OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [mm/] [rmap.c] - Blame information for rev 83

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * mm/rmap.c - physical to virtual reverse mappings
3
 *
4
 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5
 * Released under the General Public License (GPL).
6
 *
7
 * Simple, low overhead reverse mapping scheme.
8
 * Please try to keep this thing as modular as possible.
9
 *
10
 * Provides methods for unmapping each kind of mapped page:
11
 * the anon methods track anonymous pages, and
12
 * the file methods track pages belonging to an inode.
13
 *
14
 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15
 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16
 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17
 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18
 */
19
 
20
/*
21
 * Lock ordering in mm:
22
 *
23
 * inode->i_mutex       (while writing or truncating, not reading or faulting)
24
 *   inode->i_alloc_sem (vmtruncate_range)
25
 *   mm->mmap_sem
26
 *     page->flags PG_locked (lock_page)
27
 *       mapping->i_mmap_lock
28
 *         anon_vma->lock
29
 *           mm->page_table_lock or pte_lock
30
 *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31
 *             swap_lock (in swap_duplicate, swap_info_get)
32
 *               mmlist_lock (in mmput, drain_mmlist and others)
33
 *               mapping->private_lock (in __set_page_dirty_buffers)
34
 *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35
 *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36
 *                 mapping->tree_lock (widely used, in set_page_dirty,
37
 *                           in arch-dependent flush_dcache_mmap_lock,
38
 *                           within inode_lock in __sync_single_inode)
39
 *                   zone->lock (within radix tree node alloc)
40
 */
41
 
42
#include <linux/mm.h>
43
#include <linux/pagemap.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/slab.h>
47
#include <linux/init.h>
48
#include <linux/rmap.h>
49
#include <linux/rcupdate.h>
50
#include <linux/module.h>
51
#include <linux/kallsyms.h>
52
 
53
#include <asm/tlbflush.h>
54
 
55
struct kmem_cache *anon_vma_cachep;
56
 
57
/* This must be called under the mmap_sem. */
58
int anon_vma_prepare(struct vm_area_struct *vma)
59
{
60
        struct anon_vma *anon_vma = vma->anon_vma;
61
 
62
        might_sleep();
63
        if (unlikely(!anon_vma)) {
64
                struct mm_struct *mm = vma->vm_mm;
65
                struct anon_vma *allocated, *locked;
66
 
67
                anon_vma = find_mergeable_anon_vma(vma);
68
                if (anon_vma) {
69
                        allocated = NULL;
70
                        locked = anon_vma;
71
                        spin_lock(&locked->lock);
72
                } else {
73
                        anon_vma = anon_vma_alloc();
74
                        if (unlikely(!anon_vma))
75
                                return -ENOMEM;
76
                        allocated = anon_vma;
77
                        locked = NULL;
78
                }
79
 
80
                /* page_table_lock to protect against threads */
81
                spin_lock(&mm->page_table_lock);
82
                if (likely(!vma->anon_vma)) {
83
                        vma->anon_vma = anon_vma;
84
                        list_add_tail(&vma->anon_vma_node, &anon_vma->head);
85
                        allocated = NULL;
86
                }
87
                spin_unlock(&mm->page_table_lock);
88
 
89
                if (locked)
90
                        spin_unlock(&locked->lock);
91
                if (unlikely(allocated))
92
                        anon_vma_free(allocated);
93
        }
94
        return 0;
95
}
96
 
97
void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
98
{
99
        BUG_ON(vma->anon_vma != next->anon_vma);
100
        list_del(&next->anon_vma_node);
101
}
102
 
103
void __anon_vma_link(struct vm_area_struct *vma)
104
{
105
        struct anon_vma *anon_vma = vma->anon_vma;
106
 
107
        if (anon_vma)
108
                list_add_tail(&vma->anon_vma_node, &anon_vma->head);
109
}
110
 
111
void anon_vma_link(struct vm_area_struct *vma)
112
{
113
        struct anon_vma *anon_vma = vma->anon_vma;
114
 
115
        if (anon_vma) {
116
                spin_lock(&anon_vma->lock);
117
                list_add_tail(&vma->anon_vma_node, &anon_vma->head);
118
                spin_unlock(&anon_vma->lock);
119
        }
120
}
121
 
