OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [mm/] [truncate.c] - Blame information for rev 79

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * mm/truncate.c - code for taking down pages from address_spaces
3
 *
4
 * Copyright (C) 2002, Linus Torvalds
5
 *
6
 * 10Sep2002    akpm@zip.com.au
7
 *              Initial version.
8
 */
9
 
10
#include <linux/kernel.h>
11
#include <linux/backing-dev.h>
12
#include <linux/mm.h>
13
#include <linux/swap.h>
14
#include <linux/module.h>
15
#include <linux/pagemap.h>
16
#include <linux/highmem.h>
17
#include <linux/pagevec.h>
18
#include <linux/task_io_accounting_ops.h>
19
#include <linux/buffer_head.h>  /* grr. try_to_release_page,
20
                                   do_invalidatepage */
21
 
22
 
23
/**
24
 * do_invalidatepage - invalidate part of all of a page
25
 * @page: the page which is affected
26
 * @offset: the index of the truncation point
27
 *
28
 * do_invalidatepage() is called when all or part of the page has become
29
 * invalidated by a truncate operation.
30
 *
31
 * do_invalidatepage() does not have to release all buffers, but it must
32
 * ensure that no dirty buffer is left outside @offset and that no I/O
33
 * is underway against any of the blocks which are outside the truncation
34
 * point.  Because the caller is about to free (and possibly reuse) those
35
 * blocks on-disk.
36
 */
37
void do_invalidatepage(struct page *page, unsigned long offset)
38
{
39
        void (*invalidatepage)(struct page *, unsigned long);
40
        invalidatepage = page->mapping->a_ops->invalidatepage;
41
#ifdef CONFIG_BLOCK
42
        if (!invalidatepage)
43
                invalidatepage = block_invalidatepage;
44
#endif
45
        if (invalidatepage)
46
                (*invalidatepage)(page, offset);
47
}
48
 
49
static inline void truncate_partial_page(struct page *page, unsigned partial)
50
{
51
        zero_user_page(page, partial, PAGE_CACHE_SIZE - partial, KM_USER0);
52
        if (PagePrivate(page))
53
                do_invalidatepage(page, partial);
54
}
55
 
56
/*
57
 * This cancels just the dirty bit on the kernel page itself, it
58
 * does NOT actually remove dirty bits on any mmap's that may be
59
 * around. It also leaves the page tagged dirty, so any sync
60
 * activity will still find it on the dirty lists, and in particular,
61
 * clear_page_dirty_for_io() will still look at the dirty bits in
62
 * the VM.
63
 *
64
 * Doing this should *normally* only ever be done when a page
65
 * is truncated, and is not actually mapped anywhere at all. However,
66
 * fs/buffer.c does this when it notices that somebody has cleaned
67
 * out all the buffers on a page without actually doing it through
68
 * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
69
 */
70
void cancel_dirty_page(struct page *page, unsigned int account_size)
71
{
72
        if (TestClearPageDirty(page)) {
73
                struct address_space *mapping = page->mapping;
74
                if (mapping && mapping_cap_account_dirty(mapping)) {
75
                        dec_zone_page_state(page, NR_FILE_DIRTY);
76
                        dec_bdi_stat(mapping->backing_dev_info,
77
                                        BDI_RECLAIMABLE);
78
                        if (account_size)
79
                                task_io_account_cancelled_write(account_size);
80
                }
81
        }
82
}
83
EXPORT_SYMBOL(cancel_dirty_page);
84
 
85
/*
86
 * If truncate cannot remove the fs-private metadata from the page, the page
87
 * becomes anonymous.  It will be left on the LRU and may even be mapped into
88
 * user pagetables if we're racing with filemap_fault().
89
 *
90
 * We need to bale out if page->mapping is no longer equal to the original
91
 * mapping.  This happens a) when the VM reclaimed the page while we waited on
92
 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
93
 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
94
 */
95
static void
96
truncate_complete_page(struct address_space *mapping, struct page *page)
97
{
98
        if (page->mapping != mapping)
99
                return;
100
 
101
        cancel_dirty_page(page, PAGE_CACHE_SIZE);
102
 
103
        if (PagePrivate(page))
104
                do_invalidatepage(page, 0);
105
 
