OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [mm/] [readahead.c] - Blame information for rev 85

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * mm/readahead.c - address_space-level file readahead.
3
 *
4
 * Copyright (C) 2002, Linus Torvalds
5
 *
6
 * 09Apr2002    akpm@zip.com.au
7
 *              Initial version.
8
 */
9
 
10
#include <linux/kernel.h>
11
#include <linux/fs.h>
12
#include <linux/mm.h>
13
#include <linux/module.h>
14
#include <linux/blkdev.h>
15
#include <linux/backing-dev.h>
16
#include <linux/task_io_accounting_ops.h>
17
#include <linux/pagevec.h>
18
#include <linux/pagemap.h>
19
 
20
void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
21
{
22
}
23
EXPORT_SYMBOL(default_unplug_io_fn);
24
 
25
struct backing_dev_info default_backing_dev_info = {
26
        .ra_pages       = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE,
27
        .state          = 0,
28
        .capabilities   = BDI_CAP_MAP_COPY,
29
        .unplug_io_fn   = default_unplug_io_fn,
30
};
31
EXPORT_SYMBOL_GPL(default_backing_dev_info);
32
 
33
/*
34
 * Initialise a struct file's readahead state.  Assumes that the caller has
35
 * memset *ra to zero.
36
 */
37
void
38
file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
39
{
40
        ra->ra_pages = mapping->backing_dev_info->ra_pages;
41
        ra->prev_pos = -1;
42
}
43
EXPORT_SYMBOL_GPL(file_ra_state_init);
44
 
45
#define list_to_page(head) (list_entry((head)->prev, struct page, lru))
46
 
47
/**
48
 * read_cache_pages - populate an address space with some pages & start reads against them
49
 * @mapping: the address_space
50
 * @pages: The address of a list_head which contains the target pages.  These
51
 *   pages have their ->index populated and are otherwise uninitialised.
52
 * @filler: callback routine for filling a single page.
53
 * @data: private data for the callback routine.
54
 *
55
 * Hides the details of the LRU cache etc from the filesystems.
56
 */
57
int read_cache_pages(struct address_space *mapping, struct list_head *pages,
58
                        int (*filler)(void *, struct page *), void *data)
59
{
60
        struct page *page;
61
        int ret = 0;
62
 
63
        while (!list_empty(pages)) {
64
                page = list_to_page(pages);
65
                list_del(&page->lru);
66
                if (add_to_page_cache_lru(page, mapping,
67
                                        page->index, GFP_KERNEL)) {
68
                        page_cache_release(page);
69
                        continue;
70
                }
71
                page_cache_release(page);
72
 
73
                ret = filler(data, page);
74
                if (unlikely(ret)) {
75
                        put_pages_list(pages);
76
                        break;
77
                }
78
                task_io_account_read(PAGE_CACHE_SIZE);
79
        }
80
        return ret;
81
}
82
 
83
EXPORT_SYMBOL(read_cache_pages);
84
 
85
static int read_pages(struct address_space *mapping, struct file *filp,
86
                struct list_head *pages, unsigned nr_pages)
87
{
88
        unsigned page_idx;
89
        int ret;
90
 
91
        if (mapping->a_ops->readpages) {
92
                ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
93
                /* Clean up the remaining pages */
94
                put_pages_list(pages);
95
                goto out;
96
        }
97
 
98
        for (page_idx = 0; page_idx < nr_pages; page_idx++) {
99
                struct page *page = list_to_page(pages);
100
                list_del(&page->lru);
101
                if (!add_to_page_cache_lru(page, mapping,
102
                                        page->index, GFP_KERNEL)) {
103
                        mapping->a_ops->readpage(filp, page);
104
                }
105
                page_cache_release(page);
106
        }
107
        ret = 0;
108
out:
109
        return ret;
110
}
111
 