122
void anon_vma_unlink(struct vm_area_struct *vma)
123
{
124
        struct anon_vma *anon_vma = vma->anon_vma;
125
        int empty;
126
 
127
        if (!anon_vma)
128
                return;
129
 
130
        spin_lock(&anon_vma->lock);
131
        list_del(&vma->anon_vma_node);
132
 
133
        /* We must garbage collect the anon_vma if it's empty */
134
        empty = list_empty(&anon_vma->head);
135
        spin_unlock(&anon_vma->lock);
136
 
137
        if (empty)
138
                anon_vma_free(anon_vma);
139
}
140
 
141
static void anon_vma_ctor(struct kmem_cache *cachep, void *data)
142
{
143
        struct anon_vma *anon_vma = data;
144
 
145
        spin_lock_init(&anon_vma->lock);
146
        INIT_LIST_HEAD(&anon_vma->head);
147
}
148
 
149
void __init anon_vma_init(void)
150
{
151
        anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
152
                        0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
153
}
154
 
155
/*
156
 * Getting a lock on a stable anon_vma from a page off the LRU is
157
 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
158
 */
159
static struct anon_vma *page_lock_anon_vma(struct page *page)
160
{
161
        struct anon_vma *anon_vma;
162
        unsigned long anon_mapping;
163
 
164
        rcu_read_lock();
165
        anon_mapping = (unsigned long) page->mapping;
166
        if (!(anon_mapping & PAGE_MAPPING_ANON))
167
                goto out;
168
        if (!page_mapped(page))
169
                goto out;
170
 
171
        anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
172
        spin_lock(&anon_vma->lock);
173
        return anon_vma;
174
out:
175
        rcu_read_unlock();
176
        return NULL;
177
}
178
 
179
static void page_unlock_anon_vma(struct anon_vma *anon_vma)
180
{
181
        spin_unlock(&anon_vma->lock);
182
        rcu_read_unlock();
183
}
184
 
185
/*
186
 * At what user virtual address is page expected in @vma?
187
 * Returns virtual address or -EFAULT if page's index/offset is not
188
 * within the range mapped the @vma.
189
 */
190
static inline unsigned long
191
vma_address(struct page *page, struct vm_area_struct *vma)
192
{
193
        pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
194
        unsigned long address;
195
 
196
        address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
197
        if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
198
                /* page should be within @vma mapping range */
199
                return -EFAULT;
200
        }
201
        return address;
202
}
203
 
204
/*
205
 * At what user virtual address is page expected in vma? checking that the
206
 * page matches the vma: currently only used on anon pages, by unuse_vma;
207
 */
208
unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
209
{
210
        if (PageAnon(page)) {
211
                if ((void *)vma->anon_vma !=
212
                    (void *)page->mapping - PAGE_MAPPING_ANON)
213
                        return -EFAULT;
214
        } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
215
                if (!vma->vm_file ||
216
                    vma->vm_file->f_mapping != page->mapping)
217
                        return -EFAULT;
218
        } else
219
                return -EFAULT;
220
        return vma_address(page, vma);
221
}
222
 
223
/*
224
 * Check that @page is mapped at @address into @mm.
225
 *
226
 * On success returns with pte mapped and locked.
227
 */
228
pte_t *page_check_address(struct page *page, struct mm_struct *mm,
229
                          unsigned long address, spinlock_t **ptlp)
230
{
231
        pgd_t *pgd;
232
        pud_t *pud;
233
        pmd_t *pmd;
234
        pte_t *pte;
235
        spinlock_t *ptl;
236
 
237
        pgd = pgd_offset(mm, address);
238
        if (!pgd_present(*pgd))
239
                return NULL;
240
 
241
        pud = pud_offset(pgd, address);
242
        if (!pud_present(*pud))
243
                return NULL;
244
 
245
        pmd = pmd_offset(pud, address);
246
        if (!pmd_present(*pmd))
247
                return NULL;
248
 
249
        pte = pte_offset_map(pmd, address);
250
        /* Make a quick check before getting the lock */
251
        if (!pte_present(*pte)) {
252
                pte_unmap(pte);
253
                return NULL;
254
        }
255
 
256
        ptl = pte_lockptr(mm, pmd);
257
        spin_lock(ptl);
258
        if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
259
                *ptlp = ptl;
260
                return pte;
261
        }
262
        pte_unmap_unlock(pte, ptl);
263
        return NULL;
264
}
265
 
