1 |
62 |
marcus.erl |
/*
|
2 |
|
|
* INET An implementation of the TCP/IP protocol suite for the LINUX
|
3 |
|
|
* operating system. INET is implemented using the BSD Socket
|
4 |
|
|
* interface as the means of communication with the user level.
|
5 |
|
|
*
|
6 |
|
|
* Implementation of the Transmission Control Protocol(TCP).
|
7 |
|
|
*
|
8 |
|
|
* Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
|
9 |
|
|
*
|
10 |
|
|
* Authors: Ross Biro
|
11 |
|
|
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
|
12 |
|
|
* Mark Evans, <evansmp@uhura.aston.ac.uk>
|
13 |
|
|
* Corey Minyard <wf-rch!minyard@relay.EU.net>
|
14 |
|
|
* Florian La Roche, <flla@stud.uni-sb.de>
|
15 |
|
|
* Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
|
16 |
|
|
* Linus Torvalds, <torvalds@cs.helsinki.fi>
|
17 |
|
|
* Alan Cox, <gw4pts@gw4pts.ampr.org>
|
18 |
|
|
* Matthew Dillon, <dillon@apollo.west.oic.com>
|
19 |
|
|
* Arnt Gulbrandsen, <agulbra@nvg.unit.no>
|
20 |
|
|
* Jorge Cwik, <jorge@laser.satlink.net>
|
21 |
|
|
*/
|
22 |
|
|
|
23 |
|
|
/*
|
24 |
|
|
* Changes:
|
25 |
|
|
* Pedro Roque : Fast Retransmit/Recovery.
|
26 |
|
|
* Two receive queues.
|
27 |
|
|
* Retransmit queue handled by TCP.
|
28 |
|
|
* Better retransmit timer handling.
|
29 |
|
|
* New congestion avoidance.
|
30 |
|
|
* Header prediction.
|
31 |
|
|
* Variable renaming.
|
32 |
|
|
*
|
33 |
|
|
* Eric : Fast Retransmit.
|
34 |
|
|
* Randy Scott : MSS option defines.
|
35 |
|
|
* Eric Schenk : Fixes to slow start algorithm.
|
36 |
|
|
* Eric Schenk : Yet another double ACK bug.
|
37 |
|
|
* Eric Schenk : Delayed ACK bug fixes.
|
38 |
|
|
* Eric Schenk : Floyd style fast retrans war avoidance.
|
39 |
|
|
* David S. Miller : Don't allow zero congestion window.
|
40 |
|
|
* Eric Schenk : Fix retransmitter so that it sends
|
41 |
|
|
* next packet on ack of previous packet.
|
42 |
|
|
* Andi Kleen : Moved open_request checking here
|
43 |
|
|
* and process RSTs for open_requests.
|
44 |
|
|
* Andi Kleen : Better prune_queue, and other fixes.
|
45 |
|
|
* Andrey Savochkin: Fix RTT measurements in the presence of
|
46 |
|
|
* timestamps.
|
47 |
|
|
* Andrey Savochkin: Check sequence numbers correctly when
|
48 |
|
|
* removing SACKs due to in sequence incoming
|
49 |
|
|
* data segments.
|
50 |
|
|
* Andi Kleen: Make sure we never ack data there is not
|
51 |
|
|
* enough room for. Also make this condition
|
52 |
|
|
* a fatal error if it might still happen.
|
53 |
|
|
* Andi Kleen: Add tcp_measure_rcv_mss to make
|
54 |
|
|
* connections with MSS<min(MTU,ann. MSS)
|
55 |
|
|
* work without delayed acks.
|
56 |
|
|
* Andi Kleen: Process packets with PSH set in the
|
57 |
|
|
* fast path.
|
58 |
|
|
* J Hadi Salim: ECN support
|
59 |
|
|
* Andrei Gurtov,
|
60 |
|
|
* Pasi Sarolahti,
|
61 |
|
|
* Panu Kuhlberg: Experimental audit of TCP (re)transmission
|
62 |
|
|
* engine. Lots of bugs are found.
|
63 |
|
|
* Pasi Sarolahti: F-RTO for dealing with spurious RTOs
|
64 |
|
|
*/
|
65 |
|
|
|
66 |
|
|
#include <linux/mm.h>
|
67 |
|
|
#include <linux/module.h>
|
68 |
|
|
#include <linux/sysctl.h>
|
69 |
|
|
#include <net/tcp.h>
|
70 |
|
|
#include <net/inet_common.h>
|
71 |
|
|
#include <linux/ipsec.h>
|
72 |
|
|
#include <asm/unaligned.h>
|
73 |
|
|
#include <net/netdma.h>
|
74 |
|
|
|
75 |
|
|
int sysctl_tcp_timestamps __read_mostly = 1;
|
76 |
|
|
int sysctl_tcp_window_scaling __read_mostly = 1;
|
77 |
|
|
int sysctl_tcp_sack __read_mostly = 1;
|
78 |
|
|
int sysctl_tcp_fack __read_mostly = 1;
|
79 |
|
|
int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
|
80 |
|
|
int sysctl_tcp_ecn __read_mostly;
|
81 |
|
|
int sysctl_tcp_dsack __read_mostly = 1;
|
82 |
|
|
int sysctl_tcp_app_win __read_mostly = 31;
|
83 |
|
|
int sysctl_tcp_adv_win_scale __read_mostly = 2;
|
84 |
|
|
|
85 |
|
|
int sysctl_tcp_stdurg __read_mostly;
|
86 |
|
|
int sysctl_tcp_rfc1337 __read_mostly;
|
87 |
|
|
int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
|
88 |
|
|
int sysctl_tcp_frto __read_mostly = 2;
|
89 |
|
|
int sysctl_tcp_frto_response __read_mostly;
|
90 |
|
|
int sysctl_tcp_nometrics_save __read_mostly;
|
91 |
|
|
|
92 |
|
|
int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
|
93 |
|
|
int sysctl_tcp_abc __read_mostly;
|
94 |
|
|
|
95 |
|
|
#define FLAG_DATA 0x01 /* Incoming frame contained data. */
|
96 |
|
|
#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
|
97 |
|
|
#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
|
98 |
|
|
#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
|
99 |
|
|
#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
|
100 |
|
|
#define FLAG_DATA_SACKED 0x20 /* New SACK. */
|
101 |
|
|
#define FLAG_ECE 0x40 /* ECE in this ACK */
|
102 |
|
|
#define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
|
103 |
|
|
#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
|
104 |
|
|
#define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
|
105 |
|
|
#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
|
106 |
|
|
#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
|
107 |
|
|
#define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
|
108 |
|
|
|
109 |
|
|
#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
|
110 |
|
|
#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
|
111 |
|
|
#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
|
112 |
|
|
#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
|
113 |
|
|
#define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
|
114 |
|
|
|
115 |
|
|
#define IsSackFrto() (sysctl_tcp_frto == 0x2)
|
116 |
|
|
|
117 |
|
|
#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
|
118 |
|
|
#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
|
119 |
|
|
|
120 |
|
|
/* Adapt the MSS value used to make delayed ack decision to the
|
121 |
|
|
* real world.
|
122 |
|
|
*/
|
123 |
|
|
static void tcp_measure_rcv_mss(struct sock *sk,
|
124 |
|
|
const struct sk_buff *skb)
|
125 |
|
|
{
|
126 |
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
127 |
|
|
const unsigned int lss = icsk->icsk_ack.last_seg_size;
|
128 |
|
|
unsigned int len;
|
129 |
|
|
|
130 |
|
|
icsk->icsk_ack.last_seg_size = 0;
|
131 |
|
|
|
132 |
|
|
/* skb->len may jitter because of SACKs, even if peer
|
133 |
|
|
* sends good full-sized frames.
|
134 |
|
|
*/
|
135 |
|
|
len = skb_shinfo(skb)->gso_size ?: skb->len;
|
136 |
|
|
if (len >= icsk->icsk_ack.rcv_mss) {
|
137 |
|
|
icsk->icsk_ack.rcv_mss = len;
|
138 |
|
|
} else {
|
139 |
|
|
/* Otherwise, we make more careful check taking into account,
|
140 |
|
|
* that SACKs block is variable.
|
141 |
|
|
*
|
142 |
|
|
* "len" is invariant segment length, including TCP header.
|
143 |
|
|
*/
|
144 |
|
|
len += skb->data - skb_transport_header(skb);
|
145 |
|
|
if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
|
146 |
|
|
/* If PSH is not set, packet should be
|
147 |
|
|
* full sized, provided peer TCP is not badly broken.
|
148 |
|
|
* This observation (if it is correct 8)) allows
|
149 |
|
|
* to handle super-low mtu links fairly.
|
150 |
|
|
*/
|
151 |
|
|
(len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
|
152 |
|
|
!(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
|
153 |
|
|
/* Subtract also invariant (if peer is RFC compliant),
|
154 |
|
|
* tcp header plus fixed timestamp option length.
|
155 |
|
|
* Resulting "len" is MSS free of SACK jitter.
|
156 |
|
|
*/
|
157 |
|
|
len -= tcp_sk(sk)->tcp_header_len;
|
158 |
|
|
icsk->icsk_ack.last_seg_size = len;
|
159 |
|
|
if (len == lss) {
|
160 |
|
|
icsk->icsk_ack.rcv_mss = len;
|
161 |
|
|
return;
|
162 |
|
|
}
|
163 |
|
|
}
|
164 |
|
|
if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
|
165 |
|
|
icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
|
166 |
|
|
icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
|
167 |
|
|
}
|
168 |
|
|
}
|
169 |
|
|
|
170 |
|
|
static void tcp_incr_quickack(struct sock *sk)
|
171 |
|
|
{
|
172 |
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
173 |
|
|
unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
|
174 |
|
|
|
175 |
|
|
if (quickacks==0)
|
176 |
|
|
quickacks=2;
|
177 |
|
|
if (quickacks > icsk->icsk_ack.quick)
|
178 |
|
|
icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
|
179 |
|
|
}
|
180 |
|
|
|
181 |
|
|
void tcp_enter_quickack_mode(struct sock *sk)
|
182 |
|
|
{
|
183 |
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
184 |
|
|
tcp_incr_quickack(sk);
|
185 |
|
|
icsk->icsk_ack.pingpong = 0;
|
186 |
|
|
icsk->icsk_ack.ato = TCP_ATO_MIN;
|
187 |
|
|
}
|
188 |
|
|
|
189 |
|
|
/* Send ACKs quickly, if "quick" count is not exhausted
|
190 |
|
|
* and the session is not interactive.
|
191 |
|
|
*/
|
192 |
|
|
|
193 |
|
|
static inline int tcp_in_quickack_mode(const struct sock *sk)
|
194 |
|
|
{
|
195 |
|
|
const struct inet_connection_sock *icsk = inet_csk(sk);
|
196 |
|
|
return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
|
197 |
|
|
}
|
198 |
|
|
|
199 |
|
|
static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
|
200 |
|
|
{
|
201 |
|
|
if (tp->ecn_flags&TCP_ECN_OK)
|
202 |
|
|
tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
|
203 |
|
|
}
|
204 |
|
|
|
205 |
|
|
static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
|
206 |
|
|
{
|
207 |
|
|
if (tcp_hdr(skb)->cwr)
|
208 |
|
|
tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
|
209 |
|
|
}
|
210 |
|
|
|
211 |
|
|
static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
|
212 |
|
|
{
|
213 |
|
|
tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
|
214 |
|
|
}
|
215 |
|
|
|
216 |
|
|
static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
|
217 |
|
|
{
|
218 |
|
|
if (tp->ecn_flags&TCP_ECN_OK) {
|
219 |
|
|
if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
|
220 |
|
|
tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
|
221 |
|
|
/* Funny extension: if ECT is not set on a segment,
|
222 |
|
|
* it is surely retransmit. It is not in ECN RFC,
|
223 |
|
|
* but Linux follows this rule. */
|
224 |
|
|
else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
|
225 |
|
|
tcp_enter_quickack_mode((struct sock *)tp);
|
226 |
|
|
}
|
227 |
|
|
}
|
228 |
|
|
|
229 |
|
|
static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
|
230 |
|
|
{
|
231 |
|
|
if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
|
232 |
|
|
tp->ecn_flags &= ~TCP_ECN_OK;
|
233 |
|
|
}
|
234 |
|
|
|
235 |
|
|
static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
|
236 |
|
|
{
|
237 |
|
|
if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
|
238 |
|
|
tp->ecn_flags &= ~TCP_ECN_OK;
|
239 |
|
|
}
|
240 |
|
|
|
241 |
|
|
static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
|
242 |
|
|
{
|
243 |
|
|
if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
|
244 |
|
|
return 1;
|
245 |
|
|
return 0;
|
246 |
|
|
}
|
247 |
|
|
|
248 |
|
|
/* Buffer size and advertised window tuning.
