t *page_table, pmd_t *pmd,
|
2432 |
|
|
int write_access, pte_t orig_pte)
|
2433 |
|
|
{
|
2434 |
|
|
unsigned int flags = FAULT_FLAG_NONLINEAR |
|
2435 |
|
|
(write_access ? FAULT_FLAG_WRITE : 0);
|
2436 |
|
|
pgoff_t pgoff;
|
2437 |
|
|
|
2438 |
|
|
if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
|
2439 |
|
|
return 0;
|
2440 |
|
|
|
2441 |
|
|
if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
|
2442 |
|
|
!(vma->vm_flags & VM_CAN_NONLINEAR))) {
|
2443 |
|
|
/*
|
2444 |
|
|
* Page table corrupted: show pte and kill process.
|
2445 |
|
|
*/
|
2446 |
|
|
print_bad_pte(vma, orig_pte, address);
|
2447 |
|
|
return VM_FAULT_OOM;
|
2448 |
|
|
}
|
2449 |
|
|
|
2450 |
|
|
pgoff = pte_to_pgoff(orig_pte);
|
2451 |
|
|
return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
|
2452 |
|
|
}
|
2453 |
|
|
|
2454 |
|
|
/*
|
2455 |
|
|
* These routines also need to handle stuff like marking pages dirty
|
2456 |
|
|
* and/or accessed for architectures that don't do it in hardware (most
|
2457 |
|
|
* RISC architectures). The early dirtying is also good on the i386.
|
2458 |
|
|
*
|
2459 |
|
|
* There is also a hook called "update_mmu_cache()" that architectures
|
2460 |
|
|
* with external mmu caches can use to update those (ie the Sparc or
|
2461 |
|
|
* PowerPC hashed page tables that act as extended TLBs).
|
2462 |
|
|
*
|
2463 |
|
|
* We enter with non-exclusive mmap_sem (to exclude vma changes,
|
2464 |
|
|
* but allow concurrent faults), and pte mapped but not yet locked.
|
2465 |
|
|
* We return with mmap_sem still held, but pte unmapped and unlocked.
|
2466 |
|
|
*/
|
2467 |
|
|
static inline int handle_pte_fault(struct mm_struct *mm,
|
2468 |
|
|
struct vm_area_struct *vma, unsigned long address,
|
2469 |
|
|
pte_t *pte, pmd_t *pmd, int write_access)
|
2470 |
|
|
{
|
2471 |
|
|
pte_t entry;
|
2472 |
|
|
spinlock_t *ptl;
|
2473 |
|
|
|
2474 |
|
|
entry = *pte;
|
2475 |
|
|
if (!pte_present(entry)) {
|
2476 |
|
|
if (pte_none(entry)) {
|
2477 |
|
|
if (vma->vm_ops) {
|
2478 |
|
|
if (vma->vm_ops->fault || vma->vm_ops->nopage)
|
2479 |
|
|
return do_linear_fault(mm, vma, address,
|
2480 |
|
|
pte, pmd, write_access, entry);
|
2481 |
|
|
if (unlikely(vma->vm_ops->nopfn))
|
2482 |
|
|
return do_no_pfn(mm, vma, address, pte,
|
2483 |
|
|
pmd, write_access);
|
2484 |
|
|
}
|
2485 |
|
|
return do_anonymous_page(mm, vma, address,
|
2486 |
|
|
pte, pmd, write_access);
|
2487 |
|
|
}
|
2488 |
|
|
if (pte_file(entry))
|
2489 |
|
|
return do_nonlinear_fault(mm, vma, address,
|
2490 |
|
|
pte, pmd, write_access, entry);
|
2491 |
|
|
return do_swap_page(mm, vma, address,
|
2492 |
|
|
pte, pmd, write_access, entry);
|
2493 |
|
|
}
|
2494 |
|
|
|
2495 |
|
|
ptl = pte_lockptr(mm, pmd);
|
2496 |
|
|
spin_lock(ptl);
|
2497 |
|
|
if (unlikely(!pte_same(*pte, entry)))
|
2498 |
|
|
goto unlock;
|
2499 |
|
|
if (write_access) {
|
2500 |
|
|
if (!pte_write(entry))
|
2501 |
|
|
return do_wp_page(mm, vma, address,
|
2502 |
|
|
pte, pmd, ptl, entry);
|
2503 |
|
|
entry = pte_mkdirty(entry);
|
2504 |
|
|
}
|
2505 |
|
|
entry = pte_mkyoung(entry);
|
2506 |
|
|
if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
|
2507 |
|
|
update_mmu_cache(vma, address, entry);
|
2508 |
|
|
} else {
|
2509 |
|
|
/*
|
2510 |
|
|
* This is needed only for protection faults but the arch code
|
2511 |
|
|
* is not yet telling us if this is a protection fault or not.
