OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [mm/] [page-writeback.c] - Blame information for rev 85

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * mm/page-writeback.c
3
 *
4
 * Copyright (C) 2002, Linus Torvalds.
5
 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6
 *
7
 * Contains functions related to writing back dirty pages at the
8
 * address_space level.
9
 *
10
 * 10Apr2002    akpm@zip.com.au
11
 *              Initial version
12
 */
13
 
14
#include <linux/kernel.h>
15
#include <linux/module.h>
16
#include <linux/spinlock.h>
17
#include <linux/fs.h>
18
#include <linux/mm.h>
19
#include <linux/swap.h>
20
#include <linux/slab.h>
21
#include <linux/pagemap.h>
22
#include <linux/writeback.h>
23
#include <linux/init.h>
24
#include <linux/backing-dev.h>
25
#include <linux/task_io_accounting_ops.h>
26
#include <linux/blkdev.h>
27
#include <linux/mpage.h>
28
#include <linux/rmap.h>
29
#include <linux/percpu.h>
30
#include <linux/notifier.h>
31
#include <linux/smp.h>
32
#include <linux/sysctl.h>
33
#include <linux/cpu.h>
34
#include <linux/syscalls.h>
35
#include <linux/buffer_head.h>
36
#include <linux/pagevec.h>
37
 
38
/*
39
 * The maximum number of pages to writeout in a single bdflush/kupdate
40
 * operation.  We do this so we don't hold I_SYNC against an inode for
41
 * enormous amounts of time, which would block a userspace task which has
42
 * been forced to throttle against that inode.  Also, the code reevaluates
43
 * the dirty each time it has written this many pages.
44
 */
45
#define MAX_WRITEBACK_PAGES     1024
46
 
47
/*
48
 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
49
 * will look to see if it needs to force writeback or throttling.
50
 */
51
static long ratelimit_pages = 32;
52
 
53
/*
54
 * When balance_dirty_pages decides that the caller needs to perform some
55
 * non-background writeback, this is how many pages it will attempt to write.
56
 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
57
 * large amounts of I/O are submitted.
58
 */
59
static inline long sync_writeback_pages(void)
60
{
61
        return ratelimit_pages + ratelimit_pages / 2;
62
}
63
 
64
/* The following parameters are exported via /proc/sys/vm */
65
 
66
/*
67
 * Start background writeback (via pdflush) at this percentage
68
 */
69
int dirty_background_ratio = 5;
70
 
71
/*
72
 * The generator of dirty data starts writeback at this percentage
73
 */
74
int vm_dirty_ratio = 10;
75
 
76
/*
77
 * The interval between `kupdate'-style writebacks, in jiffies
78
 */
79
int dirty_writeback_interval = 5 * HZ;
80
 
81
/*
82
 * The longest number of jiffies for which data is allowed to remain dirty
83
 */
84
int dirty_expire_interval = 30 * HZ;
85
 
86
/*
87
 * Flag that makes the machine dump writes/reads and block dirtyings.
88
 */
89
int block_dump;
90
 
91
/*
92
 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
93
 * a full sync is triggered after this time elapses without any disk activity.
94
 */
95
int laptop_mode;
96
 
97
EXPORT_SYMBOL(laptop_mode);
98
 
99
/* End of sysctl-exported parameters */
100
 
101
 
102
static void background_writeout(unsigned long _min_pages);
103
 
104
/*
105
 * Scale the writeback cache size proportional to the relative writeout speeds.
106
 *
107
 * We do this by keeping a floating proportion between BDIs, based on page
108
 * writeback completions [end_page_writeback()]. Those devices that write out
109
 * pages fastest will get the larger share, while the slower will get a smaller
110
 * share.
111
 *
112
 * We use page writeout completions because we are interested in getting rid of
113
 * dirty pages. Having them written out is the primary goal.
114
 *
115
 * We introduce a concept of time, a period over which we measure these events,
116
 * because demand can/will vary over time. The length of this period itself is
117
 * measured in page writeback completions.
118
 *
119
 */
120
static struct prop_descriptor vm_completions;
121
static struct prop_descriptor vm_dirties;
122
 
123
static unsigned long determine_dirtyable_memory(void);
124
 
125
/*
126
 * couple the period to the dirty_ratio:
127
 *
128
 *   period/2 ~ roundup_pow_of_two(dirty limit)
129
 */
130
static int calc_period_shift(void)
131
{
132
        unsigned long dirty_total;
133
 
134
        dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 100;
135
        return 2 + ilog2(dirty_total - 1);
136
}
137
 
138
/*
139
 * update the period when the dirty ratio changes.
140
 */
141
int dirty_ratio_handler(struct ctl_table *table, int write,
142
                struct file *filp, void __user *buffer, size_t *lenp,
143
                loff_t *ppos)
144
{
145
        int old_ratio = vm_dirty_ratio;
146
        int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
147
        if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
148
                int shift = calc_period_shift();
149
                prop_change_shift(&vm_completions, shift);
150
                prop_change_shift(&vm_dirties, shift);
151
        }
152
        return ret;
153
}
154
 
155
/*
156
 * Increment the BDI's writeout completion count and the global writeout
157
 * completion count. Called from test_clear_page_writeback().
158
 */
159
static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
160
{
161
        __prop_inc_percpu(&vm_completions, &bdi->completions);
162
}
163
 