112
/*
113
 * do_page_cache_readahead actually reads a chunk of disk.  It allocates all
114
 * the pages first, then submits them all for I/O. This avoids the very bad
115
 * behaviour which would occur if page allocations are causing VM writeback.
116
 * We really don't want to intermingle reads and writes like that.
117
 *
118
 * Returns the number of pages requested, or the maximum amount of I/O allowed.
119
 *
120
 * do_page_cache_readahead() returns -1 if it encountered request queue
121
 * congestion.
122
 */
123
static int
124
__do_page_cache_readahead(struct address_space *mapping, struct file *filp,
125
                        pgoff_t offset, unsigned long nr_to_read,
126
                        unsigned long lookahead_size)
127
{
128
        struct inode *inode = mapping->host;
129
        struct page *page;
130
        unsigned long end_index;        /* The last page we want to read */
131
        LIST_HEAD(page_pool);
132
        int page_idx;
133
        int ret = 0;
134
        loff_t isize = i_size_read(inode);
135
 
136
        if (isize == 0)
137
                goto out;
138
 
139
        end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
140
 
141
        /*
142
         * Preallocate as many pages as we will need.
143
         */
144
        for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
145
                pgoff_t page_offset = offset + page_idx;
146
 
147
                if (page_offset > end_index)
148
                        break;
149
 
150
                rcu_read_lock();
151
                page = radix_tree_lookup(&mapping->page_tree, page_offset);
152
                rcu_read_unlock();
153
                if (page)
154
                        continue;
155
 
156
                page = page_cache_alloc_cold(mapping);
157
                if (!page)
158
                        break;
159
                page->index = page_offset;
160
                list_add(&page->lru, &page_pool);
161
                if (page_idx == nr_to_read - lookahead_size)
162
                        SetPageReadahead(page);
163
                ret++;
164
        }
165
 
166
        /*
167
         * Now start the IO.  We ignore I/O errors - if the page is not
168
         * uptodate then the caller will launch readpage again, and
169
         * will then handle the error.
170
         */
171
        if (ret)
172
                read_pages(mapping, filp, &page_pool, ret);
173
        BUG_ON(!list_empty(&page_pool));
174
out:
175
        return ret;
176
}
177
 
178
/*
179
 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
180
 * memory at once.
181
 */
182
int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
183
                pgoff_t offset, unsigned long nr_to_read)
184
{
185
        int ret = 0;
186
 
187
        if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
188
                return -EINVAL;
189
 
190
        while (nr_to_read) {
191
                int err;
192
 
193
                unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
194
 
195
                if (this_chunk > nr_to_read)
196
                        this_chunk = nr_to_read;
197
                err = __do_page_cache_readahead(mapping, filp,
198
                                                offset, this_chunk, 0);
199
                if (err < 0) {
200
                        ret = err;
201
                        break;
202
                }
203
                ret += err;
204
                offset += this_chunk;
205
                nr_to_read -= this_chunk;
206
        }
207
        return ret;
208
}
209
 
210
/*
211
 * This version skips the IO if the queue is read-congested, and will tell the
212
 * block layer to abandon the readahead if request allocation would block.
213
 *
214
 * force_page_cache_readahead() will ignore queue congestion and will block on
215
 * request queues.
216
 */
217
int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
218
                        pgoff_t offset, unsigned long nr_to_read)
219
{
220
        if (bdi_read_congested(mapping->backing_dev_info))
221
                return -1;
222
 
223
        return __do_page_cache_readahead(mapping, filp, offset, nr_to_read, 0);
224
}
225
 
226
/*
227
 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
228
 * sensible upper limit.
229
 */
230
unsigned long max_sane_readahead(unsigned long nr)
231
{
232
        return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE)
233
                + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
234
}
235
 
236
static int __init readahead_init(void)
237
{
238
        return bdi_init(&default_backing_dev_info);
239
}
240
subsys_initcall(readahead_init);
241
 
242
/*
243
 * Submit IO for the read-ahead request in file_ra_state.
244
 */
245
static unsigned long ra_submit(struct file_ra_state *ra,
246
                       struct address_space *mapping, struct file *filp)
247
{
248
        int actual;
249
 
250
        actual = __do_page_cache_readahead(mapping, filp,
251
                                        ra->start, ra->size, ra->async_size);
252
 
