OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [mm/] [swapfile.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 *  linux/mm/swapfile.c
3
 *
4
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5
 *  Swap reorganised 29.12.95, Stephen Tweedie
6
 */
7
 
8
#include <linux/mm.h>
9
#include <linux/hugetlb.h>
10
#include <linux/mman.h>
11
#include <linux/slab.h>
12
#include <linux/kernel_stat.h>
13
#include <linux/swap.h>
14
#include <linux/vmalloc.h>
15
#include <linux/pagemap.h>
16
#include <linux/namei.h>
17
#include <linux/shm.h>
18
#include <linux/blkdev.h>
19
#include <linux/writeback.h>
20
#include <linux/proc_fs.h>
21
#include <linux/seq_file.h>
22
#include <linux/init.h>
23
#include <linux/module.h>
24
#include <linux/rmap.h>
25
#include <linux/security.h>
26
#include <linux/backing-dev.h>
27
#include <linux/mutex.h>
28
#include <linux/capability.h>
29
#include <linux/syscalls.h>
30
 
31
#include <asm/pgtable.h>
32
#include <asm/tlbflush.h>
33
#include <linux/swapops.h>
34
 
35
DEFINE_SPINLOCK(swap_lock);
36
unsigned int nr_swapfiles;
37
long total_swap_pages;
38
static int swap_overflow;
39
 
40
static const char Bad_file[] = "Bad swap file entry ";
41
static const char Unused_file[] = "Unused swap file entry ";
42
static const char Bad_offset[] = "Bad swap offset entry ";
43
static const char Unused_offset[] = "Unused swap offset entry ";
44
 
45
struct swap_list_t swap_list = {-1, -1};
46
 
47
static struct swap_info_struct swap_info[MAX_SWAPFILES];
48
 
49
static DEFINE_MUTEX(swapon_mutex);
50
 
51
/*
52
 * We need this because the bdev->unplug_fn can sleep and we cannot
53
 * hold swap_lock while calling the unplug_fn. And swap_lock
54
 * cannot be turned into a mutex.
55
 */
56
static DECLARE_RWSEM(swap_unplug_sem);
57
 
58
void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
59
{
60
        swp_entry_t entry;
61
 
62
        down_read(&swap_unplug_sem);
63
        entry.val = page_private(page);
64
        if (PageSwapCache(page)) {
65
                struct block_device *bdev = swap_info[swp_type(entry)].bdev;
66
                struct backing_dev_info *bdi;
67
 
68
                /*
69
                 * If the page is removed from swapcache from under us (with a
70
                 * racy try_to_unuse/swapoff) we need an additional reference
71
                 * count to avoid reading garbage from page_private(page) above.
72
                 * If the WARN_ON triggers during a swapoff it maybe the race
73
                 * condition and it's harmless. However if it triggers without
74
                 * swapoff it signals a problem.
75
                 */
76
                WARN_ON(page_count(page) <= 1);
77
 
78
                bdi = bdev->bd_inode->i_mapping->backing_dev_info;
79
                blk_run_backing_dev(bdi, page);
80
        }
81
        up_read(&swap_unplug_sem);
82
}
83
 
84
#define SWAPFILE_CLUSTER        256
85
#define LATENCY_LIMIT           256
86
 
87
static inline unsigned long scan_swap_map(struct swap_info_struct *si)
88
{
89
        unsigned long offset, last_in_cluster;
90
        int latency_ration = LATENCY_LIMIT;
91
 
92
        /*
93
         * We try to cluster swap pages by allocating them sequentially
94
         * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
95
         * way, however, we resort to first-free allocation, starting
96
         * a new cluster.  This prevents us from scattering swap pages
97
         * all over the entire swap partition, so that we reduce
98
         * overall disk seek times between swap pages.  -- sct
99
         * But we do now try to find an empty cluster.  -Andrea
100
         */
101
 
102
        si->flags += SWP_SCANNING;
103
        if (unlikely(!si->cluster_nr)) {
104
                si->cluster_nr = SWAPFILE_CLUSTER - 1;
105
                if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
106
                        goto lowest;
107
                spin_unlock(&swap_lock);
108
 
109
                offset = si->lowest_bit;
110
                last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
111
 
112
                /* Locate the first empty (unaligned) cluster */
113
                for (; last_in_cluster <= si->highest_bit; offset++) {
114
                        if (si->swap_map[offset])
115
                                last_in_cluster = offset + SWAPFILE_CLUSTER;
116
                        else if (offset == last_in_cluster) {
117
                                spin_lock(&swap_lock);
118
                                si->cluster_next = offset-SWAPFILE_CLUSTER+1;
119
                                goto cluster;
120
                        }
121
                        if (unlikely(--latency_ration < 0)) {
122
                                cond_resched();
123
                                latency_ration = LATENCY_LIMIT;
124
                        }
125
                }
126
                spin_lock(&swap_lock);
127
                goto lowest;
128
        }
129
 
130
        si->cluster_nr--;
131
cluster:
132
        offset = si->cluster_next;
133
        if (offset > si->highest_bit)
134
lowest:         offset = si->lowest_bit;
135
checks: if (!(si->flags & SWP_WRITEOK))
136
                goto no_page;
137
        if (!si->highest_bit)
138
                goto no_page;
139
        if (!si->swap_map[offset]) {
140
                if (offset == si->lowest_bit)
141
                        si->lowest_bit++;
142
                if (offset == si->highest_bit)
143
                        si->highest_bit--;
144
                si->inuse_pages++;
145
                if (si->inuse_pages == si->pages) {
146
                        si->lowest_bit = si->max;
147
                        si->highest_bit = 0;
148
                }
149
                si->swap_map[offset] = 1;
150
                si->cluster_next = offset + 1;
151
                si->flags -= SWP_SCANNING;
152
                return offset;
153
        }
154
 
155
        spin_unlock(&swap_lock);
156
        while (++offset <= si->highest_bit) {
157
                if (!si->swap_map[offset]) {
158
                        spin_lock(&swap_lock);
159
                        goto checks;
160
                }
161
                if (unlikely(--latency_ration < 0)) {
162
                        cond_resched();
163
                        latency_ration = LATENCY_LIMIT;
164
                }
165
        }
166
        spin_lock(&swap_lock);
167
        goto lowest;
168
 
169
no_page:
170
        si->flags -= SWP_SCANNING;
171
        return 0;
172
}
173
 
174
swp_entry_t get_swap_page(void)
175
{
176
        struct swap_info_struct *si;
177
        pgoff_t offset;
178
        int type, next;
179
        int wrapped = 0;
180
 
181
        spin_lock(&swap_lock);
182
        if (nr_swap_pages <= 0)
183
                goto noswap;
184
        nr_swap_pages--;
185
 
186
        for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
187
                si = swap_info + type;
188
                next = si->next;
189
                if (next < 0 ||
190
                    (!wrapped && si->prio != swap_info[next].prio)) {
191
                        next = swap_list.head;
192
                        wrapped++;
193
                }
194
 
195
                if (!si->highest_bit)
196
                        continue;
197
                if (!(si->flags & SWP_WRITEOK))
198
                        continue;
199
 
200
                swap_list.next = next;
201
                offset = scan_swap_map(si);
202
                if (offset) {
203
                        spin_unlock(&swap_lock);
204
                        return swp_entry(type, offset);
205
                }
206
                next = swap_list.next;
207
        }
208
 
209
        nr_swap_pages++;
210
noswap:
211
        spin_unlock(&swap_lock);
212
        return (swp_entry_t) {0};
213
}
214
 
215
swp_entry_t get_swap_page_of_type(int type)
216
{
217
        struct swap_info_struct *si;
218
        pgoff_t offset;
219
 