164
static inline void task_dirty_inc(struct task_struct *tsk)
165
{
166
        prop_inc_single(&vm_dirties, &tsk->dirties);
167
}
168
 
169
/*
170
 * Obtain an accurate fraction of the BDI's portion.
171
 */
172
static void bdi_writeout_fraction(struct backing_dev_info *bdi,
173
                long *numerator, long *denominator)
174
{
175
        if (bdi_cap_writeback_dirty(bdi)) {
176
                prop_fraction_percpu(&vm_completions, &bdi->completions,
177
                                numerator, denominator);
178
        } else {
179
                *numerator = 0;
180
                *denominator = 1;
181
        }
182
}
183
 
184
/*
185
 * Clip the earned share of dirty pages to that which is actually available.
186
 * This avoids exceeding the total dirty_limit when the floating averages
187
 * fluctuate too quickly.
188
 */
189
static void
190
clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty)
191
{
192
        long avail_dirty;
193
 
194
        avail_dirty = dirty -
195
                (global_page_state(NR_FILE_DIRTY) +
196
                 global_page_state(NR_WRITEBACK) +
197
                 global_page_state(NR_UNSTABLE_NFS));
198
 
199
        if (avail_dirty < 0)
200
                avail_dirty = 0;
201
 
202
        avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
203
                bdi_stat(bdi, BDI_WRITEBACK);
204
 
205
        *pbdi_dirty = min(*pbdi_dirty, avail_dirty);
206
}
207
 
208
static inline void task_dirties_fraction(struct task_struct *tsk,
209
                long *numerator, long *denominator)
210
{
211
        prop_fraction_single(&vm_dirties, &tsk->dirties,
212
                                numerator, denominator);
213
}
214
 
215
/*
216
 * scale the dirty limit
217
 *
218
 * task specific dirty limit:
219
 *
220
 *   dirty -= (dirty/8) * p_{t}
221
 */
222
void task_dirty_limit(struct task_struct *tsk, long *pdirty)
223
{
224
        long numerator, denominator;
225
        long dirty = *pdirty;
226
        u64 inv = dirty >> 3;
227
 
228
        task_dirties_fraction(tsk, &numerator, &denominator);
229
        inv *= numerator;
230
        do_div(inv, denominator);
231
 
232
        dirty -= inv;
233
        if (dirty < *pdirty/2)
234
                dirty = *pdirty/2;
235
 
236
        *pdirty = dirty;
237
}
238
 
239
/*
240
 * Work out the current dirty-memory clamping and background writeout
241
 * thresholds.
242
 *
243
 * The main aim here is to lower them aggressively if there is a lot of mapped
244
 * memory around.  To avoid stressing page reclaim with lots of unreclaimable
245
 * pages.  It is better to clamp down on writers than to start swapping, and
246
 * performing lots of scanning.
247
 *
248
 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
249
 *
250
 * We don't permit the clamping level to fall below 5% - that is getting rather
251
 * excessive.
252
 *
253
 * We make sure that the background writeout level is below the adjusted
254
 * clamping level.
255
 */
256
 
257
static unsigned long highmem_dirtyable_memory(unsigned long total)
258
{
259
#ifdef CONFIG_HIGHMEM
260
        int node;
261
        unsigned long x = 0;
262
 
263
        for_each_node_state(node, N_HIGH_MEMORY) {
264
                struct zone *z =
265
                        &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
266
 
267
                x += zone_page_state(z, NR_FREE_PAGES)
268
                        + zone_page_state(z, NR_INACTIVE)
269
                        + zone_page_state(z, NR_ACTIVE);
270
        }
271
        /*
272
         * Make sure that the number of highmem pages is never larger
273
         * than the number of the total dirtyable memory. This can only
274
         * occur in very strange VM situations but we want to make sure
275
         * that this does not occur.
276
         */
277
        return min(x, total);
278
#else
279
        return 0;
280
#endif
281
}
282
 
283
static unsigned long determine_dirtyable_memory(void)
284
{
285
        unsigned long x;
286
 
287
        x = global_page_state(NR_FREE_PAGES)
288
                + global_page_state(NR_INACTIVE)
289
                + global_page_state(NR_ACTIVE);
290
        x -= highmem_dirtyable_memory(x);
291
        return x + 1;   /* Ensure that we never return 0 */
292
}
293
 
294
static void
295
get_dirty_limits(long *pbackground, long *pdirty, long *pbdi_dirty,
296
                 struct backing_dev_info *bdi)
297
{
298
        int background_ratio;           /* Percentages */
299
        int dirty_ratio;
300
        long background;
301
        long dirty;
302
        unsigned long available_memory = determine_dirtyable_memory();
303
        struct task_struct *tsk;
304
 
305
        dirty_ratio = vm_dirty_ratio;
306
        if (dirty_ratio < 5)
307
                dirty_ratio = 5;
308
 
309
        background_ratio = dirty_background_ratio;
310
        if (background_ratio >= dirty_ratio)
311
                background_ratio = dirty_ratio / 2;
312
 
313
        background = (background_ratio * available_memory) / 100;
314
        dirty = (dirty_ratio * available_memory) / 100;
315
        tsk = current;
316
        if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
317
                background += background / 4;
318
                dirty += dirty / 4;
319
        }
320
        *pbackground = background;
321
        *pdirty = dirty;
322
 
323
        if (bdi) {
324
                u64 bdi_dirty = dirty;
325
                long numerator, denominator;
326
 
