OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [net/] [ipv4/] [tcp_cubic.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * TCP CUBIC: Binary Increase Congestion control for TCP v2.1
3
 *
4
 * This is from the implementation of CUBIC TCP in
5
 * Injong Rhee, Lisong Xu.
6
 *  "CUBIC: A New TCP-Friendly High-Speed TCP Variant
7
 *  in PFLDnet 2005
8
 * Available from:
9
 *  http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/cubic-paper.pdf
10
 *
11
 * Unless CUBIC is enabled and congestion window is large
12
 * this behaves the same as the original Reno.
13
 */
14
 
15
#include <linux/mm.h>
16
#include <linux/module.h>
17
#include <net/tcp.h>
18
#include <asm/div64.h>
19
 
20
#define BICTCP_BETA_SCALE    1024       /* Scale factor beta calculation
21
                                         * max_cwnd = snd_cwnd * beta
22
                                         */
23
#define BICTCP_B                4        /*
24
                                          * In binary search,
25
                                          * go to point (max+min)/N
26
                                          */
27
#define BICTCP_HZ               10      /* BIC HZ 2^10 = 1024 */
28
 
29
static int fast_convergence __read_mostly = 1;
30
static int max_increment __read_mostly = 16;
31
static int beta __read_mostly = 819;    /* = 819/1024 (BICTCP_BETA_SCALE) */
32
static int initial_ssthresh __read_mostly;
33
static int bic_scale __read_mostly = 41;
34
static int tcp_friendliness __read_mostly = 1;
35
 
36
static u32 cube_rtt_scale __read_mostly;
37
static u32 beta_scale __read_mostly;
38
static u64 cube_factor __read_mostly;
39
 
40
/* Note parameters that are used for precomputing scale factors are read-only */
41
module_param(fast_convergence, int, 0644);
42
MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
43
module_param(max_increment, int, 0644);
44
MODULE_PARM_DESC(max_increment, "Limit on increment allowed during binary search");
45
module_param(beta, int, 0444);
46
MODULE_PARM_DESC(beta, "beta for multiplicative increase");
47
module_param(initial_ssthresh, int, 0644);
48
MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
49
module_param(bic_scale, int, 0444);
50
MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
51
module_param(tcp_friendliness, int, 0644);
52
MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
53
 
54
/* BIC TCP Parameters */
55
struct bictcp {
56
        u32     cnt;            /* increase cwnd by 1 after ACKs */
57
        u32     last_max_cwnd;  /* last maximum snd_cwnd */
58
        u32     loss_cwnd;      /* congestion window at last loss */
59
        u32     last_cwnd;      /* the last snd_cwnd */
60
        u32     last_time;      /* time when updated last_cwnd */
61
        u32     bic_origin_point;/* origin point of bic function */
62
        u32     bic_K;          /* time to origin point from the beginning of the current epoch */
63
        u32     delay_min;      /* min delay */
64
        u32     epoch_start;    /* beginning of an epoch */
65
        u32     ack_cnt;        /* number of acks */
66
        u32     tcp_cwnd;       /* estimated tcp cwnd */
67
#define ACK_RATIO_SHIFT 4
68
        u32     delayed_ack;    /* estimate the ratio of Packets/ACKs << 4 */
69
};
70
 
71
static inline void bictcp_reset(struct bictcp *ca)
72
{
73
        ca->cnt = 0;
74
        ca->last_max_cwnd = 0;
75
        ca->loss_cwnd = 0;
76
        ca->last_cwnd = 0;
77
        ca->last_time = 0;
78
        ca->bic_origin_point = 0;
79
        ca->bic_K = 0;
80
        ca->delay_min = 0;
81
        ca->epoch_start = 0;
82
        ca->delayed_ack = 2 << ACK_RATIO_SHIFT;
83
        ca->ack_cnt = 0;
84
        ca->tcp_cwnd = 0;
85
}
86
 
87
static void bictcp_init(struct sock *sk)
88
{
89
        bictcp_reset(inet_csk_ca(sk));
90
        if (initial_ssthresh)
91
                tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
92
}
93
 