253
        return actual;
254
}
255
 
256
/*
257
 * Set the initial window size, round to next power of 2 and square
258
 * for small size, x 4 for medium, and x 2 for large
259
 * for 128k (32 page) max ra
260
 * 1-8 page = 32k initial, > 8 page = 128k initial
261
 */
262
static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
263
{
264
        unsigned long newsize = roundup_pow_of_two(size);
265
 
266
        if (newsize <= max / 32)
267
                newsize = newsize * 4;
268
        else if (newsize <= max / 4)
269
                newsize = newsize * 2;
270
        else
271
                newsize = max;
272
 
273
        return newsize;
274
}
275
 
276
/*
277
 *  Get the previous window size, ramp it up, and
278
 *  return it as the new window size.
279
 */
280
static unsigned long get_next_ra_size(struct file_ra_state *ra,
281
                                                unsigned long max)
282
{
283
        unsigned long cur = ra->size;
284
        unsigned long newsize;
285
 
286
        if (cur < max / 16)
287
                newsize = 4 * cur;
288
        else
289
                newsize = 2 * cur;
290
 
291
        return min(newsize, max);
292
}
293
 
294
/*
295
 * On-demand readahead design.
296
 *
297
 * The fields in struct file_ra_state represent the most-recently-executed
298
 * readahead attempt:
299
 *
300
 *                        |<----- async_size ---------|
301
 *     |------------------- size -------------------->|
302
 *     |==================#===========================|
303
 *     ^start             ^page marked with PG_readahead
304
 *
305
 * To overlap application thinking time and disk I/O time, we do
306
 * `readahead pipelining': Do not wait until the application consumed all
307
 * readahead pages and stalled on the missing page at readahead_index;
308
 * Instead, submit an asynchronous readahead I/O as soon as there are
309
 * only async_size pages left in the readahead window. Normally async_size
310
 * will be equal to size, for maximum pipelining.
311
 *
312
 * In interleaved sequential reads, concurrent streams on the same fd can
313
 * be invalidating each other's readahead state. So we flag the new readahead
314
 * page at (start+size-async_size) with PG_readahead, and use it as readahead
315
 * indicator. The flag won't be set on already cached pages, to avoid the
316
 * readahead-for-nothing fuss, saving pointless page cache lookups.
317
 *
318
 * prev_pos tracks the last visited byte in the _previous_ read request.
319
 * It should be maintained by the caller, and will be used for detecting
320
 * small random reads. Note that the readahead algorithm checks loosely
321
 * for sequential patterns. Hence interleaved reads might be served as
322
 * sequential ones.
323
 *
324
 * There is a special-case: if the first page which the application tries to
325
 * read happens to be the first page of the file, it is assumed that a linear
326
 * read is about to happen and the window is immediately set to the initial size
327
 * based on I/O request size and the max_readahead.
328
 *
329
 * The code ramps up the readahead size aggressively at first, but slow down as
330
 * it approaches max_readhead.
331
 */
332
 
333
/*
334
 * A minimal readahead algorithm for trivial sequential/random reads.
335
 */
336
static unsigned long
337
ondemand_readahead(struct address_space *mapping,
338
                   struct file_ra_state *ra, struct file *filp,
339
                   bool hit_readahead_marker, pgoff_t offset,
340
                   unsigned long req_size)
341
{
342
        int     max = ra->ra_pages;     /* max readahead pages */
343
        pgoff_t prev_offset;
344
        int     sequential;
345
 
346
        /*
347
         * It's the expected callback offset, assume sequential access.
348
         * Ramp up sizes, and push forward the readahead window.
349
         */
350
        if (offset && (offset == (ra->start + ra->size - ra->async_size) ||
351
                        offset == (ra->start + ra->size))) {
352
                ra->start += ra->size;
353
                ra->size = get_next_ra_size(ra, max);
354
                ra->async_size = ra->size;
355
                goto readit;
356
        }
357
 
358
        prev_offset = ra->prev_pos >> PAGE_CACHE_SHIFT;
359
        sequential = offset - prev_offset <= 1UL || req_size > max;
360
 
361
        /*
362
         * Standalone, small read.
363
         * Read as is, and do not pollute the readahead state.
364
         */
365
        if (!hit_readahead_marker && !sequential) {
366
                return __do_page_cache_readahead(mapping, filp,
367
                                                offset, req_size, 0);
368
        }
369
 