220
        spin_lock(&swap_lock);
221
        si = swap_info + type;
222
        if (si->flags & SWP_WRITEOK) {
223
                nr_swap_pages--;
224
                offset = scan_swap_map(si);
225
                if (offset) {
226
                        spin_unlock(&swap_lock);
227
                        return swp_entry(type, offset);
228
                }
229
                nr_swap_pages++;
230
        }
231
        spin_unlock(&swap_lock);
232
        return (swp_entry_t) {0};
233
}
234
 
235
static struct swap_info_struct * swap_info_get(swp_entry_t entry)
236
{
237
        struct swap_info_struct * p;
238
        unsigned long offset, type;
239
 
240
        if (!entry.val)
241
                goto out;
242
        type = swp_type(entry);
243
        if (type >= nr_swapfiles)
244
                goto bad_nofile;
245
        p = & swap_info[type];
246
        if (!(p->flags & SWP_USED))
247
                goto bad_device;
248
        offset = swp_offset(entry);
249
        if (offset >= p->max)
250
                goto bad_offset;
251
        if (!p->swap_map[offset])
252
                goto bad_free;
253
        spin_lock(&swap_lock);
254
        return p;
255
 
256
bad_free:
257
        printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
258
        goto out;
259
bad_offset:
260
        printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
261
        goto out;
262
bad_device:
263
        printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
264
        goto out;
265
bad_nofile:
266
        printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
267
out:
268
        return NULL;
269
}
270
 
271
static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
272
{
273
        int count = p->swap_map[offset];
274
 
275
        if (count < SWAP_MAP_MAX) {
276
                count--;
277
                p->swap_map[offset] = count;
278
                if (!count) {
279
                        if (offset < p->lowest_bit)
280
                                p->lowest_bit = offset;
281
                        if (offset > p->highest_bit)
282
                                p->highest_bit = offset;
283
                        if (p->prio > swap_info[swap_list.next].prio)
284
                                swap_list.next = p - swap_info;
285
                        nr_swap_pages++;
286
                        p->inuse_pages--;
287
                }
288
        }
289
        return count;
290
}
291
 
292
/*
293
 * Caller has made sure that the swapdevice corresponding to entry
294
 * is still around or has not been recycled.
295
 */
296
void swap_free(swp_entry_t entry)
297
{
298
        struct swap_info_struct * p;
299
 
300
        p = swap_info_get(entry);
301
        if (p) {
302
                swap_entry_free(p, swp_offset(entry));
303
                spin_unlock(&swap_lock);
304
        }
305
}
306
 
307
/*
308
 * How many references to page are currently swapped out?
309
 */
310
static inline int page_swapcount(struct page *page)
311
{
312
        int count = 0;
313
        struct swap_info_struct *p;
314
        swp_entry_t entry;
315
 
316
        entry.val = page_private(page);
317
        p = swap_info_get(entry);
318
        if (p) {
319
                /* Subtract the 1 for the swap cache itself */
320
                count = p->swap_map[swp_offset(entry)] - 1;
321
                spin_unlock(&swap_lock);
322
        }
323
        return count;
324
}
325
 
326
/*
327
 * We can use this swap cache entry directly
328
 * if there are no other references to it.
329
 */
330
int can_share_swap_page(struct page *page)
331
{
332
        int count;
333
 
334
        BUG_ON(!PageLocked(page));
335
        count = page_mapcount(page);
336
        if (count <= 1 && PageSwapCache(page))
337
                count += page_swapcount(page);
338
        return count == 1;
339
}
340
 
341
/*
342
 * Work out if there are any other processes sharing this
343
 * swap cache page. Free it if you can. Return success.
344
 */
345
int remove_exclusive_swap_page(struct page *page)
346
{
347
        int retval;
348
        struct swap_info_struct * p;
349
        swp_entry_t entry;
350
 
351
        BUG_ON(PagePrivate(page));
352
        BUG_ON(!PageLocked(page));
353
 
354
        if (!PageSwapCache(page))
355
                return 0;
356
        if (PageWriteback(page))
357
                return 0;
358
        if (page_count(page) != 2) /* 2: us + cache */
359
                return 0;
360
 
361
        entry.val = page_private(page);
362
        p = swap_info_get(entry);
363
        if (!p)
364
                return 0;
365
 
366
        /* Is the only swap cache user the cache itself? */
367
        retval = 0;
368
        if (p->swap_map[swp_offset(entry)] == 1) {
369
                /* Recheck the page count with the swapcache lock held.. */
370
                write_lock_irq(&swapper_space.tree_lock);
371
                if ((page_count(page) == 2) && !PageWriteback(page)) {
372
                        __delete_from_swap_cache(page);
373
                        SetPageDirty(page);
374
                        retval = 1;
375
                }
376
                write_unlock_irq(&swapper_space.tree_lock);
377
        }
378
        spin_unlock(&swap_lock);
379
 
380
        if (retval) {
381
                swap_free(entry);
382
                page_cache_release(page);
383
        }
384
 
385
        return retval;
386
}
387
 
388
/*
389
 * Free the swap entry like above, but also try to
390
 * free the page cache entry if it is the last user.
391
 */
392
void free_swap_and_cache(swp_entry_t entry)
393
{
394
        struct swap_info_struct * p;
395
        struct page *page = NULL;
396
 
397
        if (is_migration_entry(entry))
398
                return;
399
 
400
        p = swap_info_get(entry);
401
        if (p) {
402
                if (swap_entry_free(p, swp_offset(entry)) == 1) {
403
                        page = find_get_page(&swapper_space, entry.val);
404
                        if (page && unlikely(TestSetPageLocked(page))) {
405
                                page_cache_release(page);
406
                                page = NULL;
407
                        }
408
                }
409
                spin_unlock(&swap_lock);
410
        }
411
        if (page) {
412
                int one_user;
413
 
414
                BUG_ON(PagePrivate(page));
415
                one_user = (page_count(page) == 2);
416
                /* Only cache user (+us), or swap space full? Free it! */
417
                /* Also recheck PageSwapCache after page is locked (above) */
418
                if (PageSwapCache(page) && !PageWriteback(page) &&
419
                                        (one_user || vm_swap_full())) {
420
                        delete_from_swap_cache(page);
421
                        SetPageDirty(page);
422
                }
423
                unlock_page(page);
424
                page_cache_release(page);
425
        }
426
}
427
 
428
#ifdef CONFIG_HIBERNATION
429
/*
430
 * Find the swap type that corresponds to given device (if any).
431
 *
432
 * @offset - number of the PAGE_SIZE-sized block of the device, starting
433
 * from 0, in which the swap header is expected to be located.
434
 *
435
 * This is needed for the suspend to disk (aka swsusp).
436
 */
437
int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
438
{
439
        struct block_device *bdev = NULL;
440
        int i;
441
 
442
        if (device)
443
                bdev = bdget(device);
444
 
445
        spin_lock(&swap_lock);
446
        for (i = 0; i < nr_swapfiles; i++) {
447
                struct swap_info_struct *sis = swap_info + i;
448
 
449
                if (!(sis->flags & SWP_WRITEOK))
450
                        continue;
451
 
452
                if (!bdev) {
453
                        if (bdev_p)
454
                                *bdev_p = sis->bdev;
455
 
456
                        spin_unlock(&swap_lock);
457
                        return i;
458
                }
459
                if (bdev == sis->bdev) {
460
                        struct swap_extent *se;
461
 
462
                        se = list_entry(sis->extent_list.next,
463
                                        struct swap_extent, list);
464
                        if (se->start_block == offset) {
465
                                if (bdev_p)
466
                                        *bdev_p = sis->bdev;
467
 