266
/*
267
 * Subfunctions of page_referenced: page_referenced_one called
268
 * repeatedly from either page_referenced_anon or page_referenced_file.
269
 */
270
static int page_referenced_one(struct page *page,
271
        struct vm_area_struct *vma, unsigned int *mapcount)
272
{
273
        struct mm_struct *mm = vma->vm_mm;
274
        unsigned long address;
275
        pte_t *pte;
276
        spinlock_t *ptl;
277
        int referenced = 0;
278
 
279
        address = vma_address(page, vma);
280
        if (address == -EFAULT)
281
                goto out;
282
 
283
        pte = page_check_address(page, mm, address, &ptl);
284
        if (!pte)
285
                goto out;
286
 
287
        if (ptep_clear_flush_young(vma, address, pte))
288
                referenced++;
289
 
290
        /* Pretend the page is referenced if the task has the
291
           swap token and is in the middle of a page fault. */
292
        if (mm != current->mm && has_swap_token(mm) &&
293
                        rwsem_is_locked(&mm->mmap_sem))
294
                referenced++;
295
 
296
        (*mapcount)--;
297
        pte_unmap_unlock(pte, ptl);
298
out:
299
        return referenced;
300
}
301
 
302
static int page_referenced_anon(struct page *page)
303
{
304
        unsigned int mapcount;
305
        struct anon_vma *anon_vma;
306
        struct vm_area_struct *vma;
307
        int referenced = 0;
308
 
309
        anon_vma = page_lock_anon_vma(page);
310
        if (!anon_vma)
311
                return referenced;
312
 
313
        mapcount = page_mapcount(page);
314
        list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
315
                referenced += page_referenced_one(page, vma, &mapcount);
316
                if (!mapcount)
317
                        break;
318
        }
319
 
320
        page_unlock_anon_vma(anon_vma);
321
        return referenced;
322
}
323
 
324
/**
325
 * page_referenced_file - referenced check for object-based rmap
326
 * @page: the page we're checking references on.
327
 *
328
 * For an object-based mapped page, find all the places it is mapped and
329
 * check/clear the referenced flag.  This is done by following the page->mapping
330
 * pointer, then walking the chain of vmas it holds.  It returns the number
331
 * of references it found.
332
 *
333
 * This function is only called from page_referenced for object-based pages.
334
 */
335
static int page_referenced_file(struct page *page)
336
{
337
        unsigned int mapcount;
338
        struct address_space *mapping = page->mapping;
339
        pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
340
        struct vm_area_struct *vma;
341
        struct prio_tree_iter iter;
342
        int referenced = 0;
343
 
344
        /*
345
         * The caller's checks on page->mapping and !PageAnon have made
346
         * sure that this is a file page: the check for page->mapping
347
         * excludes the case just before it gets set on an anon page.
348
         */
349
        BUG_ON(PageAnon(page));
350
 
351
        /*
352
         * The page lock not only makes sure that page->mapping cannot
353
         * suddenly be NULLified by truncation, it makes sure that the
354
         * structure at mapping cannot be freed and reused yet,
355
         * so we can safely take mapping->i_mmap_lock.
356
         */
357
        BUG_ON(!PageLocked(page));
358
 
359
        spin_lock(&mapping->i_mmap_lock);
360
 
361
        /*
362
         * i_mmap_lock does not stabilize mapcount at all, but mapcount
363
         * is more likely to be accurate if we note it after spinning.
364
         */
365
        mapcount = page_mapcount(page);
366
 
367
        vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
368
                if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
369
                                  == (VM_LOCKED|VM_MAYSHARE)) {
370
                        referenced++;
371
                        break;
372
                }
373
                referenced += page_referenced_one(page, vma, &mapcount);
374
                if (!mapcount)
375
                        break;
376
        }
377
 
378
        spin_unlock(&mapping->i_mmap_lock);
379
        return referenced;
380
}
381
 
382
/**
383
 * page_referenced - test if the page was referenced
384
 * @page: the page to test
385
 * @is_locked: caller holds lock on the page
386
 *
387
 * Quick test_and_clear_referenced for all mappings to a page,
388
 * returns the number of ptes which referenced the page.
389
 */
390
int page_referenced(struct page *page, int is_locked)
391
{
392
        int referenced = 0;
393
 