|
2512 |
|
|
* This still avoids useless tlb flushes for .text page faults
|
2513 |
|
|
* with threads.
|
2514 |
|
|
*/
|
2515 |
|
|
if (write_access)
|
2516 |
|
|
flush_tlb_page(vma, address);
|
2517 |
|
|
}
|
2518 |
|
|
unlock:
|
2519 |
|
|
pte_unmap_unlock(pte, ptl);
|
2520 |
|
|
return 0;
|
2521 |
|
|
}
|
2522 |
|
|
|
2523 |
|
|
/*
|
2524 |
|
|
* By the time we get here, we already hold the mm semaphore
|
2525 |
|
|
*/
|
2526 |
|
|
int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
|
2527 |
|
|
unsigned long address, int write_access)
|
2528 |
|
|
{
|
2529 |
|
|
pgd_t *pgd;
|
2530 |
|
|
pud_t *pud;
|
2531 |
|
|
pmd_t *pmd;
|
2532 |
|
|
pte_t *pte;
|
2533 |
|
|
|
2534 |
|
|
__set_current_state(TASK_RUNNING);
|
2535 |
|
|
|
2536 |
|
|
count_vm_event(PGFAULT);
|
2537 |
|
|
|
2538 |
|
|
if (unlikely(is_vm_hugetlb_page(vma)))
|
2539 |
|
|
return hugetlb_fault(mm, vma, address, write_access);
|
2540 |
|
|
|
2541 |
|
|
pgd = pgd_offset(mm, address);
|
2542 |
|
|
pud = pud_alloc(mm, pgd, address);
|
2543 |
|
|
if (!pud)
|
2544 |
|
|
return VM_FAULT_OOM;
|
2545 |
|
|
pmd = pmd_alloc(mm, pud, address);
|
2546 |
|
|
if (!pmd)
|
2547 |
|
|
return VM_FAULT_OOM;
|
2548 |
|
|
pte = pte_alloc_map(mm, pmd, address);
|
2549 |
|
|
if (!pte)
|
2550 |
|
|
return VM_FAULT_OOM;
|
2551 |
|
|
|
2552 |
|
|
return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
|
2553 |
|
|
}
|
2554 |
|
|
|
2555 |
|
|
#ifndef __PAGETABLE_PUD_FOLDED
|
2556 |
|
|
/*
|
2557 |
|
|
* Allocate page upper directory.
|
2558 |
|
|
* We've already handled the fast-path in-line.
|
2559 |
|
|
*/
|
2560 |
|
|
int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
|
2561 |
|
|
{
|
2562 |
|
|
pud_t *new = pud_alloc_one(mm, address);
|
2563 |
|
|
if (!new)
|
2564 |
|
|
return -ENOMEM;
|
2565 |
|
|
|
2566 |
|
|
spin_lock(&mm->page_table_lock);
|
2567 |
|
|
if (pgd_present(*pgd)) /* Another has populated it */
|
2568 |
|
|
pud_free(new);
|
2569 |
|
|
else
|
2570 |
|
|
pgd_populate(mm, pgd, new);
|
2571 |
|
|
spin_unlock(&mm->page_table_lock);
|
2572 |
|
|
return 0;
|
2573 |
|
|
}
|
2574 |
|
|
#endif /* __PAGETABLE_PUD_FOLDED */
|
2575 |
|
|
|
2576 |
|
|
#ifndef __PAGETABLE_PMD_FOLDED
|
2577 |
|
|
/*
|
2578 |
|
|
* Allocate page middle directory.
|
2579 |
|
|
* We've already handled the fast-path in-line.