468
                                spin_unlock(&swap_lock);
469
                                bdput(bdev);
470
                                return i;
471
                        }
472
                }
473
        }
474
        spin_unlock(&swap_lock);
475
        if (bdev)
476
                bdput(bdev);
477
 
478
        return -ENODEV;
479
}
480
 
481
/*
482
 * Return either the total number of swap pages of given type, or the number
483
 * of free pages of that type (depending on @free)
484
 *
485
 * This is needed for software suspend
486
 */
487
unsigned int count_swap_pages(int type, int free)
488
{
489
        unsigned int n = 0;
490
 
491
        if (type < nr_swapfiles) {
492
                spin_lock(&swap_lock);
493
                if (swap_info[type].flags & SWP_WRITEOK) {
494
                        n = swap_info[type].pages;
495
                        if (free)
496
                                n -= swap_info[type].inuse_pages;
497
                }
498
                spin_unlock(&swap_lock);
499
        }
500
        return n;
501
}
502
#endif
503
 
504
/*
505
 * No need to decide whether this PTE shares the swap entry with others,
506
 * just let do_wp_page work it out if a write is requested later - to
507
 * force COW, vm_page_prot omits write permission from any private vma.
508
 */
509
static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
510
                unsigned long addr, swp_entry_t entry, struct page *page)
511
{
512
        inc_mm_counter(vma->vm_mm, anon_rss);
513
        get_page(page);
514
        set_pte_at(vma->vm_mm, addr, pte,
515
                   pte_mkold(mk_pte(page, vma->vm_page_prot)));
516
        page_add_anon_rmap(page, vma, addr);
517
        swap_free(entry);
518
        /*
519
         * Move the page to the active list so it is not
520
         * immediately swapped out again after swapon.
521
         */
522
        activate_page(page);
523
}
524
 
525
static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
526
                                unsigned long addr, unsigned long end,
527
                                swp_entry_t entry, struct page *page)
528
{
529
        pte_t swp_pte = swp_entry_to_pte(entry);
530
        pte_t *pte;
531
        spinlock_t *ptl;
532
        int found = 0;
533
 
534
        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
535
        do {
536
                /*
537
                 * swapoff spends a _lot_ of time in this loop!
538
                 * Test inline before going to call unuse_pte.
539
                 */
540
                if (unlikely(pte_same(*pte, swp_pte))) {
541
                        unuse_pte(vma, pte++, addr, entry, page);
542
                        found = 1;
543
                        break;
544
                }
545
        } while (pte++, addr += PAGE_SIZE, addr != end);
546
        pte_unmap_unlock(pte - 1, ptl);
547
        return found;
548
}
549
 
550
static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
551
                                unsigned long addr, unsigned long end,
552
                                swp_entry_t entry, struct page *page)
553
{
554
        pmd_t *pmd;
555
        unsigned long next;
556
 
557
        pmd = pmd_offset(pud, addr);
558
        do {
559
                next = pmd_addr_end(addr, end);
560
                if (pmd_none_or_clear_bad(pmd))
561
                        continue;
562
                if (unuse_pte_range(vma, pmd, addr, next, entry, page))
563
                        return 1;
564
        } while (pmd++, addr = next, addr != end);
565
        return 0;
566
}
567
 
568
static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
569
                                unsigned long addr, unsigned long end,
570
                                swp_entry_t entry, struct page *page)
571
{
572
        pud_t *pud;
573
        unsigned long next;
574
 
575
        pud = pud_offset(pgd, addr);
576
        do {
577
                next = pud_addr_end(addr, end);
578
                if (pud_none_or_clear_bad(pud))
579
                        continue;
580
                if (unuse_pmd_range(vma, pud, addr, next, entry, page))
581
                        return 1;
582
        } while (pud++, addr = next, addr != end);
583
        return 0;
584
}
585
 
586
static int unuse_vma(struct vm_area_struct *vma,
587
                                swp_entry_t entry, struct page *page)
588
{
589
        pgd_t *pgd;
590
        unsigned long addr, end, next;
591
 
592
        if (page->mapping) {
593
                addr = page_address_in_vma(page, vma);
594
                if (addr == -EFAULT)
595
                        return 0;
596
                else
597
                        end = addr + PAGE_SIZE;
598
        } else {
599
                addr = vma->vm_start;
600
                end = vma->vm_end;
601
        }
602
 
603
        pgd = pgd_offset(vma->vm_mm, addr);
604
        do {
605
                next = pgd_addr_end(addr, end);
606
                if (pgd_none_or_clear_bad(pgd))
607
                        continue;
608
                if (unuse_pud_range(vma, pgd, addr, next, entry, page))
609
                        return 1;
610
        } while (pgd++, addr = next, addr != end);
611
        return 0;
612
}
613
 
614
static int unuse_mm(struct mm_struct *mm,
615
                                swp_entry_t entry, struct page *page)
616
{
617
        struct vm_area_struct *vma;
618
 
619
        if (!down_read_trylock(&mm->mmap_sem)) {
620
                /*
621
                 * Activate page so shrink_cache is unlikely to unmap its
622
                 * ptes while lock is dropped, so swapoff can make progress.
623
                 */
624
                activate_page(page);
625
                unlock_page(page);
626
                down_read(&mm->mmap_sem);
627
                lock_page(page);
628
        }
629
        for (vma = mm->mmap; vma; vma = vma->vm_next) {
630
                if (vma->anon_vma && unuse_vma(vma, entry, page))
631
                        break;
632
        }
633
        up_read(&mm->mmap_sem);
634
        /*
635
         * Currently unuse_mm cannot fail, but leave error handling
636
         * at call sites for now, since we change it from time to time.
637
         */
638
        return 0;
639
}
640
 
641
/*
642
 * Scan swap_map from current position to next entry still in use.
643
 * Recycle to start on reaching the end, returning 0 when empty.
644
 */
645
static unsigned int find_next_to_unuse(struct swap_info_struct *si,
646
                                        unsigned int prev)
647
{
648
        unsigned int max = si->max;
649
        unsigned int i = prev;
650
        int count;
651
 
652
        /*
653
         * No need for swap_lock here: we're just looking
654
         * for whether an entry is in use, not modifying it; false
655
         * hits are okay, and sys_swapoff() has already prevented new
656
         * allocations from this area (while holding swap_lock).
657
         */
658
        for (;;) {
659
                if (++i >= max) {
660
                        if (!prev) {
661
                                i = 0;
662
                                break;
663
                        }
664
                        /*
665
                         * No entries in use at top of swap_map,
666
                         * loop back to start and recheck there.
667
                         */
668
                        max = prev + 1;
669
                        prev = 0;
670
                        i = 1;
671
                }
672
                count = si->swap_map[i];
673
                if (count && count != SWAP_MAP_BAD)
674
                        break;
675
        }
676
        return i;
677
}
678
 
679
/*
680
 * We completely avoid races by reading each swap page in advance,
681
 * and then search for the process using it.  All the necessary
682
 * page table adjustments can then be made atomically.
683
 */
684
static int try_to_unuse(unsigned int type)
685
{
686
        struct swap_info_struct * si = &swap_info[type];
687
        struct mm_struct *start_mm;
688
        unsigned short *swap_map;
689
        unsigned short swcount;
690
        struct page *page;
691
        swp_entry_t entry;
692
        unsigned int i = 0;
693
        int retval = 0;
694
        int reset_overflow = 0;
695
        int shmem;
696
 