327
                /*
328
                 * Calculate this BDI's share of the dirty ratio.
329
                 */
330
                bdi_writeout_fraction(bdi, &numerator, &denominator);
331
 
332
                bdi_dirty *= numerator;
333
                do_div(bdi_dirty, denominator);
334
 
335
                *pbdi_dirty = bdi_dirty;
336
                clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
337
                task_dirty_limit(current, pbdi_dirty);
338
        }
339
}
340
 
341
/*
342
 * balance_dirty_pages() must be called by processes which are generating dirty
343
 * data.  It looks at the number of dirty pages in the machine and will force
344
 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
345
 * If we're over `background_thresh' then pdflush is woken to perform some
346
 * writeout.
347
 */
348
static void balance_dirty_pages(struct address_space *mapping)
349
{
350
        long nr_reclaimable, bdi_nr_reclaimable;
351
        long nr_writeback, bdi_nr_writeback;
352
        long background_thresh;
353
        long dirty_thresh;
354
        long bdi_thresh;
355
        unsigned long pages_written = 0;
356
        unsigned long write_chunk = sync_writeback_pages();
357
 
358
        struct backing_dev_info *bdi = mapping->backing_dev_info;
359
 
360
        for (;;) {
361
                struct writeback_control wbc = {
362
                        .bdi            = bdi,
363
                        .sync_mode      = WB_SYNC_NONE,
364
                        .older_than_this = NULL,
365
                        .nr_to_write    = write_chunk,
366
                        .range_cyclic   = 1,
367
                };
368
 
369
                get_dirty_limits(&background_thresh, &dirty_thresh,
370
                                &bdi_thresh, bdi);
371
 
372
                nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
373
                                        global_page_state(NR_UNSTABLE_NFS);
374
                nr_writeback = global_page_state(NR_WRITEBACK);
375
 
376
                bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
377
                bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
378
 
379
                if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
380
                        break;
381
 
382
                /*
383
                 * Throttle it only when the background writeback cannot
384
                 * catch-up. This avoids (excessively) small writeouts
385
                 * when the bdi limits are ramping up.
386
                 */
387
                if (nr_reclaimable + nr_writeback <
388
                                (background_thresh + dirty_thresh) / 2)
389
                        break;
390
 
391
                if (!bdi->dirty_exceeded)
392
                        bdi->dirty_exceeded = 1;
393
 
394
                /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
395
                 * Unstable writes are a feature of certain networked
396
                 * filesystems (i.e. NFS) in which data may have been
397
                 * written to the server's write cache, but has not yet
398
                 * been flushed to permanent storage.
399
                 */
400
                if (bdi_nr_reclaimable) {
401
                        writeback_inodes(&wbc);
402
                        pages_written += write_chunk - wbc.nr_to_write;
403
                        get_dirty_limits(&background_thresh, &dirty_thresh,
404
                                       &bdi_thresh, bdi);
405
                }
406
 
407
                /*
408
                 * In order to avoid the stacked BDI deadlock we need
409
                 * to ensure we accurately count the 'dirty' pages when
410
                 * the threshold is low.
411
                 *
412
                 * Otherwise it would be possible to get thresh+n pages
413
                 * reported dirty, even though there are thresh-m pages
414
                 * actually dirty; with m+n sitting in the percpu
415
                 * deltas.
416
                 */
417
                if (bdi_thresh < 2*bdi_stat_error(bdi)) {
418
                        bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
419
                        bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
420
                } else if (bdi_nr_reclaimable) {
421
                        bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
422
                        bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
423
                }
424
 
425
                if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
426
                        break;
427
                if (pages_written >= write_chunk)
428
                        break;          /* We've done our duty */
429
 
430
                congestion_wait(WRITE, HZ/10);
431
        }
432
 
433
        if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
434
                        bdi->dirty_exceeded)
435
                bdi->dirty_exceeded = 0;
436
 
437
        if (writeback_in_progress(bdi))
438
                return;         /* pdflush is already working this queue */
439
 
440
        /*
441
         * In laptop mode, we wait until hitting the higher threshold before
442
         * starting background writeout, and then write out all the way down
443
         * to the lower threshold.  So slow writers cause minimal disk activity.
444
         *
445
         * In normal mode, we start background writeout at the lower
446
         * background_thresh, to keep the amount of dirty memory low.
447
         */
448
        if ((laptop_mode && pages_written) ||
449
                        (!laptop_mode && (global_page_state(NR_FILE_DIRTY)
450
                                          + global_page_state(NR_UNSTABLE_NFS)
451
                                          > background_thresh)))
452
                pdflush_operation(background_writeout, 0);
453
}
454
 
455
void set_page_dirty_balance(struct page *page, int page_mkwrite)
456
{
457
        if (set_page_dirty(page) || page_mkwrite) {
458
                struct address_space *mapping = page_mapping(page);
459
 
460
                if (mapping)
461
                        balance_dirty_pages_ratelimited(mapping);
462
        }
463
}
464
 
465
/**
466
 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
467
 * @mapping: address_space which was dirtied
468
 * @nr_pages_dirtied: number of pages which the caller has just dirtied
469
 *
470
 * Processes which are dirtying memory should call in here once for each page
471
 * which was newly dirtied.  The function will periodically check the system's
472
 * dirty state and will initiate writeback if needed.
473
 *
474
 * On really big machines, get_writeback_state is expensive, so try to avoid
475
 * calling it too often (ratelimiting).  But once we're over the dirty memory
476
 * limit we decrease the ratelimiting by a lot, to prevent individual processes
477
 * from overshooting the limit by (ratelimit_pages) each.
478
 */
479
void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
480
                                        unsigned long nr_pages_dirtied)
481
{
482
        static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
483
        unsigned long ratelimit;
484
        unsigned long *p;
485
 