370
        /*
371
         * Hit a marked page without valid readahead state.
372
         * E.g. interleaved reads.
373
         * Query the pagecache for async_size, which normally equals to
374
         * readahead size. Ramp it up and use it as the new readahead size.
375
         */
376
        if (hit_readahead_marker) {
377
                pgoff_t start;
378
 
379
                read_lock_irq(&mapping->tree_lock);
380
                start = radix_tree_next_hole(&mapping->page_tree, offset, max+1);
381
                read_unlock_irq(&mapping->tree_lock);
382
 
383
                if (!start || start - offset > max)
384
                        return 0;
385
 
386
                ra->start = start;
387
                ra->size = start - offset;      /* old async_size */
388
                ra->size = get_next_ra_size(ra, max);
389
                ra->async_size = ra->size;
390
                goto readit;
391
        }
392
 
393
        /*
394
         * It may be one of
395
         *      - first read on start of file
396
         *      - sequential cache miss
397
         *      - oversize random read
398
         * Start readahead for it.
399
         */
400
        ra->start = offset;
401
        ra->size = get_init_ra_size(req_size, max);
402
        ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
403
 
404
readit:
405
        return ra_submit(ra, mapping, filp);
406
}
407
 
408
/**
409
 * page_cache_sync_readahead - generic file readahead
410
 * @mapping: address_space which holds the pagecache and I/O vectors
411
 * @ra: file_ra_state which holds the readahead state
412
 * @filp: passed on to ->readpage() and ->readpages()
413
 * @offset: start offset into @mapping, in pagecache page-sized units
414
 * @req_size: hint: total size of the read which the caller is performing in
415
 *            pagecache pages
416
 *
417
 * page_cache_sync_readahead() should be called when a cache miss happened:
418
 * it will submit the read.  The readahead logic may decide to piggyback more
419
 * pages onto the read request if access patterns suggest it will improve
420
 * performance.
421
 */
422
void page_cache_sync_readahead(struct address_space *mapping,
423
                               struct file_ra_state *ra, struct file *filp,
424
                               pgoff_t offset, unsigned long req_size)
425
{
426
        /* no read-ahead */
427
        if (!ra->ra_pages)
428
                return;
429
 
430
        /* do read-ahead */
431
        ondemand_readahead(mapping, ra, filp, false, offset, req_size);
432
}
433
EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
434
 
435
/**
436
 * page_cache_async_readahead - file readahead for marked pages
437
 * @mapping: address_space which holds the pagecache and I/O vectors
438
 * @ra: file_ra_state which holds the readahead state
439
 * @filp: passed on to ->readpage() and ->readpages()
440
 * @page: the page at @offset which has the PG_readahead flag set
441
 * @offset: start offset into @mapping, in pagecache page-sized units
442
 * @req_size: hint: total size of the read which the caller is performing in
443
 *            pagecache pages
444
 *
445
 * page_cache_async_ondemand() should be called when a page is used which
446
 * has the PG_readahead flag: this is a marker to suggest that the application
447
 * has used up enough of the readahead window that we should start pulling in
448
 * more pages. */
449
void
450
page_cache_async_readahead(struct address_space *mapping,
451
                           struct file_ra_state *ra, struct file *filp,
452
                           struct page *page, pgoff_t offset,
453
                           unsigned long req_size)
454
{
455
        /* no read-ahead */
456
        if (!ra->ra_pages)
457
                return;
458
 
459
        /*
460
         * Same bit is used for PG_readahead and PG_reclaim.
461
         */
462
        if (PageWriteback(page))
463
                return;
464
 
465
        ClearPageReadahead(page);
466
 
467
        /*
468
         * Defer asynchronous read-ahead on IO congestion.
469
         */
470
        if (bdi_read_congested(mapping->backing_dev_info))
471
                return;
472
 
473
        /* do read-ahead */
474
        ondemand_readahead(mapping, ra, filp, true, offset, req_size);
475
}
476
EXPORT_SYMBOL_GPL(page_cache_async_readahead);

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.