697
        /*
698
         * When searching mms for an entry, a good strategy is to
699
         * start at the first mm we freed the previous entry from
700
         * (though actually we don't notice whether we or coincidence
701
         * freed the entry).  Initialize this start_mm with a hold.
702
         *
703
         * A simpler strategy would be to start at the last mm we
704
         * freed the previous entry from; but that would take less
705
         * advantage of mmlist ordering, which clusters forked mms
706
         * together, child after parent.  If we race with dup_mmap(), we
707
         * prefer to resolve parent before child, lest we miss entries
708
         * duplicated after we scanned child: using last mm would invert
709
         * that.  Though it's only a serious concern when an overflowed
710
         * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
711
         */
712
        start_mm = &init_mm;
713
        atomic_inc(&init_mm.mm_users);
714
 
715
        /*
716
         * Keep on scanning until all entries have gone.  Usually,
717
         * one pass through swap_map is enough, but not necessarily:
718
         * there are races when an instance of an entry might be missed.
719
         */
720
        while ((i = find_next_to_unuse(si, i)) != 0) {
721
                if (signal_pending(current)) {
722
                        retval = -EINTR;
723
                        break;
724
                }
725
 
726
                /*
727
                 * Get a page for the entry, using the existing swap
728
                 * cache page if there is one.  Otherwise, get a clean
729
                 * page and read the swap into it.
730
                 */
731
                swap_map = &si->swap_map[i];
732
                entry = swp_entry(type, i);
733
                page = read_swap_cache_async(entry, NULL, 0);
734
                if (!page) {
735
                        /*
736
                         * Either swap_duplicate() failed because entry
737
                         * has been freed independently, and will not be
738
                         * reused since sys_swapoff() already disabled
739
                         * allocation from here, or alloc_page() failed.
740
                         */
741
                        if (!*swap_map)
742
                                continue;
743
                        retval = -ENOMEM;
744
                        break;
745
                }
746
 
747
                /*
748
                 * Don't hold on to start_mm if it looks like exiting.
749
                 */
750
                if (atomic_read(&start_mm->mm_users) == 1) {
751
                        mmput(start_mm);
752
                        start_mm = &init_mm;
753
                        atomic_inc(&init_mm.mm_users);
754
                }
755
 
756
                /*
757
                 * Wait for and lock page.  When do_swap_page races with
758
                 * try_to_unuse, do_swap_page can handle the fault much
759
                 * faster than try_to_unuse can locate the entry.  This
760
                 * apparently redundant "wait_on_page_locked" lets try_to_unuse
761
                 * defer to do_swap_page in such a case - in some tests,
762
                 * do_swap_page and try_to_unuse repeatedly compete.
763
                 */
764
                wait_on_page_locked(page);
765
                wait_on_page_writeback(page);
766
                lock_page(page);
767
                wait_on_page_writeback(page);
768
 
769
                /*
770
                 * Remove all references to entry.
771
                 * Whenever we reach init_mm, there's no address space
772
                 * to search, but use it as a reminder to search shmem.
773
                 */
774
                shmem = 0;
775
                swcount = *swap_map;
776
                if (swcount > 1) {
777
                        if (start_mm == &init_mm)
778
                                shmem = shmem_unuse(entry, page);
779
                        else
780
                                retval = unuse_mm(start_mm, entry, page);
781
                }
782
                if (*swap_map > 1) {
783
                        int set_start_mm = (*swap_map >= swcount);
784
                        struct list_head *p = &start_mm->mmlist;
785
                        struct mm_struct *new_start_mm = start_mm;
786
                        struct mm_struct *prev_mm = start_mm;
787
                        struct mm_struct *mm;
788
 
789
                        atomic_inc(&new_start_mm->mm_users);
790
                        atomic_inc(&prev_mm->mm_users);
791
                        spin_lock(&mmlist_lock);
792
                        while (*swap_map > 1 && !retval &&
793
                                        (p = p->next) != &start_mm->mmlist) {
794
                                mm = list_entry(p, struct mm_struct, mmlist);
795
                                if (!atomic_inc_not_zero(&mm->mm_users))
796
                                        continue;
797
                                spin_unlock(&mmlist_lock);
798
                                mmput(prev_mm);
799
                                prev_mm = mm;
800
 
801
                                cond_resched();
802
 
803
                                swcount = *swap_map;
804
                                if (swcount <= 1)
805
                                        ;
806
                                else if (mm == &init_mm) {
807
                                        set_start_mm = 1;
808
                                        shmem = shmem_unuse(entry, page);
809
                                } else
810
                                        retval = unuse_mm(mm, entry, page);
811
                                if (set_start_mm && *swap_map < swcount) {
812
                                        mmput(new_start_mm);
813
                                        atomic_inc(&mm->mm_users);
814
                                        new_start_mm = mm;
815
                                        set_start_mm = 0;
816
                                }
817
                                spin_lock(&mmlist_lock);
818
                        }
819
                        spin_unlock(&mmlist_lock);
820
                        mmput(prev_mm);
821
                        mmput(start_mm);
822
                        start_mm = new_start_mm;
823
                }
824
                if (retval) {
825
                        unlock_page(page);
826
                        page_cache_release(page);
827
                        break;
828
                }
829
 
830
                /*
831
                 * How could swap count reach 0x7fff when the maximum
832
                 * pid is 0x7fff, and there's no way to repeat a swap
833
                 * page within an mm (except in shmem, where it's the
834
                 * shared object which takes the reference count)?
835
                 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
836
                 *
837
                 * If that's wrong, then we should worry more about
838
                 * exit_mmap() and do_munmap() cases described above:
839
                 * we might be resetting SWAP_MAP_MAX too early here.
840
                 * We know "Undead"s can happen, they're okay, so don't
841
                 * report them; but do report if we reset SWAP_MAP_MAX.
842
                 */
843
                if (*swap_map == SWAP_MAP_MAX) {
844
                        spin_lock(&swap_lock);
845
                        *swap_map = 1;
846
                        spin_unlock(&swap_lock);
847
                        reset_overflow = 1;
848
                }
849
 
850
                /*
851
                 * If a reference remains (rare), we would like to leave
852
                 * the page in the swap cache; but try_to_unmap could
853
                 * then re-duplicate the entry once we drop page lock,
854
                 * so we might loop indefinitely; also, that page could
855
                 * not be swapped out to other storage meanwhile.  So:
856
                 * delete from cache even if there's another reference,
857
                 * after ensuring that the data has been saved to disk -
858
                 * since if the reference remains (rarer), it will be
859
                 * read from disk into another page.  Splitting into two
860
                 * pages would be incorrect if swap supported "shared
861
                 * private" pages, but they are handled by tmpfs files.
862
                 *
863
                 * Note shmem_unuse already deleted a swappage from
864
                 * the swap cache, unless the move to filepage failed:
865
                 * in which case it left swappage in cache, lowered its
866
                 * swap count to pass quickly through the loops above,
867
                 * and now we must reincrement count to try again later.
868
                 */
869
                if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
870
                        struct writeback_control wbc = {
871
                                .sync_mode = WB_SYNC_NONE,
872
                        };
873
 
874
                        swap_writepage(page, &wbc);
875
                        lock_page(page);
876
                        wait_on_page_writeback(page);
877
                }
878
                if (PageSwapCache(page)) {
879
                        if (shmem)
880
                                swap_duplicate(entry);
881
                        else
882
                                delete_from_swap_cache(page);
883
                }
884
 
885
                /*
886
                 * So we could skip searching mms once swap count went
887
                 * to 1, we did not mark any present ptes as dirty: must
888
                 * mark page dirty so shrink_page_list will preserve it.
889
                 */
890
                SetPageDirty(page);
891
                unlock_page(page);
892
                page_cache_release(page);
893
 
894
                /*
895
                 * Make sure that we aren't completely killing
896
                 * interactive performance.
897
                 */
898
                cond_resched();
899
        }
900
 
901
        mmput(start_mm);
902
        if (reset_overflow) {
903
                printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
904
                swap_overflow = 0;
905
        }
906
        return retval;
907
}
908
 