106
        remove_from_page_cache(page);
107
        ClearPageUptodate(page);
108
        ClearPageMappedToDisk(page);
109
        page_cache_release(page);       /* pagecache ref */
110
}
111
 
112
/*
113
 * This is for invalidate_mapping_pages().  That function can be called at
114
 * any time, and is not supposed to throw away dirty pages.  But pages can
115
 * be marked dirty at any time too, so use remove_mapping which safely
116
 * discards clean, unused pages.
117
 *
118
 * Returns non-zero if the page was successfully invalidated.
119
 */
120
static int
121
invalidate_complete_page(struct address_space *mapping, struct page *page)
122
{
123
        int ret;
124
 
125
        if (page->mapping != mapping)
126
                return 0;
127
 
128
        if (PagePrivate(page) && !try_to_release_page(page, 0))
129
                return 0;
130
 
131
        ret = remove_mapping(mapping, page);
132
 
133
        return ret;
134
}
135
 
136
/**
137
 * truncate_inode_pages - truncate range of pages specified by start and
138
 * end byte offsets
139
 * @mapping: mapping to truncate
140
 * @lstart: offset from which to truncate
141
 * @lend: offset to which to truncate
142
 *
143
 * Truncate the page cache, removing the pages that are between
144
 * specified offsets (and zeroing out partial page
145
 * (if lstart is not page aligned)).
146
 *
147
 * Truncate takes two passes - the first pass is nonblocking.  It will not
148
 * block on page locks and it will not block on writeback.  The second pass
149
 * will wait.  This is to prevent as much IO as possible in the affected region.
150
 * The first pass will remove most pages, so the search cost of the second pass
151
 * is low.
152
 *
153
 * When looking at page->index outside the page lock we need to be careful to
154
 * copy it into a local to avoid races (it could change at any time).
155
 *
156
 * We pass down the cache-hot hint to the page freeing code.  Even if the
157
 * mapping is large, it is probably the case that the final pages are the most
158
 * recently touched, and freeing happens in ascending file offset order.
159
 */
160
void truncate_inode_pages_range(struct address_space *mapping,
161
                                loff_t lstart, loff_t lend)
162
{
163
        const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
164
        pgoff_t end;
165
        const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
166
        struct pagevec pvec;
167
        pgoff_t next;
168
        int i;
169
 
170
        if (mapping->nrpages == 0)
171
                return;
172
 
173
        BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
174
        end = (lend >> PAGE_CACHE_SHIFT);
175
 
176
        pagevec_init(&pvec, 0);
177
        next = start;
178
        while (next <= end &&
179
               pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
180
                for (i = 0; i < pagevec_count(&pvec); i++) {
181
                        struct page *page = pvec.pages[i];
182
                        pgoff_t page_index = page->index;
183
 
184
                        if (page_index > end) {
185
                                next = page_index;
186
                                break;
187
                        }
188
 
189
                        if (page_index > next)
190
                                next = page_index;
191
                        next++;
192
                        if (TestSetPageLocked(page))
193
                                continue;
194
                        if (PageWriteback(page)) {
195
                                unlock_page(page);
196
                                continue;
197
                        }
198
                        if (page_mapped(page)) {
199
                                unmap_mapping_range(mapping,
200
                                  (loff_t)page_index<<PAGE_CACHE_SHIFT,
201
                                  PAGE_CACHE_SIZE, 0);
202
                        }
203
                        truncate_complete_page(mapping, page);
204
                        unlock_page(page);
205
                }
206
                pagevec_release(&pvec);
207
                cond_resched();
208
        }
209
 
210
        if (partial) {
211
                struct page *page = find_lock_page(mapping, start - 1);
212
                if (page) {
213
                        wait_on_page_writeback(page);
214
                        truncate_partial_page(page, partial);
215
                        unlock_page(page);
216
                        page_cache_release(page);
217
                }
218
        }
219
 
220
        next = start;
221
        for ( ; ; ) {
222
                cond_resched();
223
                if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
224
                        if (next == start)
225
                                break;
226
                        next = start;
227
                        continue;
228
                }
229
                if (pvec.pages[0]->index > end) {
230
                        pagevec_release(&pvec);
231
                        break;
232
                }
233
                for (i = 0; i < pagevec_count(&pvec); i++) {
234
                        struct page *page = pvec.pages[i];
235
 