486
        ratelimit = ratelimit_pages;
487
        if (mapping->backing_dev_info->dirty_exceeded)
488
                ratelimit = 8;
489
 
490
        /*
491
         * Check the rate limiting. Also, we do not want to throttle real-time
492
         * tasks in balance_dirty_pages(). Period.
493
         */
494
        preempt_disable();
495
        p =  &__get_cpu_var(ratelimits);
496
        *p += nr_pages_dirtied;
497
        if (unlikely(*p >= ratelimit)) {
498
                *p = 0;
499
                preempt_enable();
500
                balance_dirty_pages(mapping);
501
                return;
502
        }
503
        preempt_enable();
504
}
505
EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
506
 
507
void throttle_vm_writeout(gfp_t gfp_mask)
508
{
509
        long background_thresh;
510
        long dirty_thresh;
511
 
512
        for ( ; ; ) {
513
                get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
514
 
515
                /*
516
                 * Boost the allowable dirty threshold a bit for page
517
                 * allocators so they don't get DoS'ed by heavy writers
518
                 */
519
                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
520
 
521
                if (global_page_state(NR_UNSTABLE_NFS) +
522
                        global_page_state(NR_WRITEBACK) <= dirty_thresh)
523
                                break;
524
                congestion_wait(WRITE, HZ/10);
525
 
526
                /*
527
                 * The caller might hold locks which can prevent IO completion
528
                 * or progress in the filesystem.  So we cannot just sit here
529
                 * waiting for IO to complete.
530
                 */
531
                if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
532
                        break;
533
        }
534
}
535
 
536
/*
537
 * writeback at least _min_pages, and keep writing until the amount of dirty
538
 * memory is less than the background threshold, or until we're all clean.
539
 */
540
static void background_writeout(unsigned long _min_pages)
541
{
542
        long min_pages = _min_pages;
543
        struct writeback_control wbc = {
544
                .bdi            = NULL,
545
                .sync_mode      = WB_SYNC_NONE,
546
                .older_than_this = NULL,
547
                .nr_to_write    = 0,
548
                .nonblocking    = 1,
549
                .range_cyclic   = 1,
550
        };
551
 
552
        for ( ; ; ) {
553
                long background_thresh;
554
                long dirty_thresh;
555
 
556
                get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
557
                if (global_page_state(NR_FILE_DIRTY) +
558
                        global_page_state(NR_UNSTABLE_NFS) < background_thresh
559
                                && min_pages <= 0)
560
                        break;
561
                wbc.encountered_congestion = 0;
562
                wbc.nr_to_write = MAX_WRITEBACK_PAGES;
563
                wbc.pages_skipped = 0;
564
                writeback_inodes(&wbc);
565
                min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
566
                if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
567
                        /* Wrote less than expected */
568
                        congestion_wait(WRITE, HZ/10);
569
                        if (!wbc.encountered_congestion)
570
                                break;
571
                }
572
        }
573
}
574
 
575
/*
576
 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
577
 * the whole world.  Returns 0 if a pdflush thread was dispatched.  Returns
578
 * -1 if all pdflush threads were busy.
579
 */
580
int wakeup_pdflush(long nr_pages)
581
{
582
        if (nr_pages == 0)
583
                nr_pages = global_page_state(NR_FILE_DIRTY) +
584
                                global_page_state(NR_UNSTABLE_NFS);
585
        return pdflush_operation(background_writeout, nr_pages);
586
}
587
 
588
static void wb_timer_fn(unsigned long unused);
589
static void laptop_timer_fn(unsigned long unused);
590
 
591
static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
592
static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
593
 
594
/*
595
 * Periodic writeback of "old" data.
596
 *
597
 * Define "old": the first time one of an inode's pages is dirtied, we mark the
598
 * dirtying-time in the inode's address_space.  So this periodic writeback code
599
 * just walks the superblock inode list, writing back any inodes which are
600
 * older than a specific point in time.
601
 *
602
 * Try to run once per dirty_writeback_interval.  But if a writeback event
603
 * takes longer than a dirty_writeback_interval interval, then leave a
604
 * one-second gap.
605
 *
606
 * older_than_this takes precedence over nr_to_write.  So we'll only write back
607
 * all dirty pages if they are all attached to "old" mappings.
608
 */
609
static void wb_kupdate(unsigned long arg)
610
{
611
        unsigned long oldest_jif;
612
        unsigned long start_jif;
613
        unsigned long next_jif;
614
        long nr_to_write;
615
        struct writeback_control wbc = {
616
                .bdi            = NULL,
617
                .sync_mode      = WB_SYNC_NONE,
618
                .older_than_this = &oldest_jif,
619
                .nr_to_write    = 0,
620
                .nonblocking    = 1,
621
                .for_kupdate    = 1,
622
                .range_cyclic   = 1,
623
        };
624
 