909
/*
910
 * After a successful try_to_unuse, if no swap is now in use, we know
911
 * we can empty the mmlist.  swap_lock must be held on entry and exit.
912
 * Note that mmlist_lock nests inside swap_lock, and an mm must be
913
 * added to the mmlist just after page_duplicate - before would be racy.
914
 */
915
static void drain_mmlist(void)
916
{
917
        struct list_head *p, *next;
918
        unsigned int i;
919
 
920
        for (i = 0; i < nr_swapfiles; i++)
921
                if (swap_info[i].inuse_pages)
922
                        return;
923
        spin_lock(&mmlist_lock);
924
        list_for_each_safe(p, next, &init_mm.mmlist)
925
                list_del_init(p);
926
        spin_unlock(&mmlist_lock);
927
}
928
 
929
/*
930
 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
931
 * corresponds to page offset `offset'.
932
 */
933
sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
934
{
935
        struct swap_extent *se = sis->curr_swap_extent;
936
        struct swap_extent *start_se = se;
937
 
938
        for ( ; ; ) {
939
                struct list_head *lh;
940
 
941
                if (se->start_page <= offset &&
942
                                offset < (se->start_page + se->nr_pages)) {
943
                        return se->start_block + (offset - se->start_page);
944
                }
945
                lh = se->list.next;
946
                if (lh == &sis->extent_list)
947
                        lh = lh->next;
948
                se = list_entry(lh, struct swap_extent, list);
949
                sis->curr_swap_extent = se;
950
                BUG_ON(se == start_se);         /* It *must* be present */
951
        }
952
}
953
 
954
#ifdef CONFIG_HIBERNATION
955
/*
956
 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
957
 * corresponding to given index in swap_info (swap type).
958
 */
959
sector_t swapdev_block(int swap_type, pgoff_t offset)
960
{
961
        struct swap_info_struct *sis;
962
 
963
        if (swap_type >= nr_swapfiles)
964
                return 0;
965
 
966
        sis = swap_info + swap_type;
967
        return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
968
}
969
#endif /* CONFIG_HIBERNATION */
970
 
971
/*
972
 * Free all of a swapdev's extent information
973
 */
974
static void destroy_swap_extents(struct swap_info_struct *sis)
975
{
976
        while (!list_empty(&sis->extent_list)) {
977
                struct swap_extent *se;
978
 
979
                se = list_entry(sis->extent_list.next,
980
                                struct swap_extent, list);
981
                list_del(&se->list);
982
                kfree(se);
983
        }
984
}
985
 
986
/*
987
 * Add a block range (and the corresponding page range) into this swapdev's
988
 * extent list.  The extent list is kept sorted in page order.
989
 *
990
 * This function rather assumes that it is called in ascending page order.
991
 */
992
static int
993
add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
994
                unsigned long nr_pages, sector_t start_block)
995
{
996
        struct swap_extent *se;
997
        struct swap_extent *new_se;
998
        struct list_head *lh;
999
 
1000
        lh = sis->extent_list.prev;     /* The highest page extent */
1001
        if (lh != &sis->extent_list) {
1002
                se = list_entry(lh, struct swap_extent, list);
1003
                BUG_ON(se->start_page + se->nr_pages != start_page);
1004
                if (se->start_block + se->nr_pages == start_block) {
1005
                        /* Merge it */
1006
                        se->nr_pages += nr_pages;
1007
                        return 0;
1008
                }
1009
        }
1010
 
1011
        /*
1012
         * No merge.  Insert a new extent, preserving ordering.
1013
         */
1014
        new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1015
        if (new_se == NULL)
1016
                return -ENOMEM;
1017
        new_se->start_page = start_page;
1018
        new_se->nr_pages = nr_pages;
1019
        new_se->start_block = start_block;
1020
 
1021
        list_add_tail(&new_se->list, &sis->extent_list);
1022
        return 1;
1023
}
1024
 
1025
/*
1026
 * A `swap extent' is a simple thing which maps a contiguous range of pages
1027
 * onto a contiguous range of disk blocks.  An ordered list of swap extents
1028
 * is built at swapon time and is then used at swap_writepage/swap_readpage
1029
 * time for locating where on disk a page belongs.
1030
 *
1031
 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1032
 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1033
 * swap files identically.
1034
 *
1035
 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1036
 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1037
 * swapfiles are handled *identically* after swapon time.
1038
 *
1039
 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1040
 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1041
 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1042
 * requirements, they are simply tossed out - we will never use those blocks
1043
 * for swapping.
1044
 *
1045
 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1046
 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1047
 * which will scribble on the fs.
1048
 *
1049
 * The amount of disk space which a single swap extent represents varies.
1050
 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1051
 * extents in the list.  To avoid much list walking, we cache the previous
1052
 * search location in `curr_swap_extent', and start new searches from there.
1053
 * This is extremely effective.  The average number of iterations in
1054
 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1055
 */
1056
static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1057
{
1058
        struct inode *inode;
1059
        unsigned blocks_per_page;
1060
        unsigned long page_no;
1061
        unsigned blkbits;
1062
        sector_t probe_block;
1063
        sector_t last_block;
1064
        sector_t lowest_block = -1;
1065
        sector_t highest_block = 0;
1066
        int nr_extents = 0;
1067
        int ret;
1068
 
1069
        inode = sis->swap_file->f_mapping->host;
1070
        if (S_ISBLK(inode->i_mode)) {
1071
                ret = add_swap_extent(sis, 0, sis->max, 0);
1072
                *span = sis->pages;
1073
                goto done;
1074
        }
1075
 
1076
        blkbits = inode->i_blkbits;
1077
        blocks_per_page = PAGE_SIZE >> blkbits;
1078
 
1079
        /*
1080
         * Map all the blocks into the extent list.  This code doesn't try
1081
         * to be very smart.
1082
         */
1083
        probe_block = 0;
1084
        page_no = 0;
1085
        last_block = i_size_read(inode) >> blkbits;
1086
        while ((probe_block + blocks_per_page) <= last_block &&
1087
                        page_no < sis->max) {
1088
                unsigned block_in_page;
1089
                sector_t first_block;
1090
 
1091
                first_block = bmap(inode, probe_block);
1092
                if (first_block == 0)
1093
                        goto bad_bmap;
1094
 
1095
                /*
1096
                 * It must be PAGE_SIZE aligned on-disk
1097
                 */
1098
                if (first_block & (blocks_per_page - 1)) {
1099
                        probe_block++;
1100
                        goto reprobe;
1101
                }
1102
 
1103
                for (block_in_page = 1; block_in_page < blocks_per_page;
1104
                                        block_in_page++) {
1105
                        sector_t block;
1106
 
1107
                        block = bmap(inode, probe_block + block_in_page);
1108
                        if (block == 0)
1109
                                goto bad_bmap;
1110
                        if (block != first_block + block_in_page) {
1111
                                /* Discontiguity */
1112
                                probe_block++;
1113
                                goto reprobe;
1114
                        }
1115
                }
1116
 
1117
                first_block >>= (PAGE_SHIFT - blkbits);
1118
                if (page_no) {  /* exclude the header page */
1119
                        if (first_block < lowest_block)
1120
                                lowest_block = first_block;
1121
                        if (first_block > highest_block)
1122
                                highest_block = first_block;
1123
                }
1124
 