|
2580 |
|
|
*/
|
2581 |
|
|
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
|
2582 |
|
|
{
|
2583 |
|
|
pmd_t *new = pmd_alloc_one(mm, address);
|
2584 |
|
|
if (!new)
|
2585 |
|
|
return -ENOMEM;
|
2586 |
|
|
|
2587 |
|
|
spin_lock(&mm->page_table_lock);
|
2588 |
|
|
#ifndef __ARCH_HAS_4LEVEL_HACK
|
2589 |
|
|
if (pud_present(*pud)) /* Another has populated it */
|
2590 |
|
|
pmd_free(new);
|
2591 |
|
|
else
|
2592 |
|
|
pud_populate(mm, pud, new);
|
2593 |
|
|
#else
|
2594 |
|
|
if (pgd_present(*pud)) /* Another has populated it */
|
2595 |
|
|
pmd_free(new);
|
2596 |
|
|
else
|
2597 |
|
|
pgd_populate(mm, pud, new);
|
2598 |
|
|
#endif /* __ARCH_HAS_4LEVEL_HACK */
|
2599 |
|
|
spin_unlock(&mm->page_table_lock);
|
2600 |
|
|
return 0;
|
2601 |
|
|
}
|
2602 |
|
|
#endif /* __PAGETABLE_PMD_FOLDED */
|
2603 |
|
|
|
2604 |
|
|
int make_pages_present(unsigned long addr, unsigned long end)
|
2605 |
|
|
{
|
2606 |
|
|
int ret, len, write;
|
2607 |
|
|
struct vm_area_struct * vma;
|
2608 |
|
|
|
2609 |
|
|
vma = find_vma(current->mm, addr);
|
2610 |
|
|
if (!vma)
|
2611 |
|
|
return -1;
|
2612 |
|
|
write = (vma->vm_flags & VM_WRITE) != 0;
|
2613 |
|
|
BUG_ON(addr >= end);
|
2614 |
|
|
BUG_ON(end > vma->vm_end);
|
2615 |
|
|
len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
|
2616 |
|
|
ret = get_user_pages(current, current->mm, addr,
|
2617 |
|
|
len, write, 0, NULL, NULL);
|
2618 |
|
|
if (ret < 0)
|
2619 |
|
|
return ret;
|
2620 |
|
|
return ret == len ? 0 : -1;
|
2621 |
|
|
}
|
2622 |
|
|
|
2623 |
|
|
/*
|
2624 |
|
|
* Map a vmalloc()-space virtual address to the physical page.
|
2625 |
|
|
*/
|
2626 |
|
|
struct page * vmalloc_to_page(void * vmalloc_addr)
|
2627 |
|
|
{
|
2628 |
|
|
unsigned long addr = (unsigned long) vmalloc_addr;
|
2629 |
|
|
struct page *page = NULL;
|
2630 |
|
|
pgd_t *pgd = pgd_offset_k(addr);
|
2631 |
|
|
pud_t *pud;
|
2632 |
|
|
pmd_t *pmd;
|
2633 |
|
|
pte_t *ptep, pte;
|
2634 |
|
|
|
2635 |
|
|
if (!pgd_none(*pgd)) {
|
2636 |
|
|
pud = pud_offset(pgd, addr);
|
2637 |
|
|
if (!pud_none(*pud)) {
|
2638 |
|
|
pmd = pmd_offset(pud, addr);
|
2639 |
|
|
if (!pmd_none(*pmd)) {
|
2640 |
|
|
ptep = pte_offset_map(pmd, addr);
|
2641 |
|
|
pte = *ptep;
|
2642 |
|
|
if (pte_present(pte))
|
2643 |
|
|
page = pte_page(pte);
|
2644 |
|
|
pte_unmap(ptep);
|
2645 |
|
|
}
|
2646 |
|
|
}
|
2647 |
|
|
}
|
2648 |
|
|
return page;
|
2649 |
|
|
}
|
2650 |
|
|
|
2651 |
|
|
EXPORT_SYMBOL(vmalloc_to_page);
|
2652 |
|
|
|
2653 |
|
|
/*
|
2654 |
|
|
* Map a vmalloc()-space virtual address to the physical page frame number.
|
2655 |
|
|
*/
|
2656 |
|
|
unsigned long vmalloc_to_pfn(void * vmalloc_addr)
|
2657 |
|
|
{
|
2658 |
|
|
return page_to_pfn(vmalloc_to_page(vmalloc_addr));
|
2659 |
|
|
}
|
2660 |
|
|
|
2661 |
|
|
EXPORT_SYMBOL(vmalloc_to_pfn);
|
2662 |
|
|
|
2663 |
|
|
#if !defined(__HAVE_ARCH_GATE_AREA)
|
2664 |
|
|
|
2665 |
|
|
#if defined(AT_SYSINFO_EHDR)
|
2666 |
|
|
static struct vm_area_struct gate_vma;
|
2667 |
|
|
|
2668 |
|
|
static int __init gate_vma_init(void)
|
2669 |
|
|
{
|
2670 |
|
|
gate_vma.vm_mm = NULL;
|
2671 |
|
|
gate_vma.vm_start = FIXADDR_USER_START;
|
2672 |
|
|
gate_vma.vm_end = FIXADDR_USER_END;
|
2673 |
|
|
gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
|
2674 |
|
|
gate_vma.vm_page_prot = __P101;
|
2675 |
|
|
/*
|
2676 |
|
|
* Make sure the vDSO gets into every core dump.
