OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [mm/] [oom_kill.c] - Blame information for rev 63

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 *  linux/mm/oom_kill.c
3
 *
4
 *  Copyright (C)  1998,2000  Rik van Riel
5
 *      Thanks go out to Claus Fischer for some serious inspiration and
6
 *      for goading me into coding this file...
7
 *
8
 *  The routines in this file are used to kill a process when
9
 *  we're seriously out of memory. This gets called from __alloc_pages()
10
 *  in mm/page_alloc.c when we really run out of memory.
11
 *
12
 *  Since we won't call these routines often (on a well-configured
13
 *  machine) this file will double as a 'coding guide' and a signpost
14
 *  for newbie kernel hackers. It features several pointers to major
15
 *  kernel subsystems and hints as to where to find out what things do.
16
 */
17
 
18
#include <linux/oom.h>
19
#include <linux/mm.h>
20
#include <linux/err.h>
21
#include <linux/sched.h>
22
#include <linux/swap.h>
23
#include <linux/timex.h>
24
#include <linux/jiffies.h>
25
#include <linux/cpuset.h>
26
#include <linux/module.h>
27
#include <linux/notifier.h>
28
 
29
int sysctl_panic_on_oom;
30
int sysctl_oom_kill_allocating_task;
31
static DEFINE_SPINLOCK(zone_scan_mutex);
32
/* #define DEBUG */
33
 
34
/**
35
 * badness - calculate a numeric value for how bad this task has been
36
 * @p: task struct of which task we should calculate
37
 * @uptime: current uptime in seconds
38
 *
39
 * The formula used is relatively simple and documented inline in the
40
 * function. The main rationale is that we want to select a good task
41
 * to kill when we run out of memory.
42
 *
43
 * Good in this context means that:
44
 * 1) we lose the minimum amount of work done
45
 * 2) we recover a large amount of memory
46
 * 3) we don't kill anything innocent of eating tons of memory
47
 * 4) we want to kill the minimum amount of processes (one)
48
 * 5) we try to kill the process the user expects us to kill, this
49
 *    algorithm has been meticulously tuned to meet the principle
50
 *    of least surprise ... (be careful when you change it)
51
 */
52
 
53
unsigned long badness(struct task_struct *p, unsigned long uptime)
54
{
55
        unsigned long points, cpu_time, run_time, s;
56
        struct mm_struct *mm;
57
        struct task_struct *child;
58
 
59
        task_lock(p);
60
        mm = p->mm;
61
        if (!mm) {
62
                task_unlock(p);
63
                return 0;
64
        }
65
 
66
        /*
67
         * The memory size of the process is the basis for the badness.
68
         */
69
        points = mm->total_vm;
70
 
71
        /*
72
         * After this unlock we can no longer dereference local variable `mm'
73
         */
74
        task_unlock(p);
75
 
76
        /*
77
         * swapoff can easily use up all memory, so kill those first.
78
         */
79
        if (p->flags & PF_SWAPOFF)
80
                return ULONG_MAX;
81
 
82
        /*
83
         * Processes which fork a lot of child processes are likely
84
         * a good choice. We add half the vmsize of the children if they
85
         * have an own mm. This prevents forking servers to flood the
86
         * machine with an endless amount of children. In case a single
87
         * child is eating the vast majority of memory, adding only half
88
         * to the parents will make the child our kill candidate of choice.
89
         */
90
        list_for_each_entry(child, &p->children, sibling) {
91
                task_lock(child);
92
                if (child->mm != mm && child->mm)
93
                        points += child->mm->total_vm/2 + 1;
94
                task_unlock(child);
95
        }
96
 
97
        /*
98
         * CPU time is in tens of seconds and run time is in thousands
99
         * of seconds. There is no particular reason for this other than
100
         * that it turned out to work very well in practice.
101
         */
102
        cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
103
                >> (SHIFT_HZ + 3);
104
 
105
        if (uptime >= p->start_time.tv_sec)
106
                run_time = (uptime - p->start_time.tv_sec) >> 10;
107
        else
108
                run_time = 0;
109
 
110
        s = int_sqrt(cpu_time);
111
        if (s)
112
                points /= s;
113
        s = int_sqrt(int_sqrt(run_time));
114
        if (s)
115
                points /= s;
116
 
117
        /*
118
         * Niced processes are most likely less important, so double
119
         * their badness points.
120
         */
121
        if (task_nice(p) > 0)
122
                points *= 2;
123
 