1125
                /*
1126
                 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1127
                 */
1128
                ret = add_swap_extent(sis, page_no, 1, first_block);
1129
                if (ret < 0)
1130
                        goto out;
1131
                nr_extents += ret;
1132
                page_no++;
1133
                probe_block += blocks_per_page;
1134
reprobe:
1135
                continue;
1136
        }
1137
        ret = nr_extents;
1138
        *span = 1 + highest_block - lowest_block;
1139
        if (page_no == 0)
1140
                page_no = 1;    /* force Empty message */
1141
        sis->max = page_no;
1142
        sis->pages = page_no - 1;
1143
        sis->highest_bit = page_no - 1;
1144
done:
1145
        sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1146
                                        struct swap_extent, list);
1147
        goto out;
1148
bad_bmap:
1149
        printk(KERN_ERR "swapon: swapfile has holes\n");
1150
        ret = -EINVAL;
1151
out:
1152
        return ret;
1153
}
1154
 
1155
#if 0   /* We don't need this yet */
1156
#include <linux/backing-dev.h>
1157
int page_queue_congested(struct page *page)
1158
{
1159
        struct backing_dev_info *bdi;
1160
 
1161
        BUG_ON(!PageLocked(page));      /* It pins the swap_info_struct */
1162
 
1163
        if (PageSwapCache(page)) {
1164
                swp_entry_t entry = { .val = page_private(page) };
1165
                struct swap_info_struct *sis;
1166
 
1167
                sis = get_swap_info_struct(swp_type(entry));
1168
                bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1169
        } else
1170
                bdi = page->mapping->backing_dev_info;
1171
        return bdi_write_congested(bdi);
1172
}
1173
#endif
1174
 
1175
asmlinkage long sys_swapoff(const char __user * specialfile)
1176
{
1177
        struct swap_info_struct * p = NULL;
1178
        unsigned short *swap_map;
1179
        struct file *swap_file, *victim;
1180
        struct address_space *mapping;
1181
        struct inode *inode;
1182
        char * pathname;
1183
        int i, type, prev;
1184
        int err;
1185
 
1186
        if (!capable(CAP_SYS_ADMIN))
1187
                return -EPERM;
1188
 
1189
        pathname = getname(specialfile);
1190
        err = PTR_ERR(pathname);
1191
        if (IS_ERR(pathname))
1192
                goto out;
1193
 
1194
        victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1195
        putname(pathname);
1196
        err = PTR_ERR(victim);
1197
        if (IS_ERR(victim))
1198
                goto out;
1199
 
1200
        mapping = victim->f_mapping;
1201
        prev = -1;
1202
        spin_lock(&swap_lock);
1203
        for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1204
                p = swap_info + type;
1205
                if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1206
                        if (p->swap_file->f_mapping == mapping)
1207
                                break;
1208
                }
1209
                prev = type;
1210
        }
1211
        if (type < 0) {
1212
                err = -EINVAL;
1213
                spin_unlock(&swap_lock);
1214
                goto out_dput;
1215
        }
1216
        if (!security_vm_enough_memory(p->pages))
1217
                vm_unacct_memory(p->pages);
1218
        else {
1219
                err = -ENOMEM;
1220
                spin_unlock(&swap_lock);
1221
                goto out_dput;
1222
        }
1223
        if (prev < 0) {
1224
                swap_list.head = p->next;
1225
        } else {
1226
                swap_info[prev].next = p->next;
1227
        }
1228
        if (type == swap_list.next) {
1229
                /* just pick something that's safe... */
1230
                swap_list.next = swap_list.head;
1231
        }
1232
        nr_swap_pages -= p->pages;
1233
        total_swap_pages -= p->pages;
1234
        p->flags &= ~SWP_WRITEOK;
1235
        spin_unlock(&swap_lock);
1236
 
1237
        current->flags |= PF_SWAPOFF;
1238
        err = try_to_unuse(type);
1239
        current->flags &= ~PF_SWAPOFF;
1240
 
1241
        if (err) {
1242
                /* re-insert swap space back into swap_list */
1243
                spin_lock(&swap_lock);
1244
                for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1245
                        if (p->prio >= swap_info[i].prio)
1246
                                break;
1247
                p->next = i;
1248
                if (prev < 0)
1249
                        swap_list.head = swap_list.next = p - swap_info;
1250
                else
1251
                        swap_info[prev].next = p - swap_info;
1252
                nr_swap_pages += p->pages;
1253
                total_swap_pages += p->pages;
1254
                p->flags |= SWP_WRITEOK;
1255
                spin_unlock(&swap_lock);
1256
                goto out_dput;
1257
        }
1258
 
1259
        /* wait for any unplug function to finish */
1260
        down_write(&swap_unplug_sem);
1261
        up_write(&swap_unplug_sem);
1262
 
1263
        destroy_swap_extents(p);
1264
        mutex_lock(&swapon_mutex);
1265
        spin_lock(&swap_lock);
1266
        drain_mmlist();
1267
 
1268
        /* wait for anyone still in scan_swap_map */
1269
        p->highest_bit = 0;              /* cuts scans short */
1270
        while (p->flags >= SWP_SCANNING) {
1271
                spin_unlock(&swap_lock);
1272
                schedule_timeout_uninterruptible(1);
1273
                spin_lock(&swap_lock);
1274
        }
1275
 
1276
        swap_file = p->swap_file;
1277
        p->swap_file = NULL;
1278
        p->max = 0;
1279
        swap_map = p->swap_map;
1280
        p->swap_map = NULL;
1281
        p->flags = 0;
1282
        spin_unlock(&swap_lock);
1283
        mutex_unlock(&swapon_mutex);
1284
        vfree(swap_map);
1285
        inode = mapping->host;
1286
        if (S_ISBLK(inode->i_mode)) {
1287
                struct block_device *bdev = I_BDEV(inode);
1288
                set_blocksize(bdev, p->old_block_size);
1289
                bd_release(bdev);
1290
        } else {
1291
                mutex_lock(&inode->i_mutex);
1292
                inode->i_flags &= ~S_SWAPFILE;
1293
                mutex_unlock(&inode->i_mutex);
1294
        }
1295
        filp_close(swap_file, NULL);
1296
        err = 0;
1297
 
1298
out_dput:
1299
        filp_close(victim, NULL);
1300
out:
1301
        return err;
1302
}
1303
 
1304
#ifdef CONFIG_PROC_FS
1305
/* iterator */
1306
static void *swap_start(struct seq_file *swap, loff_t *pos)
1307
{
1308
        struct swap_info_struct *ptr = swap_info;
1309
        int i;
1310
        loff_t l = *pos;
1311
 
1312
        mutex_lock(&swapon_mutex);
1313
 
1314
        if (!l)
1315
                return SEQ_START_TOKEN;
1316
 
1317
        for (i = 0; i < nr_swapfiles; i++, ptr++) {
1318
                if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1319
                        continue;
1320
                if (!--l)
1321
                        return ptr;
1322
        }
1323
 
1324
        return NULL;
1325
}
1326
 
1327
static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1328
{
1329
        struct swap_info_struct *ptr;
1330
        struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1331
 
1332
        if (v == SEQ_START_TOKEN)
1333
                ptr = swap_info;
1334
        else {
1335
                ptr = v;
1336
                ptr++;
1337
        }
1338
 
1339
        for (; ptr < endptr; ptr++) {
1340
                if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1341
                        continue;
1342
                ++*pos;
1343
                return ptr;
1344
        }
1345
 
1346
        return NULL;
1347
}
1348
 
1349
static void swap_stop(struct seq_file *swap, void *v)
1350
{
1351
        mutex_unlock(&swapon_mutex);
1352
}
1353
 
1354
static int swap_show(struct seq_file *swap, void *v)
1355
{
1356
        struct swap_info_struct *ptr = v;
1357
        struct file *file;
1358
        int len;
1359
 
1360
        if (ptr == SEQ_START_TOKEN) {
1361
                seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1362
                return 0;
1363
        }
1364
 