394
        if (page_test_and_clear_young(page))
395
                referenced++;
396
 
397
        if (TestClearPageReferenced(page))
398
                referenced++;
399
 
400
        if (page_mapped(page) && page->mapping) {
401
                if (PageAnon(page))
402
                        referenced += page_referenced_anon(page);
403
                else if (is_locked)
404
                        referenced += page_referenced_file(page);
405
                else if (TestSetPageLocked(page))
406
                        referenced++;
407
                else {
408
                        if (page->mapping)
409
                                referenced += page_referenced_file(page);
410
                        unlock_page(page);
411
                }
412
        }
413
        return referenced;
414
}
415
 
416
static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
417
{
418
        struct mm_struct *mm = vma->vm_mm;
419
        unsigned long address;
420
        pte_t *pte;
421
        spinlock_t *ptl;
422
        int ret = 0;
423
 
424
        address = vma_address(page, vma);
425
        if (address == -EFAULT)
426
                goto out;
427
 
428
        pte = page_check_address(page, mm, address, &ptl);
429
        if (!pte)
430
                goto out;
431
 
432
        if (pte_dirty(*pte) || pte_write(*pte)) {
433
                pte_t entry;
434
 
435
                flush_cache_page(vma, address, pte_pfn(*pte));
436
                entry = ptep_clear_flush(vma, address, pte);
437
                entry = pte_wrprotect(entry);
438
                entry = pte_mkclean(entry);
439
                set_pte_at(mm, address, pte, entry);
440
                ret = 1;
441
        }
442
 
443
        pte_unmap_unlock(pte, ptl);
444
out:
445
        return ret;
446
}
447
 
448
static int page_mkclean_file(struct address_space *mapping, struct page *page)
449
{
450
        pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
451
        struct vm_area_struct *vma;
452
        struct prio_tree_iter iter;
453
        int ret = 0;
454
 
455
        BUG_ON(PageAnon(page));
456
 
457
        spin_lock(&mapping->i_mmap_lock);
458
        vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
459
                if (vma->vm_flags & VM_SHARED)
460
                        ret += page_mkclean_one(page, vma);
461
        }
462
        spin_unlock(&mapping->i_mmap_lock);
463
        return ret;
464
}
465
 
466
int page_mkclean(struct page *page)
467
{
468
        int ret = 0;
469
 
470
        BUG_ON(!PageLocked(page));
471
 
472
        if (page_mapped(page)) {
473
                struct address_space *mapping = page_mapping(page);
474
                if (mapping) {
475
                        ret = page_mkclean_file(mapping, page);
476
                        if (page_test_dirty(page)) {
477
                                page_clear_dirty(page);
478
                                ret = 1;
479
                        }
480
                }
481
        }
482
 
483
        return ret;
484
}
485
EXPORT_SYMBOL_GPL(page_mkclean);
486
 
487
/**
488
 * page_set_anon_rmap - setup new anonymous rmap
489
 * @page:       the page to add the mapping to
490
 * @vma:        the vm area in which the mapping is added
491
 * @address:    the user virtual address mapped
492
 */
493
static void __page_set_anon_rmap(struct page *page,
494
        struct vm_area_struct *vma, unsigned long address)
495
{
496
        struct anon_vma *anon_vma = vma->anon_vma;
497
 
498
        BUG_ON(!anon_vma);
499
        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
500
        page->mapping = (struct address_space *) anon_vma;
501
 
502
        page->index = linear_page_index(vma, address);
503
 
504
        /*
505
         * nr_mapped state can be updated without turning off
506
         * interrupts because it is not modified via interrupt.
507
         */
508
        __inc_zone_page_state(page, NR_ANON_PAGES);
509
}
510
 