625
        sync_supers();
626
 
627
        oldest_jif = jiffies - dirty_expire_interval;
628
        start_jif = jiffies;
629
        next_jif = start_jif + dirty_writeback_interval;
630
        nr_to_write = global_page_state(NR_FILE_DIRTY) +
631
                        global_page_state(NR_UNSTABLE_NFS) +
632
                        (inodes_stat.nr_inodes - inodes_stat.nr_unused);
633
        while (nr_to_write > 0) {
634
                wbc.encountered_congestion = 0;
635
                wbc.nr_to_write = MAX_WRITEBACK_PAGES;
636
                writeback_inodes(&wbc);
637
                if (wbc.nr_to_write > 0) {
638
                        if (wbc.encountered_congestion)
639
                                congestion_wait(WRITE, HZ/10);
640
                        else
641
                                break;  /* All the old data is written */
642
                }
643
                nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
644
        }
645
        if (time_before(next_jif, jiffies + HZ))
646
                next_jif = jiffies + HZ;
647
        if (dirty_writeback_interval)
648
                mod_timer(&wb_timer, next_jif);
649
}
650
 
651
/*
652
 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
653
 */
654
int dirty_writeback_centisecs_handler(ctl_table *table, int write,
655
        struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
656
{
657
        proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
658
        if (dirty_writeback_interval)
659
                mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
660
        else
661
                del_timer(&wb_timer);
662
        return 0;
663
}
664
 
665
static void wb_timer_fn(unsigned long unused)
666
{
667
        if (pdflush_operation(wb_kupdate, 0) < 0)
668
                mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
669
}
670
 
671
static void laptop_flush(unsigned long unused)
672
{
673
        sys_sync();
674
}
675
 
676
static void laptop_timer_fn(unsigned long unused)
677
{
678
        pdflush_operation(laptop_flush, 0);
679
}
680
 
681
/*
682
 * We've spun up the disk and we're in laptop mode: schedule writeback
683
 * of all dirty data a few seconds from now.  If the flush is already scheduled
684
 * then push it back - the user is still using the disk.
685
 */
686
void laptop_io_completion(void)
687
{
688
        mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
689
}
690
 
691
/*
692
 * We're in laptop mode and we've just synced. The sync's writes will have
693
 * caused another writeback to be scheduled by laptop_io_completion.
694
 * Nothing needs to be written back anymore, so we unschedule the writeback.
695
 */
696
void laptop_sync_completion(void)
697
{
698
        del_timer(&laptop_mode_wb_timer);
699
}
700
 
701
/*
702
 * If ratelimit_pages is too high then we can get into dirty-data overload
703
 * if a large number of processes all perform writes at the same time.
704
 * If it is too low then SMP machines will call the (expensive)
705
 * get_writeback_state too often.
706
 *
707
 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
708
 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
709
 * thresholds before writeback cuts in.
710
 *
711
 * But the limit should not be set too high.  Because it also controls the
712
 * amount of memory which the balance_dirty_pages() caller has to write back.
713
 * If this is too large then the caller will block on the IO queue all the
714
 * time.  So limit it to four megabytes - the balance_dirty_pages() caller
715
 * will write six megabyte chunks, max.
716
 */
717
 
718
void writeback_set_ratelimit(void)
719
{
720
        ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
721
        if (ratelimit_pages < 16)
722
                ratelimit_pages = 16;
723
        if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
724
                ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
725
}
726
 
727
static int __cpuinit
728
ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
729
{
730
        writeback_set_ratelimit();
731
        return NOTIFY_DONE;
732
}
733
 
734
static struct notifier_block __cpuinitdata ratelimit_nb = {
735
        .notifier_call  = ratelimit_handler,
736
        .next           = NULL,
737
};
738
 
739
/*
740
 * Called early on to tune the page writeback dirty limits.
741
 *
742
 * We used to scale dirty pages according to how total memory
743
 * related to pages that could be allocated for buffers (by
744
 * comparing nr_free_buffer_pages() to vm_total_pages.
745
 *
746
 * However, that was when we used "dirty_ratio" to scale with
747
 * all memory, and we don't do that any more. "dirty_ratio"
748
 * is now applied to total non-HIGHPAGE memory (by subtracting
749
 * totalhigh_pages from vm_total_pages), and as such we can't
750
 * get into the old insane situation any more where we had
751
 * large amounts of dirty pages compared to a small amount of
752
 * non-HIGHMEM memory.
753
 *
754
 * But we might still want to scale the dirty_ratio by how
755
 * much memory the box has..
756
 */
757
void __init page_writeback_init(void)
758
{
759
        int shift;
760
 
761
        mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
762
        writeback_set_ratelimit();
763
        register_cpu_notifier(&ratelimit_nb);
764
 
765
        shift = calc_period_shift();
766
        prop_descriptor_init(&vm_completions, shift);
767
        prop_descriptor_init(&vm_dirties, shift);
768
}
769
 
770
/**
771
 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
772
 * @mapping: address space structure to write
773
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
774
 * @writepage: function called for each page
775
 * @data: data passed to writepage function
776
 *
777
 * If a page is already under I/O, write_cache_pages() skips it, even
778
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
779
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
780
 * and msync() need to guarantee that all the data which was dirty at the time
781
 * the call was made get new I/O started against them.  If wbc->sync_mode is
782
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
783
 * existing IO to complete.
784
 */
785
int write_cache_pages(struct address_space *mapping,
786
                      struct writeback_control *wbc, writepage_t writepage,
787
                      void *data)
788
{
789
        struct backing_dev_info *bdi = mapping->backing_dev_info;
790
        int ret = 0;
791
        int done = 0;
792
        struct pagevec pvec;
793
        int nr_pages;
794
        pgoff_t index;
795
        pgoff_t end;            /* Inclusive */
796
        int scanned = 0;
797
        int range_whole = 0;
798
 