1365
        file = ptr->swap_file;
1366
        len = seq_path(swap, file->f_path.mnt, file->f_path.dentry, " \t\n\\");
1367
        seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1368
                       len < 40 ? 40 - len : 1, " ",
1369
                       S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1370
                                "partition" : "file\t",
1371
                       ptr->pages << (PAGE_SHIFT - 10),
1372
                       ptr->inuse_pages << (PAGE_SHIFT - 10),
1373
                       ptr->prio);
1374
        return 0;
1375
}
1376
 
1377
static const struct seq_operations swaps_op = {
1378
        .start =        swap_start,
1379
        .next =         swap_next,
1380
        .stop =         swap_stop,
1381
        .show =         swap_show
1382
};
1383
 
1384
static int swaps_open(struct inode *inode, struct file *file)
1385
{
1386
        return seq_open(file, &swaps_op);
1387
}
1388
 
1389
static const struct file_operations proc_swaps_operations = {
1390
        .open           = swaps_open,
1391
        .read           = seq_read,
1392
        .llseek         = seq_lseek,
1393
        .release        = seq_release,
1394
};
1395
 
1396
static int __init procswaps_init(void)
1397
{
1398
        struct proc_dir_entry *entry;
1399
 
1400
        entry = create_proc_entry("swaps", 0, NULL);
1401
        if (entry)
1402
                entry->proc_fops = &proc_swaps_operations;
1403
        return 0;
1404
}
1405
__initcall(procswaps_init);
1406
#endif /* CONFIG_PROC_FS */
1407
 
1408
/*
1409
 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1410
 *
1411
 * The swapon system call
1412
 */
1413
asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1414
{
1415
        struct swap_info_struct * p;
1416
        char *name = NULL;
1417
        struct block_device *bdev = NULL;
1418
        struct file *swap_file = NULL;
1419
        struct address_space *mapping;
1420
        unsigned int type;
1421
        int i, prev;
1422
        int error;
1423
        static int least_priority;
1424
        union swap_header *swap_header = NULL;
1425
        int swap_header_version;
1426
        unsigned int nr_good_pages = 0;
1427
        int nr_extents = 0;
1428
        sector_t span;
1429
        unsigned long maxpages = 1;
1430
        int swapfilesize;
1431
        unsigned short *swap_map;
1432
        struct page *page = NULL;
1433
        struct inode *inode = NULL;
1434
        int did_down = 0;
1435
 
1436
        if (!capable(CAP_SYS_ADMIN))
1437
                return -EPERM;
1438
        spin_lock(&swap_lock);
1439
        p = swap_info;
1440
        for (type = 0 ; type < nr_swapfiles ; type++,p++)
1441
                if (!(p->flags & SWP_USED))
1442
                        break;
1443
        error = -EPERM;
1444
        if (type >= MAX_SWAPFILES) {
1445
                spin_unlock(&swap_lock);
1446
                goto out;
1447
        }
1448
        if (type >= nr_swapfiles)
1449
                nr_swapfiles = type+1;
1450
        INIT_LIST_HEAD(&p->extent_list);
1451
        p->flags = SWP_USED;
1452
        p->swap_file = NULL;
1453
        p->old_block_size = 0;
1454
        p->swap_map = NULL;
1455
        p->lowest_bit = 0;
1456
        p->highest_bit = 0;
1457
        p->cluster_nr = 0;
1458
        p->inuse_pages = 0;
1459
        p->next = -1;
1460
        if (swap_flags & SWAP_FLAG_PREFER) {
1461
                p->prio =
1462
                  (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1463
        } else {
1464
                p->prio = --least_priority;
1465
        }
1466
        spin_unlock(&swap_lock);
1467
        name = getname(specialfile);
1468
        error = PTR_ERR(name);
1469
        if (IS_ERR(name)) {
1470
                name = NULL;
1471
                goto bad_swap_2;
1472
        }
1473
        swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1474
        error = PTR_ERR(swap_file);
1475
        if (IS_ERR(swap_file)) {
1476
                swap_file = NULL;
1477
                goto bad_swap_2;
1478
        }
1479
 
1480
        p->swap_file = swap_file;
1481
        mapping = swap_file->f_mapping;
1482
        inode = mapping->host;
1483
 
1484
        error = -EBUSY;
1485
        for (i = 0; i < nr_swapfiles; i++) {
1486
                struct swap_info_struct *q = &swap_info[i];
1487
 
1488
                if (i == type || !q->swap_file)
1489
                        continue;
1490
                if (mapping == q->swap_file->f_mapping)
1491
                        goto bad_swap;
1492
        }
1493
 
1494
        error = -EINVAL;
1495
        if (S_ISBLK(inode->i_mode)) {
1496
                bdev = I_BDEV(inode);
1497
                error = bd_claim(bdev, sys_swapon);
1498
                if (error < 0) {
1499
                        bdev = NULL;
1500
                        error = -EINVAL;
1501
                        goto bad_swap;
1502
                }
1503
                p->old_block_size = block_size(bdev);
1504
                error = set_blocksize(bdev, PAGE_SIZE);
1505
                if (error < 0)
1506
                        goto bad_swap;
1507
                p->bdev = bdev;
1508
        } else if (S_ISREG(inode->i_mode)) {
1509
                p->bdev = inode->i_sb->s_bdev;
1510
                mutex_lock(&inode->i_mutex);
1511
                did_down = 1;
1512
                if (IS_SWAPFILE(inode)) {
1513
                        error = -EBUSY;
1514
                        goto bad_swap;
1515
                }
1516
        } else {
1517
                goto bad_swap;
1518
        }
1519
 
1520
        swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1521
 
1522
        /*
1523
         * Read the swap header.
1524
         */
1525
        if (!mapping->a_ops->readpage) {
1526
                error = -EINVAL;
1527
                goto bad_swap;
1528
        }
1529
        page = read_mapping_page(mapping, 0, swap_file);
1530
        if (IS_ERR(page)) {
1531
                error = PTR_ERR(page);
1532
                goto bad_swap;
1533
        }
1534
        kmap(page);
1535
        swap_header = page_address(page);
1536
 
1537
        if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1538
                swap_header_version = 1;
1539
        else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1540
                swap_header_version = 2;
1541
        else {
1542
                printk(KERN_ERR "Unable to find swap-space signature\n");
1543
                error = -EINVAL;
1544
                goto bad_swap;
1545
        }
1546
 
1547
        switch (swap_header_version) {
1548
        case 1:
1549
                printk(KERN_ERR "version 0 swap is no longer supported. "
1550
                        "Use mkswap -v1 %s\n", name);
1551
                error = -EINVAL;
1552
                goto bad_swap;
1553
        case 2:
1554
                /* Check the swap header's sub-version and the size of
1555
                   the swap file and bad block lists */
1556
                if (swap_header->info.version != 1) {
1557
                        printk(KERN_WARNING
1558
                               "Unable to handle swap header version %d\n",
1559
                               swap_header->info.version);
1560
                        error = -EINVAL;
1561
                        goto bad_swap;
1562
                }
1563
 
1564
                p->lowest_bit  = 1;
1565
                p->cluster_next = 1;
1566
 
1567
                /*
1568
                 * Find out how many pages are allowed for a single swap
1569
                 * device. There are two limiting factors: 1) the number of
1570
                 * bits for the swap offset in the swp_entry_t type and
1571
                 * 2) the number of bits in the a swap pte as defined by
1572
                 * the different architectures. In order to find the
1573
                 * largest possible bit mask a swap entry with swap type 0
1574
                 * and swap offset ~0UL is created, encoded to a swap pte,
1575
                 * decoded to a swp_entry_t again and finally the swap
1576
                 * offset is extracted. This will mask all the bits from
1577
                 * the initial ~0UL mask that can't be encoded in either
1578
                 * the swp_entry_t or the architecture definition of a
1579
                 * swap pte.
1580
                 */
1581
                maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1582
                if (maxpages > swap_header->info.last_page)
1583
                        maxpages = swap_header->info.last_page;
1584
                p->highest_bit = maxpages - 1;
1585
 