|
249 |
|
|
*
|
250 |
|
|
* 1. Tuning sk->sk_sndbuf, when connection enters established state.
|
251 |
|
|
*/
|
252 |
|
|
|
253 |
|
|
static void tcp_fixup_sndbuf(struct sock *sk)
|
254 |
|
|
{
|
255 |
|
|
int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
|
256 |
|
|
sizeof(struct sk_buff);
|
257 |
|
|
|
258 |
|
|
if (sk->sk_sndbuf < 3 * sndmem)
|
259 |
|
|
sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
|
260 |
|
|
}
|
261 |
|
|
|
262 |
|
|
/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
|
263 |
|
|
*
|
264 |
|
|
* All tcp_full_space() is split to two parts: "network" buffer, allocated
|
265 |
|
|
* forward and advertised in receiver window (tp->rcv_wnd) and
|
266 |
|
|
* "application buffer", required to isolate scheduling/application
|
267 |
|
|
* latencies from network.
|
268 |
|
|
* window_clamp is maximal advertised window. It can be less than
|
269 |
|
|
* tcp_full_space(), in this case tcp_full_space() - window_clamp
|
270 |
|
|
* is reserved for "application" buffer. The less window_clamp is
|
271 |
|
|
* the smoother our behaviour from viewpoint of network, but the lower
|
272 |
|
|
* throughput and the higher sensitivity of the connection to losses. 8)
|
273 |
|
|
*
|
274 |
|
|
* rcv_ssthresh is more strict window_clamp used at "slow start"
|
275 |
|
|
* phase to predict further behaviour of this connection.
|
276 |
|
|
* It is used for two goals:
|
277 |
|
|
* - to enforce header prediction at sender, even when application
|
278 |
|
|
* requires some significant "application buffer". It is check #1.
|
279 |
|
|
* - to prevent pruning of receive queue because of misprediction
|
280 |
|
|
* of receiver window. Check #2.
|
281 |
|
|
*
|
282 |
|
|
* The scheme does not work when sender sends good segments opening
|
283 |
|
|
* window and then starts to feed us spaghetti. But it should work
|
284 |
|
|
* in common situations. Otherwise, we have to rely on queue collapsing.
|
285 |
|
|
*/
|
286 |
|
|
|
287 |
|
|
/* Slow part of check#2. */
|
288 |
|
|
static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
|
289 |
|
|
{
|
290 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
291 |
|
|
/* Optimize this! */
|
292 |
|
|
int truesize = tcp_win_from_space(skb->truesize)/2;
|
293 |
|
|
int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
|
294 |
|
|
|
295 |
|
|
while (tp->rcv_ssthresh <= window) {
|
296 |
|
|
if (truesize <= skb->len)
|
297 |
|
|
return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
|
298 |
|
|
|
299 |
|
|
truesize >>= 1;
|
300 |
|
|
window >>= 1;
|
301 |
|
|
}
|
302 |
|
|
return 0;
|
303 |
|
|
}
|
304 |
|
|
|
305 |
|
|
static void tcp_grow_window(struct sock *sk,
|
306 |
|
|
struct sk_buff *skb)
|
307 |
|
|
{
|
308 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
309 |
|
|
|
310 |
|
|
/* Check #1 */
|
311 |
|
|
if (tp->rcv_ssthresh < tp->window_clamp &&
|
312 |
|
|
(int)tp->rcv_ssthresh < tcp_space(sk) &&
|
313 |
|
|
!tcp_memory_pressure) {
|
314 |
|
|
int incr;
|
315 |
|
|
|
316 |
|
|
/* Check #2. Increase window, if skb with such overhead
|
317 |
|
|
* will fit to rcvbuf in future.
|
318 |
|
|
*/
|
319 |
|
|
if (tcp_win_from_space(skb->truesize) <= skb->len)
|
320 |
|
|
incr = 2*tp->advmss;
|
321 |
|
|
else
|
322 |
|
|
incr = __tcp_grow_window(sk, skb);
|
323 |
|
|
|
324 |
|
|
if (incr) {
|
325 |
|
|
tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
|
326 |
|
|
inet_csk(sk)->icsk_ack.quick |= 1;
|
327 |
|
|
}
|
328 |
|
|
}
|
329 |
|
|
}
|
330 |
|
|
|
331 |
|
|
/* 3. Tuning rcvbuf, when connection enters established state. */
|
332 |
|
|
|
333 |
|
|
static void tcp_fixup_rcvbuf(struct sock *sk)
|
334 |
|
|
{
|
335 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
336 |
|
|
int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
|
337 |
|
|
|
338 |
|
|
/* Try to select rcvbuf so that 4 mss-sized segments
|
339 |
|
|
* will fit to window and corresponding skbs will fit to our rcvbuf.
|
340 |
|
|
* (was 3; 4 is minimum to allow fast retransmit to work.)
|
341 |
|
|
*/
|
342 |
|
|
while (tcp_win_from_space(rcvmem) < tp->advmss)
|
343 |
|
|
rcvmem += 128;
|
344 |
|
|
if (sk->sk_rcvbuf < 4 * rcvmem)
|
345 |
|
|
sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
|
346 |
|
|
}
|
347 |
|
|
|
348 |
|
|
/* 4. Try to fixup all. It is made immediately after connection enters
|
349 |
|
|
* established state.
|
350 |
|
|
*/
|
351 |
|
|
static void tcp_init_buffer_space(struct sock *sk)
|
352 |
|
|
{
|
353 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
354 |
|
|
int maxwin;
|
355 |
|
|
|
356 |
|
|
if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
|
357 |
|
|
tcp_fixup_rcvbuf(sk);
|
358 |
|
|
if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
|
359 |
|
|
tcp_fixup_sndbuf(sk);
|
360 |
|
|
|
361 |
|
|
tp->rcvq_space.space = tp->rcv_wnd;
|
362 |
|
|
|
363 |
|
|
maxwin = tcp_full_space(sk);
|
364 |
|
|
|
365 |
|
|
if (tp->window_clamp >= maxwin) {
|
366 |
|
|
tp->window_clamp = maxwin;
|
367 |
|
|
|
368 |
|
|
if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
|
369 |
|
|
tp->window_clamp = max(maxwin -
|
370 |
|
|
(maxwin >> sysctl_tcp_app_win),
|
371 |
|
|
4 * tp->advmss);
|
372 |
|
|
}
|
373 |
|
|
|
374 |
|
|
/* Force reservation of one segment. */
|
375 |
|
|
if (sysctl_tcp_app_win &&
|
376 |
|
|
tp->window_clamp > 2 * tp->advmss &&
|
377 |
|
|
tp->window_clamp + tp->advmss > maxwin)
|
378 |
|
|
tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
|
379 |
|
|
|
380 |
|
|
tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
|
381 |
|
|
tp->snd_cwnd_stamp = tcp_time_stamp;
|
382 |
|
|
}
|
383 |
|
|
|
384 |
|
|
/* 5. Recalculate window clamp after socket hit its memory bounds. */
|
385 |
|
|
static void tcp_clamp_window(struct sock *sk)
|
386 |
|
|
{
|
387 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
388 |
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
389 |
|
|
|
390 |
|
|
icsk->icsk_ack.quick = 0;
|
391 |
|
|
|
392 |
|
|
if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
|
393 |
|
|
!(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
|
394 |
|
|
!tcp_memory_pressure &&
|
395 |
|
|
atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
|
396 |
|
|
sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
|
397 |
|
|
sysctl_tcp_rmem[2]);
|
398 |
|
|
}
|
399 |
|
|
if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
|
400 |
|
|
tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
|
401 |
|
|
}
|
402 |
|
|
|
403 |
|
|
|
404 |
|
|
/* Initialize RCV_MSS value.
|
405 |
|
|
* RCV_MSS is an our guess about MSS used by the peer.
|
406 |
|
|
* We haven't any direct information about the MSS.
|
407 |
|
|
* It's better to underestimate the RCV_MSS rather than overestimate.
|
408 |
|
|
* Overestimations make us ACKing less frequently than needed.
|
409 |
|
|
* Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
|
410 |
|
|
*/
|
411 |
|
|
void tcp_initialize_rcv_mss(struct sock *sk)
|
412 |
|
|
{
|
413 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
414 |
|
|
unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
|
415 |
|
|
|
416 |
|
|
hint = min(hint, tp->rcv_wnd/2);
|
417 |
|
|
hint = min(hint, TCP_MIN_RCVMSS);
|
418 |
|
|
hint = max(hint, TCP_MIN_MSS);
|
419 |
|
|
|
420 |
|
|
inet_csk(sk)->icsk_ack.rcv_mss = hint;
|
421 |
|
|
}
|
422 |
|
|
|
423 |
|
|
/* Receiver "autotuning" code.
|
424 |
|
|
*
|
425 |
|
|
* The algorithm for RTT estimation w/o timestamps is based on
|
426 |
|
|
* Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
|
427 |
|
|
* <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
|
428 |
|
|
*
|
429 |
|
|
* More detail on this code can be found at
|
430 |
|
|
* <http://www.psc.edu/~jheffner/senior_thesis.ps>,
|
431 |
|
|
* though this reference is out of date. A new paper
|
432 |
|
|
* is pending.
|
433 |
|
|
*/
|
434 |
|
|
static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
|
435 |
|
|
{
|
436 |
|
|
u32 new_sample = tp->rcv_rtt_est.rtt;
|
437 |
|
|
long m = sample;
|
438 |
|
|
|
439 |
|
|
if (m == 0)
|
440 |
|
|
m = 1;
|
441 |
|
|
|
442 |
|
|
if (new_sample != 0) {
|
443 |
|
|
/* If we sample in larger samples in the non-timestamp
|
444 |
|
|
* case, we could grossly overestimate the RTT especially
|
445 |
|
|
* with chatty applications or bulk transfer apps which
|
446 |
|
|
* are stalled on filesystem I/O.
|
447 |
|
|
*
|
448 |
|
|
* Also, since we are only going for a minimum in the
|
449 |
|
|
* non-timestamp case, we do not smooth things out
|
450 |
|
|
* else with timestamps disabled convergence takes too
|
451 |
|
|
* long.
|
452 |
|
|
*/
|
453 |
|
|
if (!win_dep) {
|
454 |
|
|
m -= (new_sample >> 3);
|
455 |
|
|
new_sample += m;
|
456 |
|
|
} else if (m < new_sample)
|
457 |
|
|
new_sample = m << 3;
|
458 |
|
|
} else {
|
459 |
|
|
/* No previous measure. */
|
460 |
|
|
new_sample = m << 3;
|
461 |
|
|
}
|
462 |
|
|
|
463 |
|
|
if (tp->rcv_rtt_est.rtt != new_sample)
|
464 |
|
|
tp->rcv_rtt_est.rtt = new_sample;
|
465 |
|
|
}
|
466 |
|
|
|
467 |
|
|
static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
|
468 |
|
|
{
|
469 |
|
|
if (tp->rcv_rtt_est.time == 0)
|
470 |
|
|
goto new_measure;
|
471 |
|
|
if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
|
472 |
|
|
return;
|
473 |
|
|
tcp_rcv_rtt_update(tp,
|
474 |
|
|
jiffies - tp->rcv_rtt_est.time,
|
475 |
|
|
1);
|
476 |
|
|
|
477 |
|
|
new_measure:
|
478 |
|
|
tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
|
479 |
|
|
tp->rcv_rtt_est.time = tcp_time_stamp;
|
480 |
|
|
}
|
481 |
|
|
|
482 |
|
|
static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
|
483 |
|
|
{
|
484 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
485 |
|
|
if (tp->rx_opt.rcv_tsecr &&
|
486 |
|
|
(TCP_SKB_CB(skb)->end_seq -
|
487 |
|
|
TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
|
488 |
|
|
tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
|
489 |
|
|
}
|
490 |
|
|
|
491 |
|
|
/*
|
492 |
|
|
* This function should be called every time data is copied to user space.
|
493 |
|
|
* It calculates the appropriate TCP receive buffer space.
|
494 |
|
|
*/
|
495 |
|
|
void tcp_rcv_space_adjust(struct sock *sk)
|
496 |
|
|
{
|
497 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
498 |
|
|
int time;
|
499 |
|
|
int space;
|
500 |
|
|
|
501 |
|
|
if (tp->rcvq_space.time == 0)
|
502 |
|
|
goto new_measure;
|
503 |
|
|
|
504 |
|
|
time = tcp_time_stamp - tp->rcvq_space.time;
|
505 |
|
|
if (time < (tp->rcv_rtt_est.rtt >> 3) ||
|
506 |
|
|
tp->rcv_rtt_est.rtt == 0)
|
507 |
|
|
return;
|
508 |
|
|
|
509 |
|
|
space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
|
510 |
|
|
|
511 |
|
|
space = max(tp->rcvq_space.space, space);
|
512 |
|
|
|
513 |
|
|
if (tp->rcvq_space.space != space) {
|
514 |
|
|
int rcvmem;
|
515 |
|
|
|
516 |
|
|
tp->rcvq_space.space = space;
|
517 |
|
|
|
518 |
|
|
if (sysctl_tcp_moderate_rcvbuf &&
|
519 |
|
|
!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
|
520 |
|
|
int new_clamp = space;
|
521 |
|
|
|
522 |
|
|
/* Receive space grows, normalize in order to
|
523 |
|
|
* take into account packet headers and sk_buff
|
524 |
|
|
* structure overhead.