511
/**
512
 * page_set_anon_rmap - sanity check anonymous rmap addition
513
 * @page:       the page to add the mapping to
514
 * @vma:        the vm area in which the mapping is added
515
 * @address:    the user virtual address mapped
516
 */
517
static void __page_check_anon_rmap(struct page *page,
518
        struct vm_area_struct *vma, unsigned long address)
519
{
520
#ifdef CONFIG_DEBUG_VM
521
        /*
522
         * The page's anon-rmap details (mapping and index) are guaranteed to
523
         * be set up correctly at this point.
524
         *
525
         * We have exclusion against page_add_anon_rmap because the caller
526
         * always holds the page locked, except if called from page_dup_rmap,
527
         * in which case the page is already known to be setup.
528
         *
529
         * We have exclusion against page_add_new_anon_rmap because those pages
530
         * are initially only visible via the pagetables, and the pte is locked
531
         * over the call to page_add_new_anon_rmap.
532
         */
533
        struct anon_vma *anon_vma = vma->anon_vma;
534
        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
535
        BUG_ON(page->mapping != (struct address_space *)anon_vma);
536
        BUG_ON(page->index != linear_page_index(vma, address));
537
#endif
538
}
539
 
540
/**
541
 * page_add_anon_rmap - add pte mapping to an anonymous page
542
 * @page:       the page to add the mapping to
543
 * @vma:        the vm area in which the mapping is added
544
 * @address:    the user virtual address mapped
545
 *
546
 * The caller needs to hold the pte lock and the page must be locked.
547
 */
548
void page_add_anon_rmap(struct page *page,
549
        struct vm_area_struct *vma, unsigned long address)
550
{
551
        VM_BUG_ON(!PageLocked(page));
552
        VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
553
        if (atomic_inc_and_test(&page->_mapcount))
554
                __page_set_anon_rmap(page, vma, address);
555
        else
556
                __page_check_anon_rmap(page, vma, address);
557
}
558
 
559
/*
560
 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
561
 * @page:       the page to add the mapping to
562
 * @vma:        the vm area in which the mapping is added
563
 * @address:    the user virtual address mapped
564
 *
565
 * Same as page_add_anon_rmap but must only be called on *new* pages.
566
 * This means the inc-and-test can be bypassed.
567
 * Page does not have to be locked.
568
 */
569
void page_add_new_anon_rmap(struct page *page,
570
        struct vm_area_struct *vma, unsigned long address)
571
{
572
        BUG_ON(address < vma->vm_start || address >= vma->vm_end);
573
        atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
574
        __page_set_anon_rmap(page, vma, address);
575
}
576
 
577
/**
578
 * page_add_file_rmap - add pte mapping to a file page
579
 * @page: the page to add the mapping to
580
 *
581
 * The caller needs to hold the pte lock.
582
 */
583
void page_add_file_rmap(struct page *page)
584
{
585
        if (atomic_inc_and_test(&page->_mapcount))
586
                __inc_zone_page_state(page, NR_FILE_MAPPED);
587
}
588
 
589
#ifdef CONFIG_DEBUG_VM
590
/**
591
 * page_dup_rmap - duplicate pte mapping to a page
592
 * @page:       the page to add the mapping to
593
 *
594
 * For copy_page_range only: minimal extract from page_add_file_rmap /
595
 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
596
 * quicker.
597
 *
598
 * The caller needs to hold the pte lock.
599
 */
600
void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
601
{
602
        BUG_ON(page_mapcount(page) == 0);
603
        if (PageAnon(page))
604
                __page_check_anon_rmap(page, vma, address);
605
        atomic_inc(&page->_mapcount);
606
}
607
#endif
608
 
609
/**
610
 * page_remove_rmap - take down pte mapping from a page
611
 * @page: page to remove mapping from
612
 *
613
 * The caller needs to hold the pte lock.
614
 */
615
void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
616
{
617
        if (atomic_add_negative(-1, &page->_mapcount)) {
618
                if (unlikely(page_mapcount(page) < 0)) {
619
                        printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
620
                        printk (KERN_EMERG "  page pfn = %lx\n", page_to_pfn(page));
621
                        printk (KERN_EMERG "  page->flags = %lx\n", page->flags);
622
                        printk (KERN_EMERG "  page->count = %x\n", page_count(page));
623
                        printk (KERN_EMERG "  page->mapping = %p\n", page->mapping);
624
                        print_symbol (KERN_EMERG "  vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
625
                        if (vma->vm_ops) {
626
                                print_symbol (KERN_EMERG "  vma->vm_ops->nopage = %s\n", (unsigned long)vma->vm_ops->nopage);
627
                                print_symbol (KERN_EMERG "  vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault);
628
                        }
629
                        if (vma->vm_file && vma->vm_file->f_op)
630
                                print_symbol (KERN_EMERG "  vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
631
                        BUG();
632
                }
633
 