236
                        if (page->index > end)
237
                                break;
238
                        lock_page(page);
239
                        wait_on_page_writeback(page);
240
                        if (page_mapped(page)) {
241
                                unmap_mapping_range(mapping,
242
                                  (loff_t)page->index<<PAGE_CACHE_SHIFT,
243
                                  PAGE_CACHE_SIZE, 0);
244
                        }
245
                        if (page->index > next)
246
                                next = page->index;
247
                        next++;
248
                        truncate_complete_page(mapping, page);
249
                        unlock_page(page);
250
                }
251
                pagevec_release(&pvec);
252
        }
253
}
254
EXPORT_SYMBOL(truncate_inode_pages_range);
255
 
256
/**
257
 * truncate_inode_pages - truncate *all* the pages from an offset
258
 * @mapping: mapping to truncate
259
 * @lstart: offset from which to truncate
260
 *
261
 * Called under (and serialised by) inode->i_mutex.
262
 */
263
void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
264
{
265
        truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
266
}
267
EXPORT_SYMBOL(truncate_inode_pages);
268
 
269
unsigned long __invalidate_mapping_pages(struct address_space *mapping,
270
                                pgoff_t start, pgoff_t end, bool be_atomic)
271
{
272
        struct pagevec pvec;
273
        pgoff_t next = start;
274
        unsigned long ret = 0;
275
        int i;
276
 
277
        pagevec_init(&pvec, 0);
278
        while (next <= end &&
279
                        pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
280
                for (i = 0; i < pagevec_count(&pvec); i++) {
281
                        struct page *page = pvec.pages[i];
282
                        pgoff_t index;
283
                        int lock_failed;
284
 
285
                        lock_failed = TestSetPageLocked(page);
286
 
287
                        /*
288
                         * We really shouldn't be looking at the ->index of an
289
                         * unlocked page.  But we're not allowed to lock these
290
                         * pages.  So we rely upon nobody altering the ->index
291
                         * of this (pinned-by-us) page.
292
                         */
293
                        index = page->index;
294
                        if (index > next)
295
                                next = index;
296
                        next++;
297
                        if (lock_failed)
298
                                continue;
299
 
300
                        if (PageDirty(page) || PageWriteback(page))
301
                                goto unlock;
302
                        if (page_mapped(page))
303
                                goto unlock;
304
                        ret += invalidate_complete_page(mapping, page);
305
unlock:
306
                        unlock_page(page);
307
                        if (next > end)
308
                                break;
309
                }
310
                pagevec_release(&pvec);
311
                if (likely(!be_atomic))
312
                        cond_resched();
313
        }
314
        return ret;
315
}
316
 
317
/**
318
 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
319
 * @mapping: the address_space which holds the pages to invalidate
320
 * @start: the offset 'from' which to invalidate
321
 * @end: the offset 'to' which to invalidate (inclusive)
322
 *
323
 * This function only removes the unlocked pages, if you want to
324
 * remove all the pages of one inode, you must call truncate_inode_pages.
325
 *
326
 * invalidate_mapping_pages() will not block on IO activity. It will not
327
 * invalidate pages which are dirty, locked, under writeback or mapped into
328
 * pagetables.
329
 */
330
unsigned long invalidate_mapping_pages(struct address_space *mapping,
331
                                pgoff_t start, pgoff_t end)
332
{
333
        return __invalidate_mapping_pages(mapping, start, end, false);
334
}
335
EXPORT_SYMBOL(invalidate_mapping_pages);
336
 
337
/*
338
 * This is like invalidate_complete_page(), except it ignores the page's
339
 * refcount.  We do this because invalidate_inode_pages2() needs stronger
340
 * invalidation guarantees, and cannot afford to leave pages behind because
341
 * shrink_page_list() has a temp ref on them, or because they're transiently
342
 * sitting in the lru_cache_add() pagevecs.
343
 */
344
static int
345
invalidate_complete_page2(struct address_space *mapping, struct page *page)
346
{
347
        if (page->mapping != mapping)
348
                return 0;
349
 