|
525 |
|
|
*/
|
526 |
|
|
space /= tp->advmss;
|
527 |
|
|
if (!space)
|
528 |
|
|
space = 1;
|
529 |
|
|
rcvmem = (tp->advmss + MAX_TCP_HEADER +
|
530 |
|
|
16 + sizeof(struct sk_buff));
|
531 |
|
|
while (tcp_win_from_space(rcvmem) < tp->advmss)
|
532 |
|
|
rcvmem += 128;
|
533 |
|
|
space *= rcvmem;
|
534 |
|
|
space = min(space, sysctl_tcp_rmem[2]);
|
535 |
|
|
if (space > sk->sk_rcvbuf) {
|
536 |
|
|
sk->sk_rcvbuf = space;
|
537 |
|
|
|
538 |
|
|
/* Make the window clamp follow along. */
|
539 |
|
|
tp->window_clamp = new_clamp;
|
540 |
|
|
}
|
541 |
|
|
}
|
542 |
|
|
}
|
543 |
|
|
|
544 |
|
|
new_measure:
|
545 |
|
|
tp->rcvq_space.seq = tp->copied_seq;
|
546 |
|
|
tp->rcvq_space.time = tcp_time_stamp;
|
547 |
|
|
}
|
548 |
|
|
|
549 |
|
|
/* There is something which you must keep in mind when you analyze the
|
550 |
|
|
* behavior of the tp->ato delayed ack timeout interval. When a
|
551 |
|
|
* connection starts up, we want to ack as quickly as possible. The
|
552 |
|
|
* problem is that "good" TCP's do slow start at the beginning of data
|
553 |
|
|
* transmission. The means that until we send the first few ACK's the
|
554 |
|
|
* sender will sit on his end and only queue most of his data, because
|
555 |
|
|
* he can only send snd_cwnd unacked packets at any given time. For
|
556 |
|
|
* each ACK we send, he increments snd_cwnd and transmits more of his
|
557 |
|
|
* queue. -DaveM
|
558 |
|
|
*/
|
559 |
|
|
static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
|
560 |
|
|
{
|
561 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
562 |
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
563 |
|
|
u32 now;
|
564 |
|
|
|
565 |
|
|
inet_csk_schedule_ack(sk);
|
566 |
|
|
|
567 |
|
|
tcp_measure_rcv_mss(sk, skb);
|
568 |
|
|
|
569 |
|
|
tcp_rcv_rtt_measure(tp);
|
570 |
|
|
|
571 |
|
|
now = tcp_time_stamp;
|
572 |
|
|
|
573 |
|
|
if (!icsk->icsk_ack.ato) {
|
574 |
|
|
/* The _first_ data packet received, initialize
|
575 |
|
|
* delayed ACK engine.
|
576 |
|
|
*/
|
577 |
|
|
tcp_incr_quickack(sk);
|
578 |
|
|
icsk->icsk_ack.ato = TCP_ATO_MIN;
|
579 |
|
|
} else {
|
580 |
|
|
int m = now - icsk->icsk_ack.lrcvtime;
|
581 |
|
|
|
582 |
|
|
if (m <= TCP_ATO_MIN/2) {
|
583 |
|
|
/* The fastest case is the first. */
|
584 |
|
|
icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
|
585 |
|
|
} else if (m < icsk->icsk_ack.ato) {
|
586 |
|
|
icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
|
587 |
|
|
if (icsk->icsk_ack.ato > icsk->icsk_rto)
|
588 |
|
|
icsk->icsk_ack.ato = icsk->icsk_rto;
|
589 |
|
|
} else if (m > icsk->icsk_rto) {
|
590 |
|
|
/* Too long gap. Apparently sender failed to
|
591 |
|
|
* restart window, so that we send ACKs quickly.
|
592 |
|
|
*/
|
593 |
|
|
tcp_incr_quickack(sk);
|
594 |
|
|
sk_stream_mem_reclaim(sk);
|
595 |
|
|
}
|
596 |
|
|
}
|
597 |
|
|
icsk->icsk_ack.lrcvtime = now;
|
598 |
|
|
|
599 |
|
|
TCP_ECN_check_ce(tp, skb);
|
600 |
|
|
|
601 |
|
|
if (skb->len >= 128)
|
602 |
|
|
tcp_grow_window(sk, skb);
|
603 |
|
|
}
|
604 |
|
|
|
605 |
|
|
static u32 tcp_rto_min(struct sock *sk)
|
606 |
|
|
{
|
607 |
|
|
struct dst_entry *dst = __sk_dst_get(sk);
|
608 |
|
|
u32 rto_min = TCP_RTO_MIN;
|
609 |
|
|
|
610 |
|
|
if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
|
611 |
|
|
rto_min = dst->metrics[RTAX_RTO_MIN-1];
|
612 |
|
|
return rto_min;
|
613 |
|
|
}
|
614 |
|
|
|
615 |
|
|
/* Called to compute a smoothed rtt estimate. The data fed to this
|
616 |
|
|
* routine either comes from timestamps, or from segments that were
|
617 |
|
|
* known _not_ to have been retransmitted [see Karn/Partridge
|
618 |
|
|
* Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
|
619 |
|
|
* piece by Van Jacobson.
|
620 |
|
|
* NOTE: the next three routines used to be one big routine.
|
621 |
|
|
* To save cycles in the RFC 1323 implementation it was better to break
|
622 |
|
|
* it up into three procedures. -- erics
|
623 |
|
|
*/
|
624 |
|
|
static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
|
625 |
|
|
{
|
626 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
627 |
|
|
long m = mrtt; /* RTT */
|
628 |
|
|
|
629 |
|
|
/* The following amusing code comes from Jacobson's
|
630 |
|
|
* article in SIGCOMM '88. Note that rtt and mdev
|
631 |
|
|
* are scaled versions of rtt and mean deviation.
|
632 |
|
|
* This is designed to be as fast as possible
|
633 |
|
|
* m stands for "measurement".
|
634 |
|
|
*
|
635 |
|
|
* On a 1990 paper the rto value is changed to:
|
636 |
|
|
* RTO = rtt + 4 * mdev
|
637 |
|
|
*
|
638 |
|
|
* Funny. This algorithm seems to be very broken.
|
639 |
|
|
* These formulae increase RTO, when it should be decreased, increase
|
640 |
|
|
* too slowly, when it should be increased quickly, decrease too quickly
|
641 |
|
|
* etc. I guess in BSD RTO takes ONE value, so that it is absolutely
|
642 |
|
|
* does not matter how to _calculate_ it. Seems, it was trap
|
643 |
|
|
* that VJ failed to avoid. 8)
|
644 |
|
|
*/
|
645 |
|
|
if (m == 0)
|
646 |
|
|
m = 1;
|
647 |
|
|
if (tp->srtt != 0) {
|
648 |
|
|
m -= (tp->srtt >> 3); /* m is now error in rtt est */
|
649 |
|
|
tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
|
650 |
|
|
if (m < 0) {
|
651 |
|
|
m = -m; /* m is now abs(error) */
|
652 |
|
|
m -= (tp->mdev >> 2); /* similar update on mdev */
|
653 |
|
|
/* This is similar to one of Eifel findings.
|
654 |
|
|
* Eifel blocks mdev updates when rtt decreases.
|
655 |
|
|
* This solution is a bit different: we use finer gain
|
656 |
|
|
* for mdev in this case (alpha*beta).
|
657 |
|
|
* Like Eifel it also prevents growth of rto,
|
658 |
|
|
* but also it limits too fast rto decreases,
|
659 |
|
|
* happening in pure Eifel.
|
660 |
|
|
*/
|
661 |
|
|
if (m > 0)
|
662 |
|
|
m >>= 3;
|
663 |
|
|
} else {
|
664 |
|
|
m -= (tp->mdev >> 2); /* similar update on mdev */
|
665 |
|
|
}
|
666 |
|
|
tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
|
667 |
|
|
if (tp->mdev > tp->mdev_max) {
|
668 |
|
|
tp->mdev_max = tp->mdev;
|
669 |
|
|
if (tp->mdev_max > tp->rttvar)
|
670 |
|
|
tp->rttvar = tp->mdev_max;
|
671 |
|
|
}
|
672 |
|
|
if (after(tp->snd_una, tp->rtt_seq)) {
|
673 |
|
|
if (tp->mdev_max < tp->rttvar)
|
674 |
|
|
tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
|
675 |
|
|
tp->rtt_seq = tp->snd_nxt;
|
676 |
|
|
tp->mdev_max = tcp_rto_min(sk);
|
677 |
|
|
}
|
678 |
|
|
} else {
|
679 |
|
|
/* no previous measure. */
|
680 |
|
|
tp->srtt = m<<3; /* take the measured time to be rtt */
|
681 |
|
|
tp->mdev = m<<1; /* make sure rto = 3*rtt */
|
682 |
|
|
tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
|
683 |
|
|
tp->rtt_seq = tp->snd_nxt;
|
684 |
|
|
}
|
685 |
|
|
}
|
686 |
|
|
|
687 |
|
|
/* Calculate rto without backoff. This is the second half of Van Jacobson's
|
688 |
|
|
* routine referred to above.
|
689 |
|
|
*/
|
690 |
|
|
static inline void tcp_set_rto(struct sock *sk)
|
691 |
|
|
{
|
692 |
|
|
const struct tcp_sock *tp = tcp_sk(sk);
|
693 |
|
|
/* Old crap is replaced with new one. 8)
|
694 |
|
|
*
|
695 |
|
|
* More seriously:
|
696 |
|
|
* 1. If rtt variance happened to be less 50msec, it is hallucination.
|
697 |
|
|
* It cannot be less due to utterly erratic ACK generation made
|
698 |
|
|
* at least by solaris and freebsd. "Erratic ACKs" has _nothing_
|
699 |
|
|
* to do with delayed acks, because at cwnd>2 true delack timeout
|
700 |
|
|
* is invisible. Actually, Linux-2.4 also generates erratic
|
701 |
|
|
* ACKs in some circumstances.
|
702 |
|
|
*/
|
703 |
|
|
inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
|
704 |
|
|
|
705 |
|
|
/* 2. Fixups made earlier cannot be right.
|
706 |
|
|
* If we do not estimate RTO correctly without them,
|
707 |
|
|
* all the algo is pure shit and should be replaced
|
708 |
|
|
* with correct one. It is exactly, which we pretend to do.
|
709 |
|
|
*/
|
710 |
|
|
}
|
711 |
|
|
|
712 |
|
|
/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
|
713 |
|
|
* guarantees that rto is higher.
|
714 |
|
|
*/
|
715 |
|
|
static inline void tcp_bound_rto(struct sock *sk)
|
716 |
|
|
{
|
717 |
|
|
if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
|
718 |
|
|
inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
|
719 |
|
|
}
|
720 |
|
|
|
721 |
|
|
/* Save metrics learned by this TCP session.
|
722 |
|
|
This function is called only, when TCP finishes successfully
|
723 |
|
|
i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
|
724 |
|
|
*/
|
725 |
|
|
void tcp_update_metrics(struct sock *sk)
|
726 |
|
|
{
|
727 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
728 |
|
|
struct dst_entry *dst = __sk_dst_get(sk);
|
729 |
|
|
|
730 |
|
|
if (sysctl_tcp_nometrics_save)
|
731 |
|
|
return;
|
732 |
|
|
|
733 |
|
|
dst_confirm(dst);
|
734 |
|
|
|
735 |
|
|
if (dst && (dst->flags&DST_HOST)) {
|
736 |
|
|
const struct inet_connection_sock *icsk = inet_csk(sk);
|
737 |
|
|
int m;
|
738 |
|
|
|
739 |
|
|
if (icsk->icsk_backoff || !tp->srtt) {
|
740 |
|
|
/* This session failed to estimate rtt. Why?
|
741 |
|
|
* Probably, no packets returned in time.
|
742 |
|
|
* Reset our results.
|
743 |
|
|
*/
|
744 |
|
|
if (!(dst_metric_locked(dst, RTAX_RTT)))
|
745 |
|
|
dst->metrics[RTAX_RTT-1] = 0;
|
746 |
|
|
return;
|
747 |
|
|
}
|
748 |
|
|
|
749 |
|
|
m = dst_metric(dst, RTAX_RTT) - tp->srtt;
|
750 |
|
|
|
751 |
|
|
/* If newly calculated rtt larger than stored one,
|
752 |
|
|
* store new one. Otherwise, use EWMA. Remember,
|
753 |
|
|
* rtt overestimation is always better than underestimation.