124
        /*
125
         * Superuser processes are usually more important, so we make it
126
         * less likely that we kill those.
127
         */
128
        if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_ADMIN) ||
129
                                p->uid == 0 || p->euid == 0)
130
                points /= 4;
131
 
132
        /*
133
         * We don't want to kill a process with direct hardware access.
134
         * Not only could that mess up the hardware, but usually users
135
         * tend to only have this flag set on applications they think
136
         * of as important.
137
         */
138
        if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO))
139
                points /= 4;
140
 
141
        /*
142
         * If p's nodes don't overlap ours, it may still help to kill p
143
         * because p may have allocated or otherwise mapped memory on
144
         * this node before. However it will be less likely.
145
         */
146
        if (!cpuset_mems_allowed_intersects(current, p))
147
                points /= 8;
148
 
149
        /*
150
         * Adjust the score by oomkilladj.
151
         */
152
        if (p->oomkilladj) {
153
                if (p->oomkilladj > 0) {
154
                        if (!points)
155
                                points = 1;
156
                        points <<= p->oomkilladj;
157
                } else
158
                        points >>= -(p->oomkilladj);
159
        }
160
 
161
#ifdef DEBUG
162
        printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
163
        p->pid, p->comm, points);
164
#endif
165
        return points;
166
}
167
 
168
/*
169
 * Determine the type of allocation constraint.
170
 */
171
static inline enum oom_constraint constrained_alloc(struct zonelist *zonelist,
172
                                                    gfp_t gfp_mask)
173
{
174
#ifdef CONFIG_NUMA
175
        struct zone **z;
176
        nodemask_t nodes = node_states[N_HIGH_MEMORY];
177
 
178
        for (z = zonelist->zones; *z; z++)
179
                if (cpuset_zone_allowed_softwall(*z, gfp_mask))
180
                        node_clear(zone_to_nid(*z), nodes);
181
                else
182
                        return CONSTRAINT_CPUSET;
183
 
184
        if (!nodes_empty(nodes))
185
                return CONSTRAINT_MEMORY_POLICY;
186
#endif
187
 
188
        return CONSTRAINT_NONE;
189
}
190
 
191
/*
192
 * Simple selection loop. We chose the process with the highest
193
 * number of 'points'. We expect the caller will lock the tasklist.
194
 *
195
 * (not docbooked, we don't want this one cluttering up the manual)
196
 */
197
static struct task_struct *select_bad_process(unsigned long *ppoints)
198
{
199
        struct task_struct *g, *p;
200
        struct task_struct *chosen = NULL;
201
        struct timespec uptime;
202
        *ppoints = 0;
203
 
204
        do_posix_clock_monotonic_gettime(&uptime);
205
        do_each_thread(g, p) {
206
                unsigned long points;
207
 
208
                /*
209
                 * skip kernel threads and tasks which have already released
210
                 * their mm.
211
                 */
212
                if (!p->mm)
213
                        continue;
214
                /* skip the init task */
215
                if (is_global_init(p))
216
                        continue;
217
 
218
                /*
219
                 * This task already has access to memory reserves and is
220
                 * being killed. Don't allow any other task access to the
221
                 * memory reserve.
222
                 *
223
                 * Note: this may have a chance of deadlock if it gets
224
                 * blocked waiting for another task which itself is waiting
225
                 * for memory. Is there a better alternative?
226
                 */
227
                if (test_tsk_thread_flag(p, TIF_MEMDIE))
228
                        return ERR_PTR(-1UL);
229
 
230
                /*
231
                 * This is in the process of releasing memory so wait for it
232
                 * to finish before killing some other task by mistake.
233
                 *
234
                 * However, if p is the current task, we allow the 'kill' to
235
                 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
236
                 * which will allow it to gain access to memory reserves in
237
                 * the process of exiting and releasing its resources.
238
                 * Otherwise we could get an easy OOM deadlock.
239
                 */
240
                if (p->flags & PF_EXITING) {
241
                        if (p != current)
242
                                return ERR_PTR(-1UL);
243
 
244
                        chosen = p;
245
                        *ppoints = ULONG_MAX;
246
                }
247
 
248
                if (p->oomkilladj == OOM_DISABLE)
249
                        continue;
250
 
251
                points = badness(p, uptime.tv_sec);
252
                if (points > *ppoints || !chosen) {
253
                        chosen = p;
254
                        *ppoints = points;
255
                }
256
        } while_each_thread(g, p);
257
 