94
/* calculate the cubic root of x using a table lookup followed by one
95
 * Newton-Raphson iteration.
96
 * Avg err ~= 0.195%
97
 */
98
static u32 cubic_root(u64 a)
99
{
100
        u32 x, b, shift;
101
        /*
102
         * cbrt(x) MSB values for x MSB values in [0..63].
103
         * Precomputed then refined by hand - Willy Tarreau
104
         *
105
         * For x in [0..63],
106
         *   v = cbrt(x << 18) - 1
107
         *   cbrt(x) = (v[x] + 10) >> 6
108
         */
109
        static const u8 v[] = {
110
                /* 0x00 */    0,   54,   54,   54,  118,  118,  118,  118,
111
                /* 0x08 */  123,  129,  134,  138,  143,  147,  151,  156,
112
                /* 0x10 */  157,  161,  164,  168,  170,  173,  176,  179,
113
                /* 0x18 */  181,  185,  187,  190,  192,  194,  197,  199,
114
                /* 0x20 */  200,  202,  204,  206,  209,  211,  213,  215,
115
                /* 0x28 */  217,  219,  221,  222,  224,  225,  227,  229,
116
                /* 0x30 */  231,  232,  234,  236,  237,  239,  240,  242,
117
                /* 0x38 */  244,  245,  246,  248,  250,  251,  252,  254,
118
        };
119
 
120
        b = fls64(a);
121
        if (b < 7) {
122
                /* a in [0..63] */
123
                return ((u32)v[(u32)a] + 35) >> 6;
124
        }
125
 
126
        b = ((b * 84) >> 8) - 1;
127
        shift = (a >> (b * 3));
128
 
129
        x = ((u32)(((u32)v[shift] + 10) << b)) >> 6;
130
 
131
        /*
132
         * Newton-Raphson iteration
133
         *                         2
134
         * x    = ( 2 * x  +  a / x  ) / 3
135
         *  k+1          k         k
136
         */
137
        x = (2 * x + (u32)div64_64(a, (u64)x * (u64)(x - 1)));
138
        x = ((x * 341) >> 10);
139
        return x;
140
}
141
 
142
/*
143
 * Compute congestion window to use.
144
 */
145
static inline void bictcp_update(struct bictcp *ca, u32 cwnd)
146
{
147
        u64 offs;
148
        u32 delta, t, bic_target, min_cnt, max_cnt;
149
 
150
        ca->ack_cnt++;  /* count the number of ACKs */
151
 
152
        if (ca->last_cwnd == cwnd &&
153
            (s32)(tcp_time_stamp - ca->last_time) <= HZ / 32)
154
                return;
155
 
156
        ca->last_cwnd = cwnd;
157
        ca->last_time = tcp_time_stamp;
158
 
159
        if (ca->epoch_start == 0) {
160
                ca->epoch_start = tcp_time_stamp;       /* record the beginning of an epoch */
161
                ca->ack_cnt = 1;                        /* start counting */
162
                ca->tcp_cwnd = cwnd;                    /* syn with cubic */
163
 
164
                if (ca->last_max_cwnd <= cwnd) {
165
                        ca->bic_K = 0;
166
                        ca->bic_origin_point = cwnd;
167
                } else {
168
                        /* Compute new K based on
169
                         * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
170
                         */
171
                        ca->bic_K = cubic_root(cube_factor
172
                                               * (ca->last_max_cwnd - cwnd));
173
                        ca->bic_origin_point = ca->last_max_cwnd;
174
                }
175
        }
176
 
177
        /* cubic function - calc*/
178
        /* calculate c * time^3 / rtt,
179
         *  while considering overflow in calculation of time^3
180
         * (so time^3 is done by using 64 bit)
181
         * and without the support of division of 64bit numbers
182
         * (so all divisions are done by using 32 bit)
183
         *  also NOTE the unit of those veriables
184
         *        time  = (t - K) / 2^bictcp_HZ
185
         *        c = bic_scale >> 10
186
         * rtt  = (srtt >> 3) / HZ
187
         * !!! The following code does not have overflow problems,
188
         * if the cwnd < 1 million packets !!!
189
         */
190
 