|
754 |
|
|
*/
|
755 |
|
|
if (!(dst_metric_locked(dst, RTAX_RTT))) {
|
756 |
|
|
if (m <= 0)
|
757 |
|
|
dst->metrics[RTAX_RTT-1] = tp->srtt;
|
758 |
|
|
else
|
759 |
|
|
dst->metrics[RTAX_RTT-1] -= (m>>3);
|
760 |
|
|
}
|
761 |
|
|
|
762 |
|
|
if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
|
763 |
|
|
if (m < 0)
|
764 |
|
|
m = -m;
|
765 |
|
|
|
766 |
|
|
/* Scale deviation to rttvar fixed point */
|
767 |
|
|
m >>= 1;
|
768 |
|
|
if (m < tp->mdev)
|
769 |
|
|
m = tp->mdev;
|
770 |
|
|
|
771 |
|
|
if (m >= dst_metric(dst, RTAX_RTTVAR))
|
772 |
|
|
dst->metrics[RTAX_RTTVAR-1] = m;
|
773 |
|
|
else
|
774 |
|
|
dst->metrics[RTAX_RTTVAR-1] -=
|
775 |
|
|
(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
|
776 |
|
|
}
|
777 |
|
|
|
778 |
|
|
if (tp->snd_ssthresh >= 0xFFFF) {
|
779 |
|
|
/* Slow start still did not finish. */
|
780 |
|
|
if (dst_metric(dst, RTAX_SSTHRESH) &&
|
781 |
|
|
!dst_metric_locked(dst, RTAX_SSTHRESH) &&
|
782 |
|
|
(tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
|
783 |
|
|
dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
|
784 |
|
|
if (!dst_metric_locked(dst, RTAX_CWND) &&
|
785 |
|
|
tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
|
786 |
|
|
dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
|
787 |
|
|
} else if (tp->snd_cwnd > tp->snd_ssthresh &&
|
788 |
|
|
icsk->icsk_ca_state == TCP_CA_Open) {
|
789 |
|
|
/* Cong. avoidance phase, cwnd is reliable. */
|
790 |
|
|
if (!dst_metric_locked(dst, RTAX_SSTHRESH))
|
791 |
|
|
dst->metrics[RTAX_SSTHRESH-1] =
|
792 |
|
|
max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
|
793 |
|
|
if (!dst_metric_locked(dst, RTAX_CWND))
|
794 |
|
|
dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
|
795 |
|
|
} else {
|
796 |
|
|
/* Else slow start did not finish, cwnd is non-sense,
|
797 |
|
|
ssthresh may be also invalid.
|
798 |
|
|
*/
|
799 |
|
|
if (!dst_metric_locked(dst, RTAX_CWND))
|
800 |
|
|
dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
|
801 |
|
|
if (dst->metrics[RTAX_SSTHRESH-1] &&
|
802 |
|
|
!dst_metric_locked(dst, RTAX_SSTHRESH) &&
|
803 |
|
|
tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
|
804 |
|
|
dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
|
805 |
|
|
}
|
806 |
|
|
|
807 |
|
|
if (!dst_metric_locked(dst, RTAX_REORDERING)) {
|
808 |
|
|
if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
|
809 |
|
|
tp->reordering != sysctl_tcp_reordering)
|
810 |
|
|
dst->metrics[RTAX_REORDERING-1] = tp->reordering;
|
811 |
|
|
}
|
812 |
|
|
}
|
813 |
|
|
}
|
814 |
|
|
|
815 |
|
|
/* Numbers are taken from RFC3390.
|
816 |
|
|
*
|
817 |
|
|
* John Heffner states:
|
818 |
|
|
*
|
819 |
|
|
* The RFC specifies a window of no more than 4380 bytes
|
820 |
|
|
* unless 2*MSS > 4380. Reading the pseudocode in the RFC
|
821 |
|
|
* is a bit misleading because they use a clamp at 4380 bytes
|
822 |
|
|
* rather than use a multiplier in the relevant range.
|
823 |
|
|
*/
|
824 |
|
|
__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
|
825 |
|
|
{
|
826 |
|
|
__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
|
827 |
|
|
|
828 |
|
|
if (!cwnd) {
|
829 |
|
|
if (tp->mss_cache > 1460)
|
830 |
|
|
cwnd = 2;
|
831 |
|
|
else
|
832 |
|
|
cwnd = (tp->mss_cache > 1095) ? 3 : 4;
|
833 |
|
|
}
|
834 |
|
|
return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
|
835 |
|
|
}
|
836 |
|
|
|
837 |
|
|
/* Set slow start threshold and cwnd not falling to slow start */
|
838 |
|
|
void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
|
839 |
|
|
{
|
840 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
841 |
|
|
const struct inet_connection_sock *icsk = inet_csk(sk);
|
842 |
|
|
|
843 |
|
|
tp->prior_ssthresh = 0;
|
844 |
|
|
tp->bytes_acked = 0;
|
845 |
|
|
if (icsk->icsk_ca_state < TCP_CA_CWR) {
|
846 |
|
|
tp->undo_marker = 0;
|
847 |
|
|
if (set_ssthresh)
|
848 |
|
|
tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
|
849 |
|
|
tp->snd_cwnd = min(tp->snd_cwnd,
|
850 |
|
|
tcp_packets_in_flight(tp) + 1U);
|
851 |
|
|
tp->snd_cwnd_cnt = 0;
|
852 |
|
|
tp->high_seq = tp->snd_nxt;
|
853 |
|
|
tp->snd_cwnd_stamp = tcp_time_stamp;
|
854 |
|
|
TCP_ECN_queue_cwr(tp);
|
855 |
|
|
|
856 |
|
|
tcp_set_ca_state(sk, TCP_CA_CWR);
|
857 |
|
|
}
|
858 |
|
|
}
|
859 |
|
|
|
860 |
|
|
/*
|
861 |
|
|
* Packet counting of FACK is based on in-order assumptions, therefore TCP
|
862 |
|
|
* disables it when reordering is detected
|
863 |
|
|
*/
|
864 |
|
|
static void tcp_disable_fack(struct tcp_sock *tp)
|
865 |
|
|
{
|
866 |
|
|
tp->rx_opt.sack_ok &= ~2;
|
867 |
|
|
}
|
868 |
|
|
|
869 |
|
|
/* Take a notice that peer is sending D-SACKs */
|
870 |
|
|
static void tcp_dsack_seen(struct tcp_sock *tp)
|
871 |
|
|
{
|
872 |
|
|
tp->rx_opt.sack_ok |= 4;
|
873 |
|
|
}
|
874 |
|
|
|
875 |
|
|
/* Initialize metrics on socket. */
|
876 |
|
|
|
877 |
|
|
static void tcp_init_metrics(struct sock *sk)
|
878 |
|
|
{
|
879 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
880 |
|
|
struct dst_entry *dst = __sk_dst_get(sk);
|
881 |
|
|
|
882 |
|
|
if (dst == NULL)
|
883 |
|
|
goto reset;
|
884 |
|
|
|
885 |
|
|
dst_confirm(dst);
|
886 |
|
|
|
887 |
|
|
if (dst_metric_locked(dst, RTAX_CWND))
|
888 |
|
|
tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
|
889 |
|
|
if (dst_metric(dst, RTAX_SSTHRESH)) {
|
890 |
|
|
tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
|
891 |
|
|
if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
|
892 |
|
|
tp->snd_ssthresh = tp->snd_cwnd_clamp;
|
893 |
|
|
}
|
894 |
|
|
if (dst_metric(dst, RTAX_REORDERING) &&
|
895 |
|
|
tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
|
896 |
|
|
tcp_disable_fack(tp);
|
897 |
|
|
tp->reordering = dst_metric(dst, RTAX_REORDERING);
|
898 |
|
|
}
|
899 |
|
|
|
900 |
|
|
if (dst_metric(dst, RTAX_RTT) == 0)
|
901 |
|
|
goto reset;
|
902 |
|
|
|
903 |
|
|
if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
|
904 |
|
|
goto reset;
|
905 |
|
|
|
906 |
|
|
/* Initial rtt is determined from SYN,SYN-ACK.
|
907 |
|
|
* The segment is small and rtt may appear much
|
908 |
|
|
* less than real one. Use per-dst memory
|
909 |
|
|
* to make it more realistic.
|
910 |
|
|
*
|
911 |
|
|
* A bit of theory. RTT is time passed after "normal" sized packet
|
912 |
|
|
* is sent until it is ACKed. In normal circumstances sending small
|
913 |
|
|
* packets force peer to delay ACKs and calculation is correct too.
|
914 |
|
|
* The algorithm is adaptive and, provided we follow specs, it
|
915 |
|
|
* NEVER underestimate RTT. BUT! If peer tries to make some clever
|
916 |
|
|
* tricks sort of "quick acks" for time long enough to decrease RTT
|
917 |
|
|
* to low value, and then abruptly stops to do it and starts to delay
|
918 |
|
|
* ACKs, wait for troubles.
|
919 |
|
|
*/
|
920 |
|
|
if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
|
921 |
|
|
tp->srtt = dst_metric(dst, RTAX_RTT);
|
922 |
|
|
tp->rtt_seq = tp->snd_nxt;
|
923 |
|
|
}
|
924 |
|
|
if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
|
925 |
|
|
tp->mdev = dst_metric(dst, RTAX_RTTVAR);
|
926 |
|
|
tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
|
927 |
|
|
}
|
928 |
|
|
tcp_set_rto(sk);
|
929 |
|
|
tcp_bound_rto(sk);
|
930 |
|
|
if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
|
931 |
|
|
goto reset;
|
932 |
|
|
tp->snd_cwnd = tcp_init_cwnd(tp, dst);
|
933 |
|
|
tp->snd_cwnd_stamp = tcp_time_stamp;
|
934 |
|
|
return;
|
935 |
|
|
|
936 |
|
|
reset:
|
937 |
|
|
/* Play conservative. If timestamps are not
|
938 |
|
|
* supported, TCP will fail to recalculate correct
|
939 |
|
|
* rtt, if initial rto is too small. FORGET ALL AND RESET!
|
940 |
|
|
*/
|
941 |
|
|
if (!tp->rx_opt.saw_tstamp && tp->srtt) {
|
942 |
|
|
tp->srtt = 0;
|
943 |
|
|
tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
|
944 |
|
|
inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
|
945 |
|
|
}
|
946 |
|
|
}
|
947 |
|
|
|
948 |
|
|
static void tcp_update_reordering(struct sock *sk, const int metric,
|
949 |
|
|
const int ts)
|
950 |
|
|
{
|
951 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
952 |
|
|
if (metric > tp->reordering) {
|
953 |
|
|
tp->reordering = min(TCP_MAX_REORDERING, metric);
|
954 |
|
|
|
955 |
|
|
/* This exciting event is worth to be remembered. 8) */
|
956 |
|
|
if (ts)
|
957 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
|
958 |
|
|
else if (tcp_is_reno(tp))
|
959 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
|
960 |
|
|
else if (tcp_is_fack(tp))
|
961 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
|
962 |
|
|
else
|
963 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
|
964 |
|
|
#if FASTRETRANS_DEBUG > 1
|
965 |
|
|
printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
|
966 |
|
|
tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
|
967 |
|
|
tp->reordering,
|
968 |
|
|
tp->fackets_out,
|
969 |
|
|
tp->sacked_out,
|
970 |
|
|
tp->undo_marker ? tp->undo_retrans : 0);
|
971 |
|
|
#endif
|
972 |
|
|
tcp_disable_fack(tp);
|
973 |
|
|
}
|
974 |
|
|
}
|
975 |
|
|
|
976 |
|
|
/* This procedure tags the retransmission queue when SACKs arrive.
|
977 |
|
|
*
|
978 |
|
|
* We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
|
979 |
|
|
* Packets in queue with these bits set are counted in variables
|
980 |
|
|
* sacked_out, retrans_out and lost_out, correspondingly.
|
981 |
|
|
*
|
982 |
|
|
* Valid combinations are:
|
983 |
|
|
* Tag InFlight Description
|
984 |
|
|
* 0 1 - orig segment is in flight.
|
985 |
|
|
* S 0 - nothing flies, orig reached receiver.
|
986 |
|
|
* L 0 - nothing flies, orig lost by net.
|
987 |
|
|
* R 2 - both orig and retransmit are in flight.
|
988 |
|
|
* L|R 1 - orig is lost, retransmit is in flight.
|
989 |
|
|
* S|R 1 - orig reached receiver, retrans is still in flight.