799
        if (wbc->nonblocking && bdi_write_congested(bdi)) {
800
                wbc->encountered_congestion = 1;
801
                return 0;
802
        }
803
 
804
        pagevec_init(&pvec, 0);
805
        if (wbc->range_cyclic) {
806
                index = mapping->writeback_index; /* Start from prev offset */
807
                end = -1;
808
        } else {
809
                index = wbc->range_start >> PAGE_CACHE_SHIFT;
810
                end = wbc->range_end >> PAGE_CACHE_SHIFT;
811
                if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
812
                        range_whole = 1;
813
                scanned = 1;
814
        }
815
retry:
816
        while (!done && (index <= end) &&
817
               (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
818
                                              PAGECACHE_TAG_DIRTY,
819
                                              min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
820
                unsigned i;
821
 
822
                scanned = 1;
823
                for (i = 0; i < nr_pages; i++) {
824
                        struct page *page = pvec.pages[i];
825
 
826
                        /*
827
                         * At this point we hold neither mapping->tree_lock nor
828
                         * lock on the page itself: the page may be truncated or
829
                         * invalidated (changing page->mapping to NULL), or even
830
                         * swizzled back from swapper_space to tmpfs file
831
                         * mapping
832
                         */
833
                        lock_page(page);
834
 
835
                        if (unlikely(page->mapping != mapping)) {
836
                                unlock_page(page);
837
                                continue;
838
                        }
839
 
840
                        if (!wbc->range_cyclic && page->index > end) {
841
                                done = 1;
842
                                unlock_page(page);
843
                                continue;
844
                        }
845
 
846
                        if (wbc->sync_mode != WB_SYNC_NONE)
847
                                wait_on_page_writeback(page);
848
 
849
                        if (PageWriteback(page) ||
850
                            !clear_page_dirty_for_io(page)) {
851
                                unlock_page(page);
852
                                continue;
853
                        }
854
 
855
                        ret = (*writepage)(page, wbc, data);
856
 
857
                        if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
858
                                unlock_page(page);
859
                                ret = 0;
860
                        }
861
                        if (ret || (--(wbc->nr_to_write) <= 0))
862
                                done = 1;
863
                        if (wbc->nonblocking && bdi_write_congested(bdi)) {
864
                                wbc->encountered_congestion = 1;
865
                                done = 1;
866
                        }
867
                }
868
                pagevec_release(&pvec);
869
                cond_resched();
870
        }
871
        if (!scanned && !done) {
872
                /*
873
                 * We hit the last page and there is more work to be done: wrap
874
                 * back to the start of the file
875
                 */
876
                scanned = 1;
877
                index = 0;
878
                goto retry;
879
        }
880
        if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
881
                mapping->writeback_index = index;
882
        return ret;
883
}
884
EXPORT_SYMBOL(write_cache_pages);
885
 
886
/*
887
 * Function used by generic_writepages to call the real writepage
888
 * function and set the mapping flags on error
889
 */
890
static int __writepage(struct page *page, struct writeback_control *wbc,
891
                       void *data)
892
{
893
        struct address_space *mapping = data;
894
        int ret = mapping->a_ops->writepage(page, wbc);
895
        mapping_set_error(mapping, ret);
896
        return ret;
897
}
898
 
899
/**
900
 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
901
 * @mapping: address space structure to write
902
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
903
 *
904
 * This is a library function, which implements the writepages()
905
 * address_space_operation.
906
 */
907
int generic_writepages(struct address_space *mapping,
908
                       struct writeback_control *wbc)
909
{
910
        /* deal with chardevs and other special file */
911
        if (!mapping->a_ops->writepage)
912
                return 0;
913
 
914
        return write_cache_pages(mapping, wbc, __writepage, mapping);
915
}
916
 
917
EXPORT_SYMBOL(generic_writepages);
918
 
919
int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
920
{
921
        int ret;
922
 
923
        if (wbc->nr_to_write <= 0)
924
                return 0;
925
        wbc->for_writepages = 1;
926
        if (mapping->a_ops->writepages)
927
                ret = mapping->a_ops->writepages(mapping, wbc);
928
        else
929
                ret = generic_writepages(mapping, wbc);
930
        wbc->for_writepages = 0;
931
        return ret;
932
}
933
 
934
/**
935
 * write_one_page - write out a single page and optionally wait on I/O
936
 * @page: the page to write
937
 * @wait: if true, wait on writeout
938
 *
939
 * The page must be locked by the caller and will be unlocked upon return.
940
 *
941
 * write_one_page() returns a negative error code if I/O failed.
942
 */
943
int write_one_page(struct page *page, int wait)
944
{
945
        struct address_space *mapping = page->mapping;
946
        int ret = 0;
947
        struct writeback_control wbc = {
948
                .sync_mode = WB_SYNC_ALL,
949
                .nr_to_write = 1,
950
        };
951
 