258
        return chosen;
259
}
260
 
261
/**
262
 * Send SIGKILL to the selected  process irrespective of  CAP_SYS_RAW_IO
263
 * flag though it's unlikely that  we select a process with CAP_SYS_RAW_IO
264
 * set.
265
 */
266
static void __oom_kill_task(struct task_struct *p, int verbose)
267
{
268
        if (is_global_init(p)) {
269
                WARN_ON(1);
270
                printk(KERN_WARNING "tried to kill init!\n");
271
                return;
272
        }
273
 
274
        if (!p->mm) {
275
                WARN_ON(1);
276
                printk(KERN_WARNING "tried to kill an mm-less task!\n");
277
                return;
278
        }
279
 
280
        if (verbose)
281
                printk(KERN_ERR "Killed process %d (%s)\n",
282
                                task_pid_nr(p), p->comm);
283
 
284
        /*
285
         * We give our sacrificial lamb high priority and access to
286
         * all the memory it needs. That way it should be able to
287
         * exit() and clear out its resources quickly...
288
         */
289
        p->time_slice = HZ;
290
        set_tsk_thread_flag(p, TIF_MEMDIE);
291
 
292
        force_sig(SIGKILL, p);
293
}
294
 
295
static int oom_kill_task(struct task_struct *p)
296
{
297
        struct mm_struct *mm;
298
        struct task_struct *g, *q;
299
 
300
        mm = p->mm;
301
 
302
        /* WARNING: mm may not be dereferenced since we did not obtain its
303
         * value from get_task_mm(p).  This is OK since all we need to do is
304
         * compare mm to q->mm below.
305
         *
306
         * Furthermore, even if mm contains a non-NULL value, p->mm may
307
         * change to NULL at any time since we do not hold task_lock(p).
308
         * However, this is of no concern to us.
309
         */
310
 
311
        if (mm == NULL)
312
                return 1;
313
 
314
        /*
315
         * Don't kill the process if any threads are set to OOM_DISABLE
316
         */
317
        do_each_thread(g, q) {
318
                if (q->mm == mm && q->oomkilladj == OOM_DISABLE)
319
                        return 1;
320
        } while_each_thread(g, q);
321
 
322
        __oom_kill_task(p, 1);
323
 
324
        /*
325
         * kill all processes that share the ->mm (i.e. all threads),
326
         * but are in a different thread group. Don't let them have access
327
         * to memory reserves though, otherwise we might deplete all memory.
328
         */
329
        do_each_thread(g, q) {
330
                if (q->mm == mm && !same_thread_group(q, p))
331
                        force_sig(SIGKILL, q);
332
        } while_each_thread(g, q);
333
 
334
        return 0;
335
}
336
 
337
static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
338
                            unsigned long points, const char *message)
339
{
340
        struct task_struct *c;
341
 
342
        if (printk_ratelimit()) {
343
                printk(KERN_WARNING "%s invoked oom-killer: "
344
                        "gfp_mask=0x%x, order=%d, oomkilladj=%d\n",
345
                        current->comm, gfp_mask, order, current->oomkilladj);
346
                dump_stack();
347
                show_mem();
348
        }
349
 
350
        /*
351
         * If the task is already exiting, don't alarm the sysadmin or kill
352
         * its children or threads, just set TIF_MEMDIE so it can die quickly
353
         */
354
        if (p->flags & PF_EXITING) {
355
                __oom_kill_task(p, 0);
356
                return 0;
357
        }
358
 
359
        printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
360
                                        message, task_pid_nr(p), p->comm, points);
361
 
362
        /* Try to kill a child first */
363
        list_for_each_entry(c, &p->children, sibling) {
364
                if (c->mm == p->mm)
365
                        continue;
366
                if (!oom_kill_task(c))
367
                        return 0;
368
        }
369
        return oom_kill_task(p);
370
}
371
 
372
static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
373
 
374
int register_oom_notifier(struct notifier_block *nb)
375
{
376
        return blocking_notifier_chain_register(&oom_notify_list, nb);
377
}
378
EXPORT_SYMBOL_GPL(register_oom_notifier);
379
 
380
int unregister_oom_notifier(struct notifier_block *nb)
381
{
382
        return blocking_notifier_chain_unregister(&oom_notify_list, nb);
383
}
384
EXPORT_SYMBOL_GPL(unregister_oom_notifier);
385
 