|
990 |
|
|
* (L|S|R is logically valid, it could occur when L|R is sacked,
|
991 |
|
|
* but it is equivalent to plain S and code short-curcuits it to S.
|
992 |
|
|
* L|S is logically invalid, it would mean -1 packet in flight 8))
|
993 |
|
|
*
|
994 |
|
|
* These 6 states form finite state machine, controlled by the following events:
|
995 |
|
|
* 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
|
996 |
|
|
* 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
|
997 |
|
|
* 3. Loss detection event of one of three flavors:
|
998 |
|
|
* A. Scoreboard estimator decided the packet is lost.
|
999 |
|
|
* A'. Reno "three dupacks" marks head of queue lost.
|
1000 |
|
|
* A''. Its FACK modfication, head until snd.fack is lost.
|
1001 |
|
|
* B. SACK arrives sacking data transmitted after never retransmitted
|
1002 |
|
|
* hole was sent out.
|
1003 |
|
|
* C. SACK arrives sacking SND.NXT at the moment, when the
|
1004 |
|
|
* segment was retransmitted.
|
1005 |
|
|
* 4. D-SACK added new rule: D-SACK changes any tag to S.
|
1006 |
|
|
*
|
1007 |
|
|
* It is pleasant to note, that state diagram turns out to be commutative,
|
1008 |
|
|
* so that we are allowed not to be bothered by order of our actions,
|
1009 |
|
|
* when multiple events arrive simultaneously. (see the function below).
|
1010 |
|
|
*
|
1011 |
|
|
* Reordering detection.
|
1012 |
|
|
* --------------------
|
1013 |
|
|
* Reordering metric is maximal distance, which a packet can be displaced
|
1014 |
|
|
* in packet stream. With SACKs we can estimate it:
|
1015 |
|
|
*
|
1016 |
|
|
* 1. SACK fills old hole and the corresponding segment was not
|
1017 |
|
|
* ever retransmitted -> reordering. Alas, we cannot use it
|
1018 |
|
|
* when segment was retransmitted.
|
1019 |
|
|
* 2. The last flaw is solved with D-SACK. D-SACK arrives
|
1020 |
|
|
* for retransmitted and already SACKed segment -> reordering..
|
1021 |
|
|
* Both of these heuristics are not used in Loss state, when we cannot
|
1022 |
|
|
* account for retransmits accurately.
|
1023 |
|
|
*
|
1024 |
|
|
* SACK block validation.
|
1025 |
|
|
* ----------------------
|
1026 |
|
|
*
|
1027 |
|
|
* SACK block range validation checks that the received SACK block fits to
|
1028 |
|
|
* the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
|
1029 |
|
|
* Note that SND.UNA is not included to the range though being valid because
|
1030 |
|
|
* it means that the receiver is rather inconsistent with itself reporting
|
1031 |
|
|
* SACK reneging when it should advance SND.UNA. Such SACK block this is
|
1032 |
|
|
* perfectly valid, however, in light of RFC2018 which explicitly states
|
1033 |
|
|
* that "SACK block MUST reflect the newest segment. Even if the newest
|
1034 |
|
|
* segment is going to be discarded ...", not that it looks very clever
|
1035 |
|
|
* in case of head skb. Due to potentional receiver driven attacks, we
|
1036 |
|
|
* choose to avoid immediate execution of a walk in write queue due to
|
1037 |
|
|
* reneging and defer head skb's loss recovery to standard loss recovery
|
1038 |
|
|
* procedure that will eventually trigger (nothing forbids us doing this).
|
1039 |
|
|
*
|
1040 |
|
|
* Implements also blockage to start_seq wrap-around. Problem lies in the
|
1041 |
|
|
* fact that though start_seq (s) is before end_seq (i.e., not reversed),
|
1042 |
|
|
* there's no guarantee that it will be before snd_nxt (n). The problem
|
1043 |
|
|
* happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
|
1044 |
|
|
* wrap (s_w):
|
1045 |
|
|
*
|
1046 |
|
|
* <- outs wnd -> <- wrapzone ->
|
1047 |
|
|
* u e n u_w e_w s n_w
|
1048 |
|
|
* | | | | | | |
|
1049 |
|
|
* |<------------+------+----- TCP seqno space --------------+---------->|
|
1050 |
|
|
* ...-- <2^31 ->| |<--------...
|
1051 |
|
|
* ...---- >2^31 ------>| |<--------...
|
1052 |
|
|
*
|
1053 |
|
|
* Current code wouldn't be vulnerable but it's better still to discard such
|
1054 |
|
|
* crazy SACK blocks. Doing this check for start_seq alone closes somewhat
|
1055 |
|
|
* similar case (end_seq after snd_nxt wrap) as earlier reversed check in
|
1056 |
|
|
* snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
|
1057 |
|
|
* equal to the ideal case (infinite seqno space without wrap caused issues).
|
1058 |
|
|
*
|
1059 |
|
|
* With D-SACK the lower bound is extended to cover sequence space below
|
1060 |
|
|
* SND.UNA down to undo_marker, which is the last point of interest. Yet
|
1061 |
|
|
* again, D-SACK block must not to go across snd_una (for the same reason as
|
1062 |
|
|
* for the normal SACK blocks, explained above). But there all simplicity
|
1063 |
|
|
* ends, TCP might receive valid D-SACKs below that. As long as they reside
|
1064 |
|
|
* fully below undo_marker they do not affect behavior in anyway and can
|
1065 |
|
|
* therefore be safely ignored. In rare cases (which are more or less
|
1066 |
|
|
* theoretical ones), the D-SACK will nicely cross that boundary due to skb
|
1067 |
|
|
* fragmentation and packet reordering past skb's retransmission. To consider
|
1068 |
|
|
* them correctly, the acceptable range must be extended even more though
|
1069 |
|
|
* the exact amount is rather hard to quantify. However, tp->max_window can
|
1070 |
|
|
* be used as an exaggerated estimate.
|
1071 |
|
|
*/
|
1072 |
|
|
static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
|
1073 |
|
|
u32 start_seq, u32 end_seq)
|
1074 |
|
|
{
|
1075 |
|
|
/* Too far in future, or reversed (interpretation is ambiguous) */
|
1076 |
|
|
if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
|
1077 |
|
|
return 0;
|
1078 |
|
|
|
1079 |
|
|
/* Nasty start_seq wrap-around check (see comments above) */
|
1080 |
|
|
if (!before(start_seq, tp->snd_nxt))
|
1081 |
|
|
return 0;
|
1082 |
|
|
|
1083 |
|
|
/* In outstanding window? ...This is valid exit for D-SACKs too.
|
1084 |
|
|
* start_seq == snd_una is non-sensical (see comments above)
|
1085 |
|
|
*/
|
1086 |
|
|
if (after(start_seq, tp->snd_una))
|
1087 |
|
|
return 1;
|
1088 |
|
|
|
1089 |
|
|
if (!is_dsack || !tp->undo_marker)
|
1090 |
|
|
return 0;
|
1091 |
|
|
|
1092 |
|
|
/* ...Then it's D-SACK, and must reside below snd_una completely */
|
1093 |
|
|
if (!after(end_seq, tp->snd_una))
|
1094 |
|
|
return 0;
|
1095 |
|
|
|
1096 |
|
|
if (!before(start_seq, tp->undo_marker))
|
1097 |
|
|
return 1;
|
1098 |
|
|
|
1099 |
|
|
/* Too old */
|
1100 |
|
|
if (!after(end_seq, tp->undo_marker))
|
1101 |
|
|
return 0;
|
1102 |
|
|
|
1103 |
|
|
/* Undo_marker boundary crossing (overestimates a lot). Known already:
|
1104 |
|
|
* start_seq < undo_marker and end_seq >= undo_marker.
|
1105 |
|
|
*/
|
1106 |
|
|
return !before(start_seq, end_seq - tp->max_window);
|
1107 |
|
|
}
|
1108 |
|
|
|
1109 |
|
|
/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
|
1110 |
|
|
* Event "C". Later note: FACK people cheated me again 8), we have to account
|
1111 |
|
|
* for reordering! Ugly, but should help.
|
1112 |
|
|
*
|
1113 |
|
|
* Search retransmitted skbs from write_queue that were sent when snd_nxt was
|
1114 |
|
|
* less than what is now known to be received by the other end (derived from
|
1115 |
|
|
* SACK blocks by the caller). Also calculate the lowest snd_nxt among the
|
1116 |
|
|
* remaining retransmitted skbs to avoid some costly processing per ACKs.
|
1117 |
|
|
*/
|
1118 |
|
|
static int tcp_mark_lost_retrans(struct sock *sk, u32 received_upto)
|
1119 |
|
|
{
|
1120 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
1121 |
|
|
struct sk_buff *skb;
|
1122 |
|
|
int flag = 0;
|
1123 |
|
|
int cnt = 0;
|
1124 |
|
|
u32 new_low_seq = tp->snd_nxt;
|
1125 |
|
|
|
1126 |
|
|
tcp_for_write_queue(skb, sk) {
|
1127 |
|
|
u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
|
1128 |
|
|
|
1129 |
|
|
if (skb == tcp_send_head(sk))
|
1130 |
|
|
break;
|
1131 |
|
|
if (cnt == tp->retrans_out)
|
1132 |
|
|
break;
|
1133 |
|
|
if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
|
1134 |
|
|
continue;
|
1135 |
|
|
|
1136 |
|
|
if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
|
1137 |
|
|
continue;
|
1138 |
|
|
|
1139 |
|
|
if (after(received_upto, ack_seq) &&
|
1140 |
|
|
(tcp_is_fack(tp) ||
|
1141 |
|
|
!before(received_upto,
|
1142 |
|
|
ack_seq + tp->reordering * tp->mss_cache))) {
|
1143 |
|
|
TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
|
1144 |
|
|
tp->retrans_out -= tcp_skb_pcount(skb);
|
1145 |
|
|
|
1146 |
|
|
/* clear lost hint */
|
1147 |
|
|
tp->retransmit_skb_hint = NULL;
|
1148 |
|
|
|
1149 |
|
|
if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
|
1150 |
|
|
tp->lost_out += tcp_skb_pcount(skb);
|
1151 |
|
|
TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
|
1152 |
|
|
flag |= FLAG_DATA_SACKED;
|
1153 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
|
1154 |
|
|
}
|
1155 |
|
|
} else {
|
1156 |
|
|
if (before(ack_seq, new_low_seq))
|
1157 |
|
|
new_low_seq = ack_seq;
|
1158 |
|
|
cnt += tcp_skb_pcount(skb);
|
1159 |
|
|
}
|
1160 |
|
|
}
|
1161 |
|
|
|
1162 |
|
|
if (tp->retrans_out)
|
1163 |
|
|
tp->lost_retrans_low = new_low_seq;
|
1164 |
|
|
|
1165 |
|
|
return flag;
|
1166 |
|
|
}
|
1167 |
|
|
|
1168 |
|
|
static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
|
1169 |
|
|
struct tcp_sack_block_wire *sp, int num_sacks,
|
1170 |
|
|
u32 prior_snd_una)
|
1171 |
|
|
{
|
1172 |
|
|
u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
|
1173 |
|
|
u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
|
1174 |
|
|
int dup_sack = 0;
|
1175 |
|
|
|
1176 |
|
|
if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
|
1177 |
|
|
dup_sack = 1;
|
1178 |
|
|
tcp_dsack_seen(tp);
|
1179 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
|
1180 |
|
|
} else if (num_sacks > 1) {
|
1181 |
|
|
u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
|
1182 |
|
|
u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
|
1183 |
|
|
|
1184 |
|
|
if (!after(end_seq_0, end_seq_1) &&
|
1185 |
|
|
!before(start_seq_0, start_seq_1)) {
|
1186 |
|
|
dup_sack = 1;
|
1187 |
|
|
tcp_dsack_seen(tp);
|
1188 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
|
1189 |
|
|
}
|
1190 |
|
|
}
|
1191 |
|
|
|
1192 |
|
|
/* D-SACK for already forgotten data... Do dumb counting. */
|
1193 |
|
|
if (dup_sack &&
|
1194 |
|
|
!after(end_seq_0, prior_snd_una) &&
|
1195 |
|
|
after(end_seq_0, tp->undo_marker))
|
1196 |
|
|
tp->undo_retrans--;
|
1197 |
|
|
|
1198 |
|
|
return dup_sack;
|
1199 |
|
|
}
|
1200 |
|
|
|
1201 |
|
|
/* Check if skb is fully within the SACK block. In presence of GSO skbs,
|
1202 |
|
|
* the incoming SACK may not exactly match but we can find smaller MSS
|
1203 |
|
|
* aligned portion of it that matches. Therefore we might need to fragment
|
1204 |
|
|
* which may fail and creates some hassle (caller must handle error case
|
1205 |
|
|
* returns).