350
        if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL))
351
                return 0;
352
 
353
        write_lock_irq(&mapping->tree_lock);
354
        if (PageDirty(page))
355
                goto failed;
356
 
357
        BUG_ON(PagePrivate(page));
358
        __remove_from_page_cache(page);
359
        write_unlock_irq(&mapping->tree_lock);
360
        ClearPageUptodate(page);
361
        page_cache_release(page);       /* pagecache ref */
362
        return 1;
363
failed:
364
        write_unlock_irq(&mapping->tree_lock);
365
        return 0;
366
}
367
 
368
static int do_launder_page(struct address_space *mapping, struct page *page)
369
{
370
        if (!PageDirty(page))
371
                return 0;
372
        if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
373
                return 0;
374
        return mapping->a_ops->launder_page(page);
375
}
376
 
377
/**
378
 * invalidate_inode_pages2_range - remove range of pages from an address_space
379
 * @mapping: the address_space
380
 * @start: the page offset 'from' which to invalidate
381
 * @end: the page offset 'to' which to invalidate (inclusive)
382
 *
383
 * Any pages which are found to be mapped into pagetables are unmapped prior to
384
 * invalidation.
385
 *
386
 * Returns -EIO if any pages could not be invalidated.
387
 */
388
int invalidate_inode_pages2_range(struct address_space *mapping,
389
                                  pgoff_t start, pgoff_t end)
390
{
391
        struct pagevec pvec;
392
        pgoff_t next;
393
        int i;
394
        int ret = 0;
395
        int did_range_unmap = 0;
396
        int wrapped = 0;
397
 
398
        pagevec_init(&pvec, 0);
399
        next = start;
400
        while (next <= end && !wrapped &&
401
                pagevec_lookup(&pvec, mapping, next,
402
                        min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
403
                for (i = 0; i < pagevec_count(&pvec); i++) {
404
                        struct page *page = pvec.pages[i];
405
                        pgoff_t page_index;
406
 
407
                        lock_page(page);
408
                        if (page->mapping != mapping) {
409
                                unlock_page(page);
410
                                continue;
411
                        }
412
                        page_index = page->index;
413
                        next = page_index + 1;
414
                        if (next == 0)
415
                                wrapped = 1;
416
                        if (page_index > end) {
417
                                unlock_page(page);
418
                                break;
419
                        }
420
                        wait_on_page_writeback(page);
421
                        if (page_mapped(page)) {
422
                                if (!did_range_unmap) {
423
                                        /*
424
                                         * Zap the rest of the file in one hit.
425
                                         */
426
                                        unmap_mapping_range(mapping,
427
                                           (loff_t)page_index<<PAGE_CACHE_SHIFT,
428
                                           (loff_t)(end - page_index + 1)
429
                                                        << PAGE_CACHE_SHIFT,
430
                                            0);
431
                                        did_range_unmap = 1;
432
                                } else {
433
                                        /*
434
                                         * Just zap this page
435
                                         */
436
                                        unmap_mapping_range(mapping,
437
                                          (loff_t)page_index<<PAGE_CACHE_SHIFT,
438
                                          PAGE_CACHE_SIZE, 0);
439
                                }
440
                        }
441
                        BUG_ON(page_mapped(page));
442
                        ret = do_launder_page(mapping, page);
443
                        if (ret == 0 && !invalidate_complete_page2(mapping, page))
444
                                ret = -EIO;
445
                        unlock_page(page);
446
                }
447
                pagevec_release(&pvec);
448
                cond_resched();
449
        }
450
        return ret;
451
}
452
EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
453
 
454
/**
455
 * invalidate_inode_pages2 - remove all pages from an address_space
456
 * @mapping: the address_space
457
 *
458
 * Any pages which are found to be mapped into pagetables are unmapped prior to
459
 * invalidation.
460
 *
461
 * Returns -EIO if any pages could not be invalidated.
462
 */
463
int invalidate_inode_pages2(struct address_space *mapping)
464
{
465
        return invalidate_inode_pages2_range(mapping, 0, -1);
466
}
467
EXPORT_SYMBOL_GPL(invalidate_inode_pages2);

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.