1586
                error = -EINVAL;
1587
                if (!maxpages)
1588
                        goto bad_swap;
1589
                if (swapfilesize && maxpages > swapfilesize) {
1590
                        printk(KERN_WARNING
1591
                               "Swap area shorter than signature indicates\n");
1592
                        goto bad_swap;
1593
                }
1594
                if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1595
                        goto bad_swap;
1596
                if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1597
                        goto bad_swap;
1598
 
1599
                /* OK, set up the swap map and apply the bad block list */
1600
                if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1601
                        error = -ENOMEM;
1602
                        goto bad_swap;
1603
                }
1604
 
1605
                error = 0;
1606
                memset(p->swap_map, 0, maxpages * sizeof(short));
1607
                for (i = 0; i < swap_header->info.nr_badpages; i++) {
1608
                        int page_nr = swap_header->info.badpages[i];
1609
                        if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1610
                                error = -EINVAL;
1611
                        else
1612
                                p->swap_map[page_nr] = SWAP_MAP_BAD;
1613
                }
1614
                nr_good_pages = swap_header->info.last_page -
1615
                                swap_header->info.nr_badpages -
1616
                                1 /* header page */;
1617
                if (error)
1618
                        goto bad_swap;
1619
        }
1620
 
1621
        if (nr_good_pages) {
1622
                p->swap_map[0] = SWAP_MAP_BAD;
1623
                p->max = maxpages;
1624
                p->pages = nr_good_pages;
1625
                nr_extents = setup_swap_extents(p, &span);
1626
                if (nr_extents < 0) {
1627
                        error = nr_extents;
1628
                        goto bad_swap;
1629
                }
1630
                nr_good_pages = p->pages;
1631
        }
1632
        if (!nr_good_pages) {
1633
                printk(KERN_WARNING "Empty swap-file\n");
1634
                error = -EINVAL;
1635
                goto bad_swap;
1636
        }
1637
 
1638
        mutex_lock(&swapon_mutex);
1639
        spin_lock(&swap_lock);
1640
        p->flags = SWP_ACTIVE;
1641
        nr_swap_pages += nr_good_pages;
1642
        total_swap_pages += nr_good_pages;
1643
 
1644
        printk(KERN_INFO "Adding %uk swap on %s.  "
1645
                        "Priority:%d extents:%d across:%lluk\n",
1646
                nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1647
                nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1648
 
1649
        /* insert swap space into swap_list: */
1650
        prev = -1;
1651
        for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1652
                if (p->prio >= swap_info[i].prio) {
1653
                        break;
1654
                }
1655
                prev = i;
1656
        }
1657
        p->next = i;
1658
        if (prev < 0) {
1659
                swap_list.head = swap_list.next = p - swap_info;
1660
        } else {
1661
                swap_info[prev].next = p - swap_info;
1662
        }
1663
        spin_unlock(&swap_lock);
1664
        mutex_unlock(&swapon_mutex);
1665
        error = 0;
1666
        goto out;
1667
bad_swap:
1668
        if (bdev) {
1669
                set_blocksize(bdev, p->old_block_size);
1670
                bd_release(bdev);
1671
        }
1672
        destroy_swap_extents(p);
1673
bad_swap_2:
1674
        spin_lock(&swap_lock);
1675
        swap_map = p->swap_map;
1676
        p->swap_file = NULL;
1677
        p->swap_map = NULL;
1678
        p->flags = 0;
1679
        if (!(swap_flags & SWAP_FLAG_PREFER))
1680
                ++least_priority;
1681
        spin_unlock(&swap_lock);
1682
        vfree(swap_map);
1683
        if (swap_file)
1684
                filp_close(swap_file, NULL);
1685
out:
1686
        if (page && !IS_ERR(page)) {
1687
                kunmap(page);
1688
                page_cache_release(page);
1689
        }
1690
        if (name)
1691
                putname(name);
1692
        if (did_down) {
1693
                if (!error)
1694
                        inode->i_flags |= S_SWAPFILE;
1695
                mutex_unlock(&inode->i_mutex);
1696
        }
1697
        return error;
1698
}
1699
 
1700
void si_swapinfo(struct sysinfo *val)
1701
{
1702
        unsigned int i;
1703
        unsigned long nr_to_be_unused = 0;
1704
 
1705
        spin_lock(&swap_lock);
1706
        for (i = 0; i < nr_swapfiles; i++) {
1707
                if (!(swap_info[i].flags & SWP_USED) ||
1708
                     (swap_info[i].flags & SWP_WRITEOK))
1709
                        continue;
1710
                nr_to_be_unused += swap_info[i].inuse_pages;
1711
        }
1712
        val->freeswap = nr_swap_pages + nr_to_be_unused;
1713
        val->totalswap = total_swap_pages + nr_to_be_unused;
1714
        spin_unlock(&swap_lock);
1715
}
1716
 
1717
/*
1718
 * Verify that a swap entry is valid and increment its swap map count.
1719
 *
1720
 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1721
 * "permanent", but will be reclaimed by the next swapoff.
1722
 */
1723
int swap_duplicate(swp_entry_t entry)
1724
{
1725
        struct swap_info_struct * p;
1726
        unsigned long offset, type;
1727
        int result = 0;
1728
 
1729
        if (is_migration_entry(entry))
1730
                return 1;
1731
 
1732
        type = swp_type(entry);
1733
        if (type >= nr_swapfiles)
1734
                goto bad_file;
1735
        p = type + swap_info;
1736
        offset = swp_offset(entry);
1737
 
1738
        spin_lock(&swap_lock);
1739
        if (offset < p->max && p->swap_map[offset]) {
1740
                if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1741
                        p->swap_map[offset]++;
1742
                        result = 1;
1743
                } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1744
                        if (swap_overflow++ < 5)
1745
                                printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1746
                        p->swap_map[offset] = SWAP_MAP_MAX;
1747
                        result = 1;
1748
                }
1749
        }
1750
        spin_unlock(&swap_lock);
1751
out:
1752
        return result;
1753
 
1754
bad_file:
1755
        printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1756
        goto out;
1757
}
1758
 
1759
struct swap_info_struct *
1760
get_swap_info_struct(unsigned type)
1761
{
1762
        return &swap_info[type];
1763
}
1764
 
1765
/*
1766
 * swap_lock prevents swap_map being freed. Don't grab an extra
1767
 * reference on the swaphandle, it doesn't matter if it becomes unused.
1768
 */
1769
int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1770
{
1771
        int our_page_cluster = page_cluster;
1772
        int ret = 0, i = 1 << our_page_cluster;
1773
        unsigned long toff;
1774
        struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1775
 
1776
        if (!our_page_cluster)  /* no readahead */
1777
                return 0;
1778
        toff = (swp_offset(entry) >> our_page_cluster) << our_page_cluster;
1779
        if (!toff)              /* first page is swap header */
1780
                toff++, i--;
1781
        *offset = toff;
1782
 
1783
        spin_lock(&swap_lock);
1784
        do {
1785
                /* Don't read-ahead past the end of the swap area */
1786
                if (toff >= swapdev->max)
1787
                        break;
1788
                /* Don't read in free or bad pages */
1789
                if (!swapdev->swap_map[toff])
1790
                        break;
1791
                if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1792
                        break;
1793
                toff++;
1794
                ret++;
1795
        } while (--i);
1796
        spin_unlock(&swap_lock);
1797
        return ret;
1798
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.