|
1206 |
|
|
*/
|
1207 |
|
|
static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
|
1208 |
|
|
u32 start_seq, u32 end_seq)
|
1209 |
|
|
{
|
1210 |
|
|
int in_sack, err;
|
1211 |
|
|
unsigned int pkt_len;
|
1212 |
|
|
|
1213 |
|
|
in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
|
1214 |
|
|
!before(end_seq, TCP_SKB_CB(skb)->end_seq);
|
1215 |
|
|
|
1216 |
|
|
if (tcp_skb_pcount(skb) > 1 && !in_sack &&
|
1217 |
|
|
after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
|
1218 |
|
|
|
1219 |
|
|
in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
|
1220 |
|
|
|
1221 |
|
|
if (!in_sack)
|
1222 |
|
|
pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
|
1223 |
|
|
else
|
1224 |
|
|
pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
|
1225 |
|
|
err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
|
1226 |
|
|
if (err < 0)
|
1227 |
|
|
return err;
|
1228 |
|
|
}
|
1229 |
|
|
|
1230 |
|
|
return in_sack;
|
1231 |
|
|
}
|
1232 |
|
|
|
1233 |
|
|
static int
|
1234 |
|
|
tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
|
1235 |
|
|
{
|
1236 |
|
|
const struct inet_connection_sock *icsk = inet_csk(sk);
|
1237 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
1238 |
|
|
unsigned char *ptr = (skb_transport_header(ack_skb) +
|
1239 |
|
|
TCP_SKB_CB(ack_skb)->sacked);
|
1240 |
|
|
struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
|
1241 |
|
|
struct sk_buff *cached_skb;
|
1242 |
|
|
int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
|
1243 |
|
|
int reord = tp->packets_out;
|
1244 |
|
|
int prior_fackets;
|
1245 |
|
|
u32 highest_sack_end_seq = tp->lost_retrans_low;
|
1246 |
|
|
int flag = 0;
|
1247 |
|
|
int found_dup_sack = 0;
|
1248 |
|
|
int cached_fack_count;
|
1249 |
|
|
int i;
|
1250 |
|
|
int first_sack_index;
|
1251 |
|
|
int force_one_sack;
|
1252 |
|
|
|
1253 |
|
|
if (!tp->sacked_out) {
|
1254 |
|
|
if (WARN_ON(tp->fackets_out))
|
1255 |
|
|
tp->fackets_out = 0;
|
1256 |
|
|
tp->highest_sack = tp->snd_una;
|
1257 |
|
|
}
|
1258 |
|
|
prior_fackets = tp->fackets_out;
|
1259 |
|
|
|
1260 |
|
|
found_dup_sack = tcp_check_dsack(tp, ack_skb, sp,
|
1261 |
|
|
num_sacks, prior_snd_una);
|
1262 |
|
|
if (found_dup_sack)
|
1263 |
|
|
flag |= FLAG_DSACKING_ACK;
|
1264 |
|
|
|
1265 |
|
|
/* Eliminate too old ACKs, but take into
|
1266 |
|
|
* account more or less fresh ones, they can
|
1267 |
|
|
* contain valid SACK info.
|
1268 |
|
|
*/
|
1269 |
|
|
if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
|
1270 |
|
|
return 0;
|
1271 |
|
|
|
1272 |
|
|
if (!tp->packets_out)
|
1273 |
|
|
goto out;
|
1274 |
|
|
|
1275 |
|
|
/* SACK fastpath:
|
1276 |
|
|
* if the only SACK change is the increase of the end_seq of
|
1277 |
|
|
* the first block then only apply that SACK block
|
1278 |
|
|
* and use retrans queue hinting otherwise slowpath */
|
1279 |
|
|
force_one_sack = 1;
|
1280 |
|
|
for (i = 0; i < num_sacks; i++) {
|
1281 |
|
|
__be32 start_seq = sp[i].start_seq;
|
1282 |
|
|
__be32 end_seq = sp[i].end_seq;
|
1283 |
|
|
|
1284 |
|
|
if (i == 0) {
|
1285 |
|
|
if (tp->recv_sack_cache[i].start_seq != start_seq)
|
1286 |
|
|
force_one_sack = 0;
|
1287 |
|
|
} else {
|
1288 |
|
|
if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
|
1289 |
|
|
(tp->recv_sack_cache[i].end_seq != end_seq))
|
1290 |
|
|
force_one_sack = 0;
|
1291 |
|
|
}
|
1292 |
|
|
tp->recv_sack_cache[i].start_seq = start_seq;
|
1293 |
|
|
tp->recv_sack_cache[i].end_seq = end_seq;
|
1294 |
|
|
}
|
1295 |
|
|
/* Clear the rest of the cache sack blocks so they won't match mistakenly. */
|
1296 |
|
|
for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
|
1297 |
|
|
tp->recv_sack_cache[i].start_seq = 0;
|
1298 |
|
|
tp->recv_sack_cache[i].end_seq = 0;
|
1299 |
|
|
}
|
1300 |
|
|
|
1301 |
|
|
first_sack_index = 0;
|
1302 |
|
|
if (force_one_sack)
|
1303 |
|
|
num_sacks = 1;
|
1304 |
|
|
else {
|
1305 |
|
|
int j;
|
1306 |
|
|
tp->fastpath_skb_hint = NULL;
|
1307 |
|
|
|
1308 |
|
|
/* order SACK blocks to allow in order walk of the retrans queue */
|
1309 |
|
|
for (i = num_sacks-1; i > 0; i--) {
|
1310 |
|
|
for (j = 0; j < i; j++){
|
1311 |
|
|
if (after(ntohl(sp[j].start_seq),
|
1312 |
|
|
ntohl(sp[j+1].start_seq))){
|
1313 |
|
|
struct tcp_sack_block_wire tmp;
|
1314 |
|
|
|
1315 |
|
|
tmp = sp[j];
|
1316 |
|
|
sp[j] = sp[j+1];
|
1317 |
|
|
sp[j+1] = tmp;
|
1318 |
|
|
|
1319 |
|
|
/* Track where the first SACK block goes to */
|
1320 |
|
|
if (j == first_sack_index)
|
1321 |
|
|
first_sack_index = j+1;
|
1322 |
|
|
}
|
1323 |
|
|
|
1324 |
|
|
}
|
1325 |
|
|
}
|
1326 |
|
|
}
|
1327 |
|
|
|
1328 |
|
|
/* Use SACK fastpath hint if valid */
|
1329 |
|
|
cached_skb = tp->fastpath_skb_hint;
|
1330 |
|
|
cached_fack_count = tp->fastpath_cnt_hint;
|
1331 |
|
|
if (!cached_skb) {
|
1332 |
|
|
cached_skb = tcp_write_queue_head(sk);
|
1333 |
|
|
cached_fack_count = 0;
|
1334 |
|
|
}
|
1335 |
|
|
|
1336 |
|
|
for (i = 0; i < num_sacks; i++) {
|
1337 |
|
|
struct sk_buff *skb;
|
1338 |
|
|
__u32 start_seq = ntohl(sp->start_seq);
|
1339 |
|
|
__u32 end_seq = ntohl(sp->end_seq);
|
1340 |
|
|
int fack_count;
|
1341 |
|
|
int dup_sack = (found_dup_sack && (i == first_sack_index));
|
1342 |
|
|
int next_dup = (found_dup_sack && (i+1 == first_sack_index));
|
1343 |
|
|
|
1344 |
|
|
sp++;
|
1345 |
|
|
|
1346 |
|
|
if (!tcp_is_sackblock_valid(tp, dup_sack, start_seq, end_seq)) {
|
1347 |
|
|
if (dup_sack) {
|
1348 |
|
|
if (!tp->undo_marker)
|
1349 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
|
1350 |
|
|
else
|
1351 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
|
1352 |
|
|
} else {
|
1353 |
|
|
/* Don't count olds caused by ACK reordering */
|
1354 |
|
|
if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
|
1355 |
|
|
!after(end_seq, tp->snd_una))
|
1356 |
|
|
continue;
|
1357 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
|
1358 |
|
|
}
|
1359 |
|
|
continue;
|
1360 |
|
|
}
|
1361 |
|
|
|
1362 |
|
|
skb = cached_skb;
|
1363 |
|
|
fack_count = cached_fack_count;
|
1364 |
|
|
|
1365 |
|
|
/* Event "B" in the comment above. */
|
1366 |
|
|
if (after(end_seq, tp->high_seq))
|
1367 |
|
|
flag |= FLAG_DATA_LOST;
|
1368 |
|
|
|
1369 |
|
|
tcp_for_write_queue_from(skb, sk) {
|
1370 |
|
|
int in_sack = 0;
|
1371 |
|
|
u8 sacked;
|
1372 |
|
|
|
1373 |
|
|
if (skb == tcp_send_head(sk))
|
1374 |
|
|
break;
|
1375 |
|
|
|
1376 |
|
|
cached_skb = skb;
|
1377 |
|
|
cached_fack_count = fack_count;
|
1378 |
|
|
if (i == first_sack_index) {
|
1379 |
|
|
tp->fastpath_skb_hint = skb;
|
1380 |
|
|
tp->fastpath_cnt_hint = fack_count;
|
1381 |
|
|
}
|
1382 |
|
|
|
1383 |
|
|
/* The retransmission queue is always in order, so
|
1384 |
|
|
* we can short-circuit the walk early.
|
1385 |
|
|
*/
|
1386 |
|
|
if (!before(TCP_SKB_CB(skb)->seq, end_seq))
|
1387 |
|
|
break;
|
1388 |
|
|
|
1389 |
|
|
dup_sack = (found_dup_sack && (i == first_sack_index));
|
1390 |
|
|
|
1391 |
|
|
/* Due to sorting DSACK may reside within this SACK block! */
|
1392 |
|
|
if (next_dup) {
|
1393 |
|
|
u32 dup_start = ntohl(sp->start_seq);
|
1394 |
|
|
u32 dup_end = ntohl(sp->end_seq);
|
1395 |
|
|
|
1396 |
|
|
if (before(TCP_SKB_CB(skb)->seq, dup_end)) {
|
1397 |
|
|
in_sack = tcp_match_skb_to_sack(sk, skb, dup_start, dup_end);
|
1398 |
|
|
if (in_sack > 0)
|
1399 |
|
|
dup_sack = 1;
|
1400 |
|
|
}
|
1401 |
|
|
}
|
1402 |
|
|
|
1403 |
|
|
/* DSACK info lost if out-of-mem, try SACK still */
|
1404 |
|
|
if (in_sack <= 0)
|
1405 |
|
|
in_sack = tcp_match_skb_to_sack(sk, skb, start_seq, end_seq);
|
1406 |
|
|
if (unlikely(in_sack < 0))
|
1407 |
|
|
break;
|
1408 |
|
|
|
1409 |
|
|
sacked = TCP_SKB_CB(skb)->sacked;
|
1410 |
|
|
|
1411 |
|
|
/* Account D-SACK for retransmitted packet. */
|
1412 |
|
|
if ((dup_sack && in_sack) &&
|
1413 |
|
|
(sacked & TCPCB_RETRANS) &&
|
1414 |
|
|
after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
|
1415 |
|
|
tp->undo_retrans--;
|
1416 |
|
|
|
1417 |
|
|
/* The frame is ACKed. */
|
1418 |
|
|
if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
|
1419 |
|
|
if (sacked&TCPCB_RETRANS) {
|
1420 |
|
|
if ((dup_sack && in_sack) &&
|
1421 |
|
|
(sacked&TCPCB_SACKED_ACKED))
|
1422 |
|
|
reord = min(fack_count, reord);
|
1423 |
|
|
}
|
1424 |
|
|
|
1425 |
|
|
/* Nothing to do; acked frame is about to be dropped. */
|
1426 |
|
|
fack_count += tcp_skb_pcount(skb);
|
1427 |
|
|
continue;
|
1428 |
|
|
}
|
1429 |
|
|
|
1430 |
|
|
if (!in_sack) {
|
1431 |
|
|
fack_count += tcp_skb_pcount(skb);
|
1432 |
|
|
continue;
|
1433 |
|
|
}
|
1434 |
|
|
|
1435 |
|
|
if (!(sacked&TCPCB_SACKED_ACKED)) {
|
1436 |
|
|
if (sacked & TCPCB_SACKED_RETRANS) {
|
1437 |
|
|
/* If the segment is not tagged as lost,
|
1438 |
|
|
* we do not clear RETRANS, believing
|
1439 |
|
|
* that retransmission is still in flight.