634
                /*
635
                 * It would be tidy to reset the PageAnon mapping here,
636
                 * but that might overwrite a racing page_add_anon_rmap
637
                 * which increments mapcount after us but sets mapping
638
                 * before us: so leave the reset to free_hot_cold_page,
639
                 * and remember that it's only reliable while mapped.
640
                 * Leaving it set also helps swapoff to reinstate ptes
641
                 * faster for those pages still in swapcache.
642
                 */
643
                if (page_test_dirty(page)) {
644
                        page_clear_dirty(page);
645
                        set_page_dirty(page);
646
                }
647
                __dec_zone_page_state(page,
648
                                PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
649
        }
650
}
651
 
652
/*
653
 * Subfunctions of try_to_unmap: try_to_unmap_one called
654
 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
655
 */
656
static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
657
                                int migration)
658
{
659
        struct mm_struct *mm = vma->vm_mm;
660
        unsigned long address;
661
        pte_t *pte;
662
        pte_t pteval;
663
        spinlock_t *ptl;
664
        int ret = SWAP_AGAIN;
665
 
666
        address = vma_address(page, vma);
667
        if (address == -EFAULT)
668
                goto out;
669
 
670
        pte = page_check_address(page, mm, address, &ptl);
671
        if (!pte)
672
                goto out;
673
 
674
        /*
675
         * If the page is mlock()d, we cannot swap it out.
676
         * If it's recently referenced (perhaps page_referenced
677
         * skipped over this mm) then we should reactivate it.
678
         */
679
        if (!migration && ((vma->vm_flags & VM_LOCKED) ||
680
                        (ptep_clear_flush_young(vma, address, pte)))) {
681
                ret = SWAP_FAIL;
682
                goto out_unmap;
683
        }
684
 
685
        /* Nuke the page table entry. */
686
        flush_cache_page(vma, address, page_to_pfn(page));
687
        pteval = ptep_clear_flush(vma, address, pte);
688
 
689
        /* Move the dirty bit to the physical page now the pte is gone. */
690
        if (pte_dirty(pteval))
691
                set_page_dirty(page);
692
 
693
        /* Update high watermark before we lower rss */
694
        update_hiwater_rss(mm);
695
 
696
        if (PageAnon(page)) {
697
                swp_entry_t entry = { .val = page_private(page) };
698
 
699
                if (PageSwapCache(page)) {
700
                        /*
701
                         * Store the swap location in the pte.
702
                         * See handle_pte_fault() ...
703
                         */
704
                        swap_duplicate(entry);
705
                        if (list_empty(&mm->mmlist)) {
706
                                spin_lock(&mmlist_lock);
707
                                if (list_empty(&mm->mmlist))
708
                                        list_add(&mm->mmlist, &init_mm.mmlist);
709
                                spin_unlock(&mmlist_lock);
710
                        }
711
                        dec_mm_counter(mm, anon_rss);
712
#ifdef CONFIG_MIGRATION
713
                } else {
714
                        /*
715
                         * Store the pfn of the page in a special migration
716
                         * pte. do_swap_page() will wait until the migration
717
                         * pte is removed and then restart fault handling.
718
                         */
719
                        BUG_ON(!migration);
720
                        entry = make_migration_entry(page, pte_write(pteval));
721
#endif
722
                }
723
                set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
724
                BUG_ON(pte_file(*pte));
725
        } else
726
#ifdef CONFIG_MIGRATION
727
        if (migration) {
728
                /* Establish migration entry for a file page */
729
                swp_entry_t entry;
730
                entry = make_migration_entry(page, pte_write(pteval));
731
                set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
732
        } else
733
#endif
734
                dec_mm_counter(mm, file_rss);
735
 
736
 
737
        page_remove_rmap(page, vma);
738
        page_cache_release(page);
739
 
740
out_unmap:
741
        pte_unmap_unlock(pte, ptl);
742
out:
743
        return ret;
744
}
745
 