952
        BUG_ON(!PageLocked(page));
953
 
954
        if (wait)
955
                wait_on_page_writeback(page);
956
 
957
        if (clear_page_dirty_for_io(page)) {
958
                page_cache_get(page);
959
                ret = mapping->a_ops->writepage(page, &wbc);
960
                if (ret == 0 && wait) {
961
                        wait_on_page_writeback(page);
962
                        if (PageError(page))
963
                                ret = -EIO;
964
                }
965
                page_cache_release(page);
966
        } else {
967
                unlock_page(page);
968
        }
969
        return ret;
970
}
971
EXPORT_SYMBOL(write_one_page);
972
 
973
/*
974
 * For address_spaces which do not use buffers nor write back.
975
 */
976
int __set_page_dirty_no_writeback(struct page *page)
977
{
978
        if (!PageDirty(page))
979
                SetPageDirty(page);
980
        return 0;
981
}
982
 
983
/*
984
 * For address_spaces which do not use buffers.  Just tag the page as dirty in
985
 * its radix tree.
986
 *
987
 * This is also used when a single buffer is being dirtied: we want to set the
988
 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
989
 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
990
 *
991
 * Most callers have locked the page, which pins the address_space in memory.
992
 * But zap_pte_range() does not lock the page, however in that case the
993
 * mapping is pinned by the vma's ->vm_file reference.
994
 *
995
 * We take care to handle the case where the page was truncated from the
996
 * mapping by re-checking page_mapping() inside tree_lock.
997
 */
998
int __set_page_dirty_nobuffers(struct page *page)
999
{
1000
        if (!TestSetPageDirty(page)) {
1001
                struct address_space *mapping = page_mapping(page);
1002
                struct address_space *mapping2;
1003
 
1004
                if (!mapping)
1005
                        return 1;
1006
 
1007
                write_lock_irq(&mapping->tree_lock);
1008
                mapping2 = page_mapping(page);
1009
                if (mapping2) { /* Race with truncate? */
1010
                        BUG_ON(mapping2 != mapping);
1011
                        WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1012
                        if (mapping_cap_account_dirty(mapping)) {
1013
                                __inc_zone_page_state(page, NR_FILE_DIRTY);
1014
                                __inc_bdi_stat(mapping->backing_dev_info,
1015
                                                BDI_RECLAIMABLE);
1016
                                task_io_account_write(PAGE_CACHE_SIZE);
1017
                        }
1018
                        radix_tree_tag_set(&mapping->page_tree,
1019
                                page_index(page), PAGECACHE_TAG_DIRTY);
1020
                }
1021
                write_unlock_irq(&mapping->tree_lock);
1022
                if (mapping->host) {
1023
                        /* !PageAnon && !swapper_space */
1024
                        __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1025
                }
1026
                return 1;
1027
        }
1028
        return 0;
1029
}
1030
EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1031
 
1032
/*
1033
 * When a writepage implementation decides that it doesn't want to write this
1034
 * page for some reason, it should redirty the locked page via
1035
 * redirty_page_for_writepage() and it should then unlock the page and return 0
1036
 */
1037
int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1038
{
1039
        wbc->pages_skipped++;
1040
        return __set_page_dirty_nobuffers(page);
1041
}
1042
EXPORT_SYMBOL(redirty_page_for_writepage);
1043
 
1044
/*
1045
 * If the mapping doesn't provide a set_page_dirty a_op, then
1046
 * just fall through and assume that it wants buffer_heads.
1047
 */
1048
static int __set_page_dirty(struct page *page)
1049
{
1050
        struct address_space *mapping = page_mapping(page);
1051
 
1052
        if (likely(mapping)) {
1053
                int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1054
#ifdef CONFIG_BLOCK
1055
                if (!spd)
1056
                        spd = __set_page_dirty_buffers;
1057
#endif
1058
                return (*spd)(page);
1059
        }
1060
        if (!PageDirty(page)) {
1061
                if (!TestSetPageDirty(page))
1062
                        return 1;
1063
        }
1064
        return 0;
1065
}
1066
 
1067
int fastcall set_page_dirty(struct page *page)
1068
{
1069
        int ret = __set_page_dirty(page);
1070
        if (ret)
1071
                task_dirty_inc(current);
1072
        return ret;
1073
}
1074
EXPORT_SYMBOL(set_page_dirty);
1075
 
1076
/*
1077
 * set_page_dirty() is racy if the caller has no reference against
1078
 * page->mapping->host, and if the page is unlocked.  This is because another
1079
 * CPU could truncate the page off the mapping and then free the mapping.
1080
 *
1081
 * Usually, the page _is_ locked, or the caller is a user-space process which
1082
 * holds a reference on the inode by having an open file.
1083
 *
1084
 * In other cases, the page should be locked before running set_page_dirty().
1085
 */
1086
int set_page_dirty_lock(struct page *page)
1087
{
1088
        int ret;
1089
 
1090
        lock_page_nosync(page);
1091
        ret = set_page_dirty(page);
1092
        unlock_page(page);
1093
        return ret;
1094
}
1095
EXPORT_SYMBOL(set_page_dirty_lock);
1096
 
1097
/*
1098
 * Clear a page's dirty flag, while caring for dirty memory accounting.
1099
 * Returns true if the page was previously dirty.
1100
 *
1101
 * This is for preparing to put the page under writeout.  We leave the page
1102
 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1103
 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1104
 * implementation will run either set_page_writeback() or set_page_dirty(),
1105
 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1106
 * back into sync.
1107
 *
1108
 * This incoherency between the page's dirty flag and radix-tree tag is
1109
 * unfortunate, but it only exists while the page is locked.
1110
 */
1111
int clear_page_dirty_for_io(struct page *page)
1112
{
1113
        struct address_space *mapping = page_mapping(page);
1114
 