191
        /* change the unit from HZ to bictcp_HZ */
192
        t = ((tcp_time_stamp + (ca->delay_min>>3) - ca->epoch_start)
193
             << BICTCP_HZ) / HZ;
194
 
195
        if (t < ca->bic_K)              /* t - K */
196
                offs = ca->bic_K - t;
197
        else
198
                offs = t - ca->bic_K;
199
 
200
        /* c/rtt * (t-K)^3 */
201
        delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
202
        if (t < ca->bic_K)                                      /* below origin*/
203
                bic_target = ca->bic_origin_point - delta;
204
        else                                                    /* above origin*/
205
                bic_target = ca->bic_origin_point + delta;
206
 
207
        /* cubic function - calc bictcp_cnt*/
208
        if (bic_target > cwnd) {
209
                ca->cnt = cwnd / (bic_target - cwnd);
210
        } else {
211
                ca->cnt = 100 * cwnd;              /* very small increment*/
212
        }
213
 
214
        if (ca->delay_min > 0) {
215
                /* max increment = Smax * rtt / 0.1  */
216
                min_cnt = (cwnd * HZ * 8)/(10 * max_increment * ca->delay_min);
217
 
218
                /* use concave growth when the target is above the origin */
219
                if (ca->cnt < min_cnt && t >= ca->bic_K)
220
                        ca->cnt = min_cnt;
221
        }
222
 
223
        /* slow start and low utilization  */
224
        if (ca->loss_cwnd == 0)          /* could be aggressive in slow start */
225
                ca->cnt = 50;
226
 
227
        /* TCP Friendly */
228
        if (tcp_friendliness) {
229
                u32 scale = beta_scale;
230
                delta = (cwnd * scale) >> 3;
231
                while (ca->ack_cnt > delta) {           /* update tcp cwnd */
232
                        ca->ack_cnt -= delta;
233
                        ca->tcp_cwnd++;
234
                }
235
 
236
                if (ca->tcp_cwnd > cwnd){       /* if bic is slower than tcp */
237
                        delta = ca->tcp_cwnd - cwnd;
238
                        max_cnt = cwnd / delta;
239
                        if (ca->cnt > max_cnt)
240
                                ca->cnt = max_cnt;
241
                }
242
        }
243
 
244
        ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack;
245
        if (ca->cnt == 0)                        /* cannot be zero */
246
                ca->cnt = 1;
247
}
248
 
249
static void bictcp_cong_avoid(struct sock *sk, u32 ack,
250
                              u32 in_flight, int data_acked)
251
{
252
        struct tcp_sock *tp = tcp_sk(sk);
253
        struct bictcp *ca = inet_csk_ca(sk);
254
 
255
        if (!tcp_is_cwnd_limited(sk, in_flight))
256
                return;
257
 
258
        if (tp->snd_cwnd <= tp->snd_ssthresh)
259
                tcp_slow_start(tp);
260
        else {
261
                bictcp_update(ca, tp->snd_cwnd);
262
 
263
                /* In dangerous area, increase slowly.
264
                 * In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd
265
                 */
266
                if (tp->snd_cwnd_cnt >= ca->cnt) {
267
                        if (tp->snd_cwnd < tp->snd_cwnd_clamp)
268
                                tp->snd_cwnd++;
269
                        tp->snd_cwnd_cnt = 0;
270
                } else
271
                        tp->snd_cwnd_cnt++;
272
        }
273
 
274
}
275
 
276
static u32 bictcp_recalc_ssthresh(struct sock *sk)
277
{
278
        const struct tcp_sock *tp = tcp_sk(sk);
279
        struct bictcp *ca = inet_csk_ca(sk);
280
 
281
        ca->epoch_start = 0;     /* end of epoch */
282
 
283
        /* Wmax and fast convergence */
284
        if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)
285
                ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))
286
                        / (2 * BICTCP_BETA_SCALE);
287
        else
288
                ca->last_max_cwnd = tp->snd_cwnd;
289
 