746
/*
747
 * objrmap doesn't work for nonlinear VMAs because the assumption that
748
 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
749
 * Consequently, given a particular page and its ->index, we cannot locate the
750
 * ptes which are mapping that page without an exhaustive linear search.
751
 *
752
 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
753
 * maps the file to which the target page belongs.  The ->vm_private_data field
754
 * holds the current cursor into that scan.  Successive searches will circulate
755
 * around the vma's virtual address space.
756
 *
757
 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
758
 * more scanning pressure is placed against them as well.   Eventually pages
759
 * will become fully unmapped and are eligible for eviction.
760
 *
761
 * For very sparsely populated VMAs this is a little inefficient - chances are
762
 * there there won't be many ptes located within the scan cluster.  In this case
763
 * maybe we could scan further - to the end of the pte page, perhaps.
764
 */
765
#define CLUSTER_SIZE    min(32*PAGE_SIZE, PMD_SIZE)
766
#define CLUSTER_MASK    (~(CLUSTER_SIZE - 1))
767
 
768
static void try_to_unmap_cluster(unsigned long cursor,
769
        unsigned int *mapcount, struct vm_area_struct *vma)
770
{
771
        struct mm_struct *mm = vma->vm_mm;
772
        pgd_t *pgd;
773
        pud_t *pud;
774
        pmd_t *pmd;
775
        pte_t *pte;
776
        pte_t pteval;
777
        spinlock_t *ptl;
778
        struct page *page;
779
        unsigned long address;
780
        unsigned long end;
781
 
782
        address = (vma->vm_start + cursor) & CLUSTER_MASK;
783
        end = address + CLUSTER_SIZE;
784
        if (address < vma->vm_start)
785
                address = vma->vm_start;
786
        if (end > vma->vm_end)
787
                end = vma->vm_end;
788
 
789
        pgd = pgd_offset(mm, address);
790
        if (!pgd_present(*pgd))
791
                return;
792
 
793
        pud = pud_offset(pgd, address);
794
        if (!pud_present(*pud))
795
                return;
796
 
797
        pmd = pmd_offset(pud, address);
798
        if (!pmd_present(*pmd))
799
                return;
800
 
801
        pte = pte_offset_map_lock(mm, pmd, address, &ptl);
802
 
803
        /* Update high watermark before we lower rss */
804
        update_hiwater_rss(mm);
805
 
806
        for (; address < end; pte++, address += PAGE_SIZE) {
807
                if (!pte_present(*pte))
808
                        continue;
809
                page = vm_normal_page(vma, address, *pte);
810
                BUG_ON(!page || PageAnon(page));
811
 
812
                if (ptep_clear_flush_young(vma, address, pte))
813
                        continue;
814
 
815
                /* Nuke the page table entry. */
816
                flush_cache_page(vma, address, pte_pfn(*pte));
817
                pteval = ptep_clear_flush(vma, address, pte);
818
 
819
                /* If nonlinear, store the file page offset in the pte. */
820
                if (page->index != linear_page_index(vma, address))
821
                        set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
822
 
823
                /* Move the dirty bit to the physical page now the pte is gone. */
824
                if (pte_dirty(pteval))
825
                        set_page_dirty(page);
826
 
827
                page_remove_rmap(page, vma);
828
                page_cache_release(page);
829
                dec_mm_counter(mm, file_rss);
830
                (*mapcount)--;
831
        }
832
        pte_unmap_unlock(pte - 1, ptl);
833
}
834
 
835
static int try_to_unmap_anon(struct page *page, int migration)
836
{
837
        struct anon_vma *anon_vma;
838
        struct vm_area_struct *vma;
839
        int ret = SWAP_AGAIN;
840
 
841
        anon_vma = page_lock_anon_vma(page);
842
        if (!anon_vma)
843
                return ret;
844
 
845
        list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
846
                ret = try_to_unmap_one(page, vma, migration);
847
                if (ret == SWAP_FAIL || !page_mapped(page))
848
                        break;
849
        }
850
 
851
        page_unlock_anon_vma(anon_vma);
852
        return ret;
853
}
854
 
855
/**
856
 * try_to_unmap_file - unmap file page using the object-based rmap method
857
 * @page: the page to unmap
858
 *
859
 * Find all the mappings of a page using the mapping pointer and the vma chains
860
 * contained in the address_space struct it points to.
861
 *
862
 * This function is only called from try_to_unmap for object-based pages.
863
 */
864
static int try_to_unmap_file(struct page *page, int migration)
865
{
866
        struct address_space *mapping = page->mapping;
867
        pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
868
        struct vm_area_struct *vma;
869
        struct prio_tree_iter iter;
870
        int ret = SWAP_AGAIN;
871
        unsigned long cursor;
872
        unsigned long max_nl_cursor = 0;
873
        unsigned long max_nl_size = 0;
874
        unsigned int mapcount;
875
 