|
2677 |
|
|
* Dumping its contents makes post-mortem fully interpretable later
|
2678 |
|
|
* without matching up the same kernel and hardware config to see
|
2679 |
|
|
* what PC values meant.
|
2680 |
|
|
*/
|
2681 |
|
|
gate_vma.vm_flags |= VM_ALWAYSDUMP;
|
2682 |
|
|
return 0;
|
2683 |
|
|
}
|
2684 |
|
|
__initcall(gate_vma_init);
|
2685 |
|
|
#endif
|
2686 |
|
|
|
2687 |
|
|
struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
|
2688 |
|
|
{
|
2689 |
|
|
#ifdef AT_SYSINFO_EHDR
|
2690 |
|
|
return &gate_vma;
|
2691 |
|
|
#else
|
2692 |
|
|
return NULL;
|
2693 |
|
|
#endif
|
2694 |
|
|
}
|
2695 |
|
|
|
2696 |
|
|
int in_gate_area_no_task(unsigned long addr)
|
2697 |
|
|
{
|
2698 |
|
|
#ifdef AT_SYSINFO_EHDR
|
2699 |
|
|
if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
|
2700 |
|
|
return 1;
|
2701 |
|
|
#endif
|
2702 |
|
|
return 0;
|
2703 |
|
|
}
|
2704 |
|
|
|
2705 |
|
|
#endif /* __HAVE_ARCH_GATE_AREA */
|
2706 |
|
|
|
2707 |
|
|
/*
|
2708 |
|
|
* Access another process' address space.
|
2709 |
|
|
* Source/target buffer must be kernel space,
|
2710 |
|
|
* Do not walk the page table directly, use get_user_pages
|
2711 |
|
|
*/
|
2712 |
|
|
int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
|
2713 |
|
|
{
|
2714 |
|
|
struct mm_struct *mm;
|
2715 |
|
|
struct vm_area_struct *vma;
|
2716 |
|
|
struct page *page;
|
2717 |
|
|
void *old_buf = buf;
|
2718 |
|
|
|
2719 |
|
|
mm = get_task_mm(tsk);
|
2720 |
|
|
if (!mm)
|
2721 |
|
|
return 0;
|
2722 |
|
|
|
2723 |
|
|
down_read(&mm->mmap_sem);
|
2724 |
|
|
/* ignore errors, just check how much was successfully transferred */
|
2725 |
|
|
while (len) {
|
2726 |
|
|
int bytes, ret, offset;
|
2727 |
|
|
void *maddr;
|
2728 |
|
|
|
2729 |
|
|
ret = get_user_pages(tsk, mm, addr, 1,
|
2730 |
|
|
write, 1, &page, &vma);
|
2731 |
|
|
if (ret <= 0)
|
2732 |
|
|
break;
|
2733 |
|
|
|
2734 |
|
|
bytes = len;
|
2735 |
|
|
offset = addr & (PAGE_SIZE-1);
|
2736 |
|
|
if (bytes > PAGE_SIZE-offset)
|
2737 |
|
|
bytes = PAGE_SIZE-offset;
|
2738 |
|
|
|
2739 |
|
|
maddr = kmap(page);
|
2740 |
|
|
if (write) {
|
2741 |
|
|
copy_to_user_page(vma, page, addr,
|
2742 |
|
|
maddr + offset, buf, bytes);
|
2743 |
|
|
set_page_dirty_lock(page);
|
2744 |
|
|
} else {
|
2745 |
|
|
copy_from_user_page(vma, page, addr,
|
2746 |
|
|
buf, maddr + offset, bytes);
|
2747 |
|
|
}
|
2748 |
|
|
kunmap(page);
|
2749 |
|
|
page_cache_release(page);
|
2750 |
|
|
len -= bytes;
|
2751 |
|
|
buf += bytes;
|
2752 |
|
|
addr += bytes;
|
2753 |
|
|
}
|
2754 |
|
|
up_read(&mm->mmap_sem);
|
2755 |
|
|
mmput(mm);
|
2756 |
|
|
|
2757 |
|
|
return buf - old_buf;
|
2758 |
|
|
}
|