386
/*
387
 * Try to acquire the OOM killer lock for the zones in zonelist.  Returns zero
388
 * if a parallel OOM killing is already taking place that includes a zone in
389
 * the zonelist.  Otherwise, locks all zones in the zonelist and returns 1.
390
 */
391
int try_set_zone_oom(struct zonelist *zonelist)
392
{
393
        struct zone **z;
394
        int ret = 1;
395
 
396
        z = zonelist->zones;
397
 
398
        spin_lock(&zone_scan_mutex);
399
        do {
400
                if (zone_is_oom_locked(*z)) {
401
                        ret = 0;
402
                        goto out;
403
                }
404
        } while (*(++z) != NULL);
405
 
406
        /*
407
         * Lock each zone in the zonelist under zone_scan_mutex so a parallel
408
         * invocation of try_set_zone_oom() doesn't succeed when it shouldn't.
409
         */
410
        z = zonelist->zones;
411
        do {
412
                zone_set_flag(*z, ZONE_OOM_LOCKED);
413
        } while (*(++z) != NULL);
414
out:
415
        spin_unlock(&zone_scan_mutex);
416
        return ret;
417
}
418
 
419
/*
420
 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
421
 * allocation attempts with zonelists containing them may now recall the OOM
422
 * killer, if necessary.
423
 */
424
void clear_zonelist_oom(struct zonelist *zonelist)
425
{
426
        struct zone **z;
427
 
428
        z = zonelist->zones;
429
 
430
        spin_lock(&zone_scan_mutex);
431
        do {
432
                zone_clear_flag(*z, ZONE_OOM_LOCKED);
433
        } while (*(++z) != NULL);
434
        spin_unlock(&zone_scan_mutex);
435
}
436
 
437
/**
438
 * out_of_memory - kill the "best" process when we run out of memory
439
 *
440
 * If we run out of memory, we have the choice between either
441
 * killing a random task (bad), letting the system crash (worse)
442
 * OR try to be smart about which process to kill. Note that we
443
 * don't have to be perfect here, we just have to be good.
444
 */
445
void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
446
{
447
        struct task_struct *p;
448
        unsigned long points = 0;
449
        unsigned long freed = 0;
450
        enum oom_constraint constraint;
451
 
452
        blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
453
        if (freed > 0)
454
                /* Got some memory back in the last second. */
455
                return;
456
 
457
        if (sysctl_panic_on_oom == 2)
458
                panic("out of memory. Compulsory panic_on_oom is selected.\n");
459
 
460
        /*
461
         * Check if there were limitations on the allocation (only relevant for
462
         * NUMA) that may require different handling.
463
         */
464
        constraint = constrained_alloc(zonelist, gfp_mask);
465
        read_lock(&tasklist_lock);
466
 
467
        switch (constraint) {
468
        case CONSTRAINT_MEMORY_POLICY:
469
                oom_kill_process(current, gfp_mask, order, points,
470
                                "No available memory (MPOL_BIND)");
471
                break;
472
 
473
        case CONSTRAINT_NONE:
474
                if (sysctl_panic_on_oom)
475
                        panic("out of memory. panic_on_oom is selected\n");
476
                /* Fall-through */
477
        case CONSTRAINT_CPUSET:
478
                if (sysctl_oom_kill_allocating_task) {
479
                        oom_kill_process(current, gfp_mask, order, points,
480
                                        "Out of memory (oom_kill_allocating_task)");
481
                        break;
482
                }
483
retry:
484
                /*
485
                 * Rambo mode: Shoot down a process and hope it solves whatever
486
                 * issues we may have.
487
                 */
488
                p = select_bad_process(&points);
489
 
490
                if (PTR_ERR(p) == -1UL)
491
                        goto out;
492
 
493
                /* Found nothing?!?! Either we hang forever, or we panic. */
494
                if (!p) {
495
                        read_unlock(&tasklist_lock);
496
                        panic("Out of memory and no killable processes...\n");
497
                }
498
 
499
                if (oom_kill_process(p, gfp_mask, order, points,
500
                                     "Out of memory"))
501
                        goto retry;
502
 
503
                break;
504
        }
505
 
506
out:
507
        read_unlock(&tasklist_lock);
508
 
509
        /*
510
         * Give "p" a good chance of killing itself before we
511
         * retry to allocate memory unless "p" is current
512
         */
513
        if (!test_thread_flag(TIF_MEMDIE))
514
                schedule_timeout_uninterruptible(1);
515
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.