|
1440 |
|
|
*/
|
1441 |
|
|
if (sacked & TCPCB_LOST) {
|
1442 |
|
|
TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
|
1443 |
|
|
tp->lost_out -= tcp_skb_pcount(skb);
|
1444 |
|
|
tp->retrans_out -= tcp_skb_pcount(skb);
|
1445 |
|
|
|
1446 |
|
|
/* clear lost hint */
|
1447 |
|
|
tp->retransmit_skb_hint = NULL;
|
1448 |
|
|
}
|
1449 |
|
|
} else {
|
1450 |
|
|
if (!(sacked & TCPCB_RETRANS)) {
|
1451 |
|
|
/* New sack for not retransmitted frame,
|
1452 |
|
|
* which was in hole. It is reordering.
|
1453 |
|
|
*/
|
1454 |
|
|
if (fack_count < prior_fackets)
|
1455 |
|
|
reord = min(fack_count, reord);
|
1456 |
|
|
|
1457 |
|
|
/* SACK enhanced F-RTO (RFC4138; Appendix B) */
|
1458 |
|
|
if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
|
1459 |
|
|
flag |= FLAG_ONLY_ORIG_SACKED;
|
1460 |
|
|
}
|
1461 |
|
|
|
1462 |
|
|
if (sacked & TCPCB_LOST) {
|
1463 |
|
|
TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
|
1464 |
|
|
tp->lost_out -= tcp_skb_pcount(skb);
|
1465 |
|
|
|
1466 |
|
|
/* clear lost hint */
|
1467 |
|
|
tp->retransmit_skb_hint = NULL;
|
1468 |
|
|
}
|
1469 |
|
|
}
|
1470 |
|
|
|
1471 |
|
|
TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
|
1472 |
|
|
flag |= FLAG_DATA_SACKED;
|
1473 |
|
|
tp->sacked_out += tcp_skb_pcount(skb);
|
1474 |
|
|
|
1475 |
|
|
fack_count += tcp_skb_pcount(skb);
|
1476 |
|
|
if (fack_count > tp->fackets_out)
|
1477 |
|
|
tp->fackets_out = fack_count;
|
1478 |
|
|
|
1479 |
|
|
if (after(TCP_SKB_CB(skb)->seq, tp->highest_sack)) {
|
1480 |
|
|
tp->highest_sack = TCP_SKB_CB(skb)->seq;
|
1481 |
|
|
highest_sack_end_seq = TCP_SKB_CB(skb)->end_seq;
|
1482 |
|
|
}
|
1483 |
|
|
} else {
|
1484 |
|
|
if (dup_sack && (sacked&TCPCB_RETRANS))
|
1485 |
|
|
reord = min(fack_count, reord);
|
1486 |
|
|
|
1487 |
|
|
fack_count += tcp_skb_pcount(skb);
|
1488 |
|
|
}
|
1489 |
|
|
|
1490 |
|
|
/* D-SACK. We can detect redundant retransmission
|
1491 |
|
|
* in S|R and plain R frames and clear it.
|
1492 |
|
|
* undo_retrans is decreased above, L|R frames
|
1493 |
|
|
* are accounted above as well.
|
1494 |
|
|
*/
|
1495 |
|
|
if (dup_sack &&
|
1496 |
|
|
(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
|
1497 |
|
|
TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
|
1498 |
|
|
tp->retrans_out -= tcp_skb_pcount(skb);
|
1499 |
|
|
tp->retransmit_skb_hint = NULL;
|
1500 |
|
|
}
|
1501 |
|
|
}
|
1502 |
|
|
|
1503 |
|
|
/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
|
1504 |
|
|
* due to in-order walk
|
1505 |
|
|
*/
|
1506 |
|
|
if (after(end_seq, tp->frto_highmark))
|
1507 |
|
|
flag &= ~FLAG_ONLY_ORIG_SACKED;
|
1508 |
|
|
}
|
1509 |
|
|
|
1510 |
|
|
if (tp->retrans_out &&
|
1511 |
|
|
after(highest_sack_end_seq, tp->lost_retrans_low) &&
|
1512 |
|
|
icsk->icsk_ca_state == TCP_CA_Recovery)
|
1513 |
|
|
flag |= tcp_mark_lost_retrans(sk, highest_sack_end_seq);
|
1514 |
|
|
|
1515 |
|
|
tcp_verify_left_out(tp);
|
1516 |
|
|
|
1517 |
|
|
if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
|
1518 |
|
|
(!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
|
1519 |
|
|
tcp_update_reordering(sk, tp->fackets_out - reord, 0);
|
1520 |
|
|
|
1521 |
|
|
out:
|
1522 |
|
|
|
1523 |
|
|
#if FASTRETRANS_DEBUG > 0
|
1524 |
|
|
BUG_TRAP((int)tp->sacked_out >= 0);
|
1525 |
|
|
BUG_TRAP((int)tp->lost_out >= 0);
|
1526 |
|
|
BUG_TRAP((int)tp->retrans_out >= 0);
|
1527 |
|
|
BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
|
1528 |
|
|
#endif
|
1529 |
|
|
return flag;
|
1530 |
|
|
}
|
1531 |
|
|
|
1532 |
|
|
/* If we receive more dupacks than we expected counting segments
|
1533 |
|
|
* in assumption of absent reordering, interpret this as reordering.
|
1534 |
|
|
* The only another reason could be bug in receiver TCP.
|
1535 |
|
|
*/
|
1536 |
|
|
static void tcp_check_reno_reordering(struct sock *sk, const int addend)
|
1537 |
|
|
{
|
1538 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
1539 |
|
|
u32 holes;
|
1540 |
|
|
|
1541 |
|
|
holes = max(tp->lost_out, 1U);
|
1542 |
|
|
holes = min(holes, tp->packets_out);
|
1543 |
|
|
|
1544 |
|
|
if ((tp->sacked_out + holes) > tp->packets_out) {
|
1545 |
|
|
tp->sacked_out = tp->packets_out - holes;
|
1546 |
|
|
tcp_update_reordering(sk, tp->packets_out + addend, 0);
|
1547 |
|
|
}
|
1548 |
|
|
}
|
1549 |
|
|
|
1550 |
|
|
/* Emulate SACKs for SACKless connection: account for a new dupack. */
|
1551 |
|
|
|
1552 |
|
|
static void tcp_add_reno_sack(struct sock *sk)
|
1553 |
|
|
{
|
1554 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
1555 |
|
|
tp->sacked_out++;
|
1556 |
|
|
tcp_check_reno_reordering(sk, 0);
|
1557 |
|
|
tcp_verify_left_out(tp);
|
1558 |
|
|
}
|
1559 |
|
|
|
1560 |
|
|
/* Account for ACK, ACKing some data in Reno Recovery phase. */
|
1561 |
|
|
|
1562 |
|
|
static void tcp_remove_reno_sacks(struct sock *sk, int acked)
|
1563 |
|
|
{
|
1564 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
1565 |
|
|
|
1566 |
|
|
if (acked > 0) {
|
1567 |
|
|
/* One ACK acked hole. The rest eat duplicate ACKs. */
|
1568 |
|
|
if (acked-1 >= tp->sacked_out)
|
1569 |
|
|
tp->sacked_out = 0;
|
1570 |
|
|
else
|
1571 |
|
|
tp->sacked_out -= acked-1;
|
1572 |
|
|
}
|
1573 |
|
|
tcp_check_reno_reordering(sk, acked);
|
1574 |
|
|
tcp_verify_left_out(tp);
|
1575 |
|
|
}
|
1576 |
|
|
|
1577 |
|
|
static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
|
1578 |
|
|
{
|
1579 |
|
|
tp->sacked_out = 0;
|
1580 |
|
|
}
|
1581 |
|
|
|
1582 |
|
|
/* F-RTO can only be used if TCP has never retransmitted anything other than
|
1583 |
|
|
* head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
|
1584 |
|
|
*/
|
1585 |
|
|
int tcp_use_frto(struct sock *sk)
|
1586 |
|
|
{
|
1587 |
|
|
const struct tcp_sock *tp = tcp_sk(sk);
|
1588 |
|
|
struct sk_buff *skb;
|
1589 |
|
|
|
1590 |
|
|
if (!sysctl_tcp_frto)
|
1591 |
|
|
return 0;
|
1592 |
|
|
|
1593 |
|
|
if (IsSackFrto())
|
1594 |
|
|
return 1;
|
1595 |
|
|
|
1596 |
|
|
/* Avoid expensive walking of rexmit queue if possible */
|
1597 |
|
|
if (tp->retrans_out > 1)
|
1598 |
|
|
return 0;
|
1599 |
|
|
|
1600 |
|
|
skb = tcp_write_queue_head(sk);
|
1601 |
|
|
skb = tcp_write_queue_next(sk, skb); /* Skips head */
|
1602 |
|
|
tcp_for_write_queue_from(skb, sk) {
|
1603 |
|
|
if (skb == tcp_send_head(sk))
|
1604 |
|
|
break;
|
1605 |
|
|
if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
|
1606 |
|
|
return 0;
|
1607 |
|
|
/* Short-circuit when first non-SACKed skb has been checked */
|
1608 |
|
|
if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
|
1609 |
|
|
break;
|
1610 |
|
|
}
|
1611 |
|
|
return 1;
|
1612 |
|
|
}
|
1613 |
|
|
|
1614 |
|
|
/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
|
1615 |
|
|
* recovery a bit and use heuristics in tcp_process_frto() to detect if
|
1616 |
|
|
* the RTO was spurious. Only clear SACKED_RETRANS of the head here to
|
1617 |
|
|
* keep retrans_out counting accurate (with SACK F-RTO, other than head
|
1618 |
|
|
* may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
|
1619 |
|
|
* bits are handled if the Loss state is really to be entered (in
|
1620 |
|
|
* tcp_enter_frto_loss).
|
1621 |
|
|
*
|
1622 |
|
|
* Do like tcp_enter_loss() would; when RTO expires the second time it
|
1623 |
|
|
* does:
|
1624 |
|
|
* "Reduce ssthresh if it has not yet been made inside this window."
|
1625 |
|
|
*/
|
1626 |
|
|
void tcp_enter_frto(struct sock *sk)
|
1627 |
|
|
{
|
1628 |
|
|
const struct inet_connection_sock *icsk = inet_csk(sk);
|
1629 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
1630 |
|
|
struct sk_buff *skb;
|
1631 |
|
|
|
1632 |
|
|
if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
|
1633 |
|
|
tp->snd_una == tp->high_seq ||
|
1634 |
|
|
((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
|
1635 |
|
|
!icsk->icsk_retransmits)) {
|
1636 |
|
|
tp->prior_ssthresh = tcp_current_ssthresh(sk);
|
1637 |
|
|
/* Our state is too optimistic in ssthresh() call because cwnd
|
1638 |
|
|
* is not reduced until tcp_enter_frto_loss() when previous F-RTO
|
1639 |
|
|
* recovery has not yet completed. Pattern would be this: RTO,
|
1640 |
|
|
* Cumulative ACK, RTO (2xRTO for the same segment does not end
|
1641 |
|
|
* up here twice).
|
1642 |
|
|
* RFC4138 should be more specific on what to do, even though
|
1643 |
|
|
* RTO is quite unlikely to occur after the first Cumulative ACK
|
1644 |
|
|
* due to back-off and complexity of triggering events ...
|
1645 |
|
|
*/
|
1646 |
|
|
if (tp->frto_counter) {
|
1647 |
|
|
u32 stored_cwnd;
|
1648 |
|
|
stored_cwnd = tp->snd_cwnd;
|
1649 |
|
|
tp->snd_cwnd = 2;
|
1650 |
|
|
tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
|
1651 |
|
|
tp->snd_cwnd = stored_cwnd;
|
1652 |
|
|
} else {
|
1653 |
|
|
tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
|
1654 |
|
|
}
|
1655 |
|
|
/* ... in theory, cong.control module could do "any tricks" in
|
1656 |
|
|
* ssthresh(), which means that ca_state, lost bits and lost_out
|
1657 |
|
|
* counter would have to be faked before the call occurs. We
|
1658 |
|
|
* consider that too expensive, unlikely and hacky, so modules
|
1659 |
|
|
* using these in ssthresh() must deal these incompatibility
|
1660 |
|
|
* issues if they receives CA_EVENT_FRTO and frto_counter != 0
|
1661 |
|
|
*/
|
1662 |
|
|
tcp_ca_event(sk, CA_EVENT_FRTO);
|
1663 |
|
|
}
|
1664 |
|
|
|
1665 |
|
|
tp->undo_marker = tp->snd_una;
|
1666 |
|
|
tp->undo_retrans = 0;
|
1667 |
|
|
|
1668 |
|
|
skb = tcp_write_queue_head(sk);
|
1669 |
|
|
if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
|
1670 |
|
|
tp->undo_marker = 0;
|
1671 |
|
|
if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
|
1672 |
|
|
TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
|
1673 |
|
|
tp->retrans_out -= tcp_skb_pcount(skb);
|
1674 |
|
|
}
|
1675 |
|
|
tcp_verify_left_out(tp);
|
1676 |
|
|
|
1677 |
|
|
/* Too bad if TCP was application limited */
|
1678 |
|
|
tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
|
1679 |
|
|
|
1680 |
|
|
/* Earlier loss recovery underway (see RFC4138; Appendix B).