876
        spin_lock(&mapping->i_mmap_lock);
877
        vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
878
                ret = try_to_unmap_one(page, vma, migration);
879
                if (ret == SWAP_FAIL || !page_mapped(page))
880
                        goto out;
881
        }
882
 
883
        if (list_empty(&mapping->i_mmap_nonlinear))
884
                goto out;
885
 
886
        list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
887
                                                shared.vm_set.list) {
888
                if ((vma->vm_flags & VM_LOCKED) && !migration)
889
                        continue;
890
                cursor = (unsigned long) vma->vm_private_data;
891
                if (cursor > max_nl_cursor)
892
                        max_nl_cursor = cursor;
893
                cursor = vma->vm_end - vma->vm_start;
894
                if (cursor > max_nl_size)
895
                        max_nl_size = cursor;
896
        }
897
 
898
        if (max_nl_size == 0) {  /* any nonlinears locked or reserved */
899
                ret = SWAP_FAIL;
900
                goto out;
901
        }
902
 
903
        /*
904
         * We don't try to search for this page in the nonlinear vmas,
905
         * and page_referenced wouldn't have found it anyway.  Instead
906
         * just walk the nonlinear vmas trying to age and unmap some.
907
         * The mapcount of the page we came in with is irrelevant,
908
         * but even so use it as a guide to how hard we should try?
909
         */
910
        mapcount = page_mapcount(page);
911
        if (!mapcount)
912
                goto out;
913
        cond_resched_lock(&mapping->i_mmap_lock);
914
 
915
        max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
916
        if (max_nl_cursor == 0)
917
                max_nl_cursor = CLUSTER_SIZE;
918
 
919
        do {
920
                list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
921
                                                shared.vm_set.list) {
922
                        if ((vma->vm_flags & VM_LOCKED) && !migration)
923
                                continue;
924
                        cursor = (unsigned long) vma->vm_private_data;
925
                        while ( cursor < max_nl_cursor &&
926
                                cursor < vma->vm_end - vma->vm_start) {
927
                                try_to_unmap_cluster(cursor, &mapcount, vma);
928
                                cursor += CLUSTER_SIZE;
929
                                vma->vm_private_data = (void *) cursor;
930
                                if ((int)mapcount <= 0)
931
                                        goto out;
932
                        }
933
                        vma->vm_private_data = (void *) max_nl_cursor;
934
                }
935
                cond_resched_lock(&mapping->i_mmap_lock);
936
                max_nl_cursor += CLUSTER_SIZE;
937
        } while (max_nl_cursor <= max_nl_size);
938
 
939
        /*
940
         * Don't loop forever (perhaps all the remaining pages are
941
         * in locked vmas).  Reset cursor on all unreserved nonlinear
942
         * vmas, now forgetting on which ones it had fallen behind.
943
         */
944
        list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
945
                vma->vm_private_data = NULL;
946
out:
947
        spin_unlock(&mapping->i_mmap_lock);
948
        return ret;
949
}
950
 
951
/**
952
 * try_to_unmap - try to remove all page table mappings to a page
953
 * @page: the page to get unmapped
954
 *
955
 * Tries to remove all the page table entries which are mapping this
956
 * page, used in the pageout path.  Caller must hold the page lock.
957
 * Return values are:
958
 *
959
 * SWAP_SUCCESS - we succeeded in removing all mappings
960
 * SWAP_AGAIN   - we missed a mapping, try again later
961
 * SWAP_FAIL    - the page is unswappable
962
 */
963
int try_to_unmap(struct page *page, int migration)
964
{
965
        int ret;
966
 
967
        BUG_ON(!PageLocked(page));
968
 
969
        if (PageAnon(page))
970
                ret = try_to_unmap_anon(page, migration);
971
        else
972
                ret = try_to_unmap_file(page, migration);
973
 
974
        if (!page_mapped(page))
975
                ret = SWAP_SUCCESS;
976
        return ret;
977
}
978
 

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.