1115
        BUG_ON(!PageLocked(page));
1116
 
1117
        ClearPageReclaim(page);
1118
        if (mapping && mapping_cap_account_dirty(mapping)) {
1119
                /*
1120
                 * Yes, Virginia, this is indeed insane.
1121
                 *
1122
                 * We use this sequence to make sure that
1123
                 *  (a) we account for dirty stats properly
1124
                 *  (b) we tell the low-level filesystem to
1125
                 *      mark the whole page dirty if it was
1126
                 *      dirty in a pagetable. Only to then
1127
                 *  (c) clean the page again and return 1 to
1128
                 *      cause the writeback.
1129
                 *
1130
                 * This way we avoid all nasty races with the
1131
                 * dirty bit in multiple places and clearing
1132
                 * them concurrently from different threads.
1133
                 *
1134
                 * Note! Normally the "set_page_dirty(page)"
1135
                 * has no effect on the actual dirty bit - since
1136
                 * that will already usually be set. But we
1137
                 * need the side effects, and it can help us
1138
                 * avoid races.
1139
                 *
1140
                 * We basically use the page "master dirty bit"
1141
                 * as a serialization point for all the different
1142
                 * threads doing their things.
1143
                 */
1144
                if (page_mkclean(page))
1145
                        set_page_dirty(page);
1146
                /*
1147
                 * We carefully synchronise fault handlers against
1148
                 * installing a dirty pte and marking the page dirty
1149
                 * at this point. We do this by having them hold the
1150
                 * page lock at some point after installing their
1151
                 * pte, but before marking the page dirty.
1152
                 * Pages are always locked coming in here, so we get
1153
                 * the desired exclusion. See mm/memory.c:do_wp_page()
1154
                 * for more comments.
1155
                 */
1156
                if (TestClearPageDirty(page)) {
1157
                        dec_zone_page_state(page, NR_FILE_DIRTY);
1158
                        dec_bdi_stat(mapping->backing_dev_info,
1159
                                        BDI_RECLAIMABLE);
1160
                        return 1;
1161
                }
1162
                return 0;
1163
        }
1164
        return TestClearPageDirty(page);
1165
}
1166
EXPORT_SYMBOL(clear_page_dirty_for_io);
1167
 
1168
int test_clear_page_writeback(struct page *page)
1169
{
1170
        struct address_space *mapping = page_mapping(page);
1171
        int ret;
1172
 
1173
        if (mapping) {
1174
                struct backing_dev_info *bdi = mapping->backing_dev_info;
1175
                unsigned long flags;
1176
 
1177
                write_lock_irqsave(&mapping->tree_lock, flags);
1178
                ret = TestClearPageWriteback(page);
1179
                if (ret) {
1180
                        radix_tree_tag_clear(&mapping->page_tree,
1181
                                                page_index(page),
1182
                                                PAGECACHE_TAG_WRITEBACK);
1183
                        if (bdi_cap_writeback_dirty(bdi)) {
1184
                                __dec_bdi_stat(bdi, BDI_WRITEBACK);
1185
                                __bdi_writeout_inc(bdi);
1186
                        }
1187
                }
1188
                write_unlock_irqrestore(&mapping->tree_lock, flags);
1189
        } else {
1190
                ret = TestClearPageWriteback(page);
1191
        }
1192
        if (ret)
1193
                dec_zone_page_state(page, NR_WRITEBACK);
1194
        return ret;
1195
}
1196
 
1197
int test_set_page_writeback(struct page *page)
1198
{
1199
        struct address_space *mapping = page_mapping(page);
1200
        int ret;
1201
 
1202
        if (mapping) {
1203
                struct backing_dev_info *bdi = mapping->backing_dev_info;
1204
                unsigned long flags;
1205
 
1206
                write_lock_irqsave(&mapping->tree_lock, flags);
1207
                ret = TestSetPageWriteback(page);
1208
                if (!ret) {
1209
                        radix_tree_tag_set(&mapping->page_tree,
1210
                                                page_index(page),
1211
                                                PAGECACHE_TAG_WRITEBACK);
1212
                        if (bdi_cap_writeback_dirty(bdi))
1213
                                __inc_bdi_stat(bdi, BDI_WRITEBACK);
1214
                }
1215
                if (!PageDirty(page))
1216
                        radix_tree_tag_clear(&mapping->page_tree,
1217
                                                page_index(page),
1218
                                                PAGECACHE_TAG_DIRTY);
1219
                write_unlock_irqrestore(&mapping->tree_lock, flags);
1220
        } else {
1221
                ret = TestSetPageWriteback(page);
1222
        }
1223
        if (!ret)
1224
                inc_zone_page_state(page, NR_WRITEBACK);
1225
        return ret;
1226
 
1227
}
1228
EXPORT_SYMBOL(test_set_page_writeback);
1229
 
1230
/*
1231
 * Return true if any of the pages in the mapping are marked with the
1232
 * passed tag.
1233
 */
1234
int mapping_tagged(struct address_space *mapping, int tag)
1235
{
1236
        int ret;
1237
        rcu_read_lock();
1238
        ret = radix_tree_tagged(&mapping->page_tree, tag);
1239
        rcu_read_unlock();
1240
        return ret;
1241
}
1242
EXPORT_SYMBOL(mapping_tagged);

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.