290
        ca->loss_cwnd = tp->snd_cwnd;
291
 
292
        return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);
293
}
294
 
295
static u32 bictcp_undo_cwnd(struct sock *sk)
296
{
297
        struct bictcp *ca = inet_csk_ca(sk);
298
 
299
        return max(tcp_sk(sk)->snd_cwnd, ca->last_max_cwnd);
300
}
301
 
302
static void bictcp_state(struct sock *sk, u8 new_state)
303
{
304
        if (new_state == TCP_CA_Loss)
305
                bictcp_reset(inet_csk_ca(sk));
306
}
307
 
308
/* Track delayed acknowledgment ratio using sliding window
309
 * ratio = (15*ratio + sample) / 16
310
 */
311
static void bictcp_acked(struct sock *sk, u32 cnt, s32 rtt_us)
312
{
313
        const struct inet_connection_sock *icsk = inet_csk(sk);
314
        struct bictcp *ca = inet_csk_ca(sk);
315
        u32 delay;
316
 
317
        if (icsk->icsk_ca_state == TCP_CA_Open) {
318
                cnt -= ca->delayed_ack >> ACK_RATIO_SHIFT;
319
                ca->delayed_ack += cnt;
320
        }
321
 
322
        /* Some calls are for duplicates without timetamps */
323
        if (rtt_us < 0)
324
                return;
325
 
326
        /* Discard delay samples right after fast recovery */
327
        if ((s32)(tcp_time_stamp - ca->epoch_start) < HZ)
328
                return;
329
 
330
        delay = usecs_to_jiffies(rtt_us) << 3;
331
        if (delay == 0)
332
                delay = 1;
333
 
334
        /* first time call or link delay decreases */
335
        if (ca->delay_min == 0 || ca->delay_min > delay)
336
                ca->delay_min = delay;
337
}
338
 
339
static struct tcp_congestion_ops cubictcp = {
340
        .init           = bictcp_init,
341
        .ssthresh       = bictcp_recalc_ssthresh,
342
        .cong_avoid     = bictcp_cong_avoid,
343
        .set_state      = bictcp_state,
344
        .undo_cwnd      = bictcp_undo_cwnd,
345
        .pkts_acked     = bictcp_acked,
346
        .owner          = THIS_MODULE,
347
        .name           = "cubic",
348
};
349
 
350
static int __init cubictcp_register(void)
351
{
352
        BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
353
 
354
        /* Precompute a bunch of the scaling factors that are used per-packet
355
         * based on SRTT of 100ms
356
         */
357
 
358
        beta_scale = 8*(BICTCP_BETA_SCALE+beta)/ 3 / (BICTCP_BETA_SCALE - beta);
359
 
360
        cube_rtt_scale = (bic_scale * 10);      /* 1024*c/rtt */
361
 
362
        /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
363
         *  so K = cubic_root( (wmax-cwnd)*rtt/c )
364
         * the unit of K is bictcp_HZ=2^10, not HZ
365
         *
366
         *  c = bic_scale >> 10
367
         *  rtt = 100ms
368
         *
369
         * the following code has been designed and tested for
370
         * cwnd < 1 million packets
371
         * RTT < 100 seconds
372
         * HZ < 1,000,00  (corresponding to 10 nano-second)
373
         */
374
 
375
        /* 1/c * 2^2*bictcp_HZ * srtt */
376
        cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */
377
 
378
        /* divide by bic_scale and by constant Srtt (100ms) */
379
        do_div(cube_factor, bic_scale * 10);
380
 
381
        return tcp_register_congestion_control(&cubictcp);
382
}
383
 
384
static void __exit cubictcp_unregister(void)
385
{
386
        tcp_unregister_congestion_control(&cubictcp);
387
}
388
 
389
module_init(cubictcp_register);
390
module_exit(cubictcp_unregister);
391
 
392
MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
393
MODULE_LICENSE("GPL");
394
MODULE_DESCRIPTION("CUBIC TCP");
395
MODULE_VERSION("2.1");

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.