|
1681 |
|
|
* The last condition is necessary at least in tp->frto_counter case.
|
1682 |
|
|
*/
|
1683 |
|
|
if (IsSackFrto() && (tp->frto_counter ||
|
1684 |
|
|
((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
|
1685 |
|
|
after(tp->high_seq, tp->snd_una)) {
|
1686 |
|
|
tp->frto_highmark = tp->high_seq;
|
1687 |
|
|
} else {
|
1688 |
|
|
tp->frto_highmark = tp->snd_nxt;
|
1689 |
|
|
}
|
1690 |
|
|
tcp_set_ca_state(sk, TCP_CA_Disorder);
|
1691 |
|
|
tp->high_seq = tp->snd_nxt;
|
1692 |
|
|
tp->frto_counter = 1;
|
1693 |
|
|
}
|
1694 |
|
|
|
1695 |
|
|
/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
|
1696 |
|
|
* which indicates that we should follow the traditional RTO recovery,
|
1697 |
|
|
* i.e. mark everything lost and do go-back-N retransmission.
|
1698 |
|
|
*/
|
1699 |
|
|
static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
|
1700 |
|
|
{
|
1701 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
1702 |
|
|
struct sk_buff *skb;
|
1703 |
|
|
|
1704 |
|
|
tp->lost_out = 0;
|
1705 |
|
|
tp->retrans_out = 0;
|
1706 |
|
|
if (tcp_is_reno(tp))
|
1707 |
|
|
tcp_reset_reno_sack(tp);
|
1708 |
|
|
|
1709 |
|
|
tcp_for_write_queue(skb, sk) {
|
1710 |
|
|
if (skb == tcp_send_head(sk))
|
1711 |
|
|
break;
|
1712 |
|
|
|
1713 |
|
|
TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
|
1714 |
|
|
/*
|
1715 |
|
|
* Count the retransmission made on RTO correctly (only when
|
1716 |
|
|
* waiting for the first ACK and did not get it)...
|
1717 |
|
|
*/
|
1718 |
|
|
if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
|
1719 |
|
|
/* For some reason this R-bit might get cleared? */
|
1720 |
|
|
if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
|
1721 |
|
|
tp->retrans_out += tcp_skb_pcount(skb);
|
1722 |
|
|
/* ...enter this if branch just for the first segment */
|
1723 |
|
|
flag |= FLAG_DATA_ACKED;
|
1724 |
|
|
} else {
|
1725 |
|
|
if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
|
1726 |
|
|
tp->undo_marker = 0;
|
1727 |
|
|
TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
|
1728 |
|
|
}
|
1729 |
|
|
|
1730 |
|
|
/* Don't lost mark skbs that were fwd transmitted after RTO */
|
1731 |
|
|
if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
|
1732 |
|
|
!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
|
1733 |
|
|
TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
|
1734 |
|
|
tp->lost_out += tcp_skb_pcount(skb);
|
1735 |
|
|
}
|
1736 |
|
|
}
|
1737 |
|
|
tcp_verify_left_out(tp);
|
1738 |
|
|
|
1739 |
|
|
tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
|
1740 |
|
|
tp->snd_cwnd_cnt = 0;
|
1741 |
|
|
tp->snd_cwnd_stamp = tcp_time_stamp;
|
1742 |
|
|
tp->frto_counter = 0;
|
1743 |
|
|
tp->bytes_acked = 0;
|
1744 |
|
|
|
1745 |
|
|
tp->reordering = min_t(unsigned int, tp->reordering,
|
1746 |
|
|
sysctl_tcp_reordering);
|
1747 |
|
|
tcp_set_ca_state(sk, TCP_CA_Loss);
|
1748 |
|
|
tp->high_seq = tp->frto_highmark;
|
1749 |
|
|
TCP_ECN_queue_cwr(tp);
|
1750 |
|
|
|
1751 |
|
|
tcp_clear_retrans_hints_partial(tp);
|
1752 |
|
|
}
|
1753 |
|
|
|
1754 |
|
|
static void tcp_clear_retrans_partial(struct tcp_sock *tp)
|
1755 |
|
|
{
|
1756 |
|
|
tp->retrans_out = 0;
|
1757 |
|
|
tp->lost_out = 0;
|
1758 |
|
|
|
1759 |
|
|
tp->undo_marker = 0;
|
1760 |
|
|
tp->undo_retrans = 0;
|
1761 |
|
|
}
|
1762 |
|
|
|
1763 |
|
|
void tcp_clear_retrans(struct tcp_sock *tp)
|
1764 |
|
|
{
|
1765 |
|
|
tcp_clear_retrans_partial(tp);
|
1766 |
|
|
|
1767 |
|
|
tp->fackets_out = 0;
|
1768 |
|
|
tp->sacked_out = 0;
|
1769 |
|
|
}
|
1770 |
|
|
|
1771 |
|
|
/* Enter Loss state. If "how" is not zero, forget all SACK information
|
1772 |
|
|
* and reset tags completely, otherwise preserve SACKs. If receiver
|
1773 |
|
|
* dropped its ofo queue, we will know this due to reneging detection.
|
1774 |
|
|
*/
|
1775 |
|
|
void tcp_enter_loss(struct sock *sk, int how)
|
1776 |
|
|
{
|
1777 |
|
|
const struct inet_connection_sock *icsk = inet_csk(sk);
|
1778 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
1779 |
|
|
struct sk_buff *skb;
|
1780 |
|
|
|
1781 |
|
|
/* Reduce ssthresh if it has not yet been made inside this window. */
|
1782 |
|
|
if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
|
1783 |
|
|
(icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
|
1784 |
|
|
tp->prior_ssthresh = tcp_current_ssthresh(sk);
|
1785 |
|
|
tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
|
1786 |
|
|
tcp_ca_event(sk, CA_EVENT_LOSS);
|
1787 |
|
|
}
|
1788 |
|
|
tp->snd_cwnd = 1;
|
1789 |
|
|
tp->snd_cwnd_cnt = 0;
|
1790 |
|
|
tp->snd_cwnd_stamp = tcp_time_stamp;
|
1791 |
|
|
|
1792 |
|
|
tp->bytes_acked = 0;
|
1793 |
|
|
tcp_clear_retrans_partial(tp);
|
1794 |
|
|
|
1795 |
|
|
if (tcp_is_reno(tp))
|
1796 |
|
|
tcp_reset_reno_sack(tp);
|
1797 |
|
|
|
1798 |
|
|
if (!how) {
|
1799 |
|
|
/* Push undo marker, if it was plain RTO and nothing
|
1800 |
|
|
* was retransmitted. */
|
1801 |
|
|
tp->undo_marker = tp->snd_una;
|
1802 |
|
|
tcp_clear_retrans_hints_partial(tp);
|
1803 |
|
|
} else {
|
1804 |
|
|
tp->sacked_out = 0;
|
1805 |
|
|
tp->fackets_out = 0;
|
1806 |
|
|
tcp_clear_all_retrans_hints(tp);
|
1807 |
|
|
}
|
1808 |
|
|
|
1809 |
|
|
tcp_for_write_queue(skb, sk) {
|
1810 |
|
|
if (skb == tcp_send_head(sk))
|
1811 |
|
|
break;
|
1812 |
|
|
|
1813 |
|
|
if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
|
1814 |
|
|
tp->undo_marker = 0;
|
1815 |
|
|
TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
|
1816 |
|
|
if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
|
1817 |
|
|
TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
|
1818 |
|
|
TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
|
1819 |
|
|
tp->lost_out += tcp_skb_pcount(skb);
|
1820 |
|
|
}
|
1821 |
|
|
}
|
1822 |
|
|
tcp_verify_left_out(tp);
|
1823 |
|
|
|
1824 |
|
|
tp->reordering = min_t(unsigned int, tp->reordering,
|
1825 |
|
|
sysctl_tcp_reordering);
|
1826 |
|
|
tcp_set_ca_state(sk, TCP_CA_Loss);
|
1827 |
|
|
tp->high_seq = tp->snd_nxt;
|
1828 |
|
|
TCP_ECN_queue_cwr(tp);
|
1829 |
|
|
/* Abort F-RTO algorithm if one is in progress */
|
1830 |
|
|
tp->frto_counter = 0;
|
1831 |
|
|
}
|
1832 |
|
|
|
1833 |
|
|
static int tcp_check_sack_reneging(struct sock *sk)
|
1834 |
|
|
{
|
1835 |
|
|
struct sk_buff *skb;
|
1836 |
|
|
|
1837 |
|
|
/* If ACK arrived pointing to a remembered SACK,
|
1838 |
|
|
* it means that our remembered SACKs do not reflect
|
1839 |
|
|
* real state of receiver i.e.
|
1840 |
|
|
* receiver _host_ is heavily congested (or buggy).
|
1841 |
|
|
* Do processing similar to RTO timeout.
|
1842 |
|
|
*/
|
1843 |
|
|
if ((skb = tcp_write_queue_head(sk)) != NULL &&
|
1844 |
|
|
(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
|
1845 |
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
1846 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
|
1847 |
|
|
|
1848 |
|
|
tcp_enter_loss(sk, 1);
|
1849 |
|
|
icsk->icsk_retransmits++;
|
1850 |
|
|
tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
|
1851 |
|
|
inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
|
1852 |
|
|
icsk->icsk_rto, TCP_RTO_MAX);
|
1853 |
|
|
return 1;
|
1854 |
|
|
}
|
1855 |
|
|
return 0;
|
1856 |
|
|
}
|
1857 |
|
|
|
1858 |
|
|
static inline int tcp_fackets_out(struct tcp_sock *tp)
|
1859 |
|
|
{
|
1860 |
|
|
return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
|
1861 |
|
|
}
|
1862 |
|
|
|
1863 |
|
|
static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
|
1864 |
|
|
{
|
1865 |
|
|
return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
|
1866 |
|
|
}
|
1867 |
|
|
|
1868 |
|
|
static inline int tcp_head_timedout(struct sock *sk)
|
1869 |
|
|
{
|
1870 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
1871 |
|
|
|
1872 |
|
|
return tp->packets_out &&
|
1873 |
|
|
tcp_skb_timedout(sk, tcp_write_queue_head(sk));
|
1874 |
|
|
}
|
1875 |
|
|
|
1876 |
|
|
/* Linux NewReno/SACK/FACK/ECN state machine.
|
1877 |
|
|
* --------------------------------------
|
1878 |
|
|
*
|
1879 |
|
|
* "Open" Normal state, no dubious events, fast path.
|
1880 |
|
|
* "Disorder" In all the respects it is "Open",
|
1881 |
|
|
* but requires a bit more attention. It is entered when
|
1882 |
|
|
* we see some SACKs or dupacks. It is split of "Open"
|
1883 |
|
|
* mainly to move some processing from fast path to slow one.
|
1884 |
|
|
* "CWR" CWND was reduced due to some Congestion Notification event.
|
1885 |
|
|
* It can be ECN, ICMP source quench, local device congestion.
|
1886 |
|
|
* "Recovery" CWND was reduced, we are fast-retransmitting.
|
1887 |
|
|
* "Loss" CWND was reduced due to RTO timeout or SACK reneging.
|
1888 |
|
|
*
|
1889 |
|
|
* tcp_fastretrans_alert() is entered:
|
1890 |
|
|
* - each incoming ACK, if state is not "Open"
|
1891 |
|
|
* - when arrived ACK is unusual, namely:
|
1892 |
|
|
* * SACK
|
1893 |
|
|
* * Duplicate ACK.
|
1894 |
|
|
* * ECN ECE.
|
1895 |
|
|
*
|
1896 |
|
|
* Counting packets in flight is pretty simple.
|
1897 |
|
|
*
|
1898 |
|
|
* in_flight = packets_out - left_out + retrans_out
|
1899 |
|
|
*
|
1900 |
|
|
* packets_out is SND.NXT-SND.UNA counted in packets.
|
1901 |
|
|
*
|
1902 |
|
|
* retrans_out is number of retransmitted segments.
|
1903 |
|
|
*
|
1904 |
|
|
* left_out is number of segments left network, but not ACKed yet.
|
1905 |
|
|
*
|
1906 |
|
|
* left_out = sacked_out + lost_out
|
1907 |
|
|
*
|
1908 |
|
|
* sacked_out: Packets, which arrived to receiver out of order
|
1909 |
|
|
* and hence not ACKed. With SACKs this number is simply
|
1910 |
|
|
* amount of SACKed data. Even without SACKs
|
1911 |
|
|
* it is easy to give pretty reliable estimate of this number,
|
1912 |
|
|
* counting duplicate ACKs.
|
1913 |
|
|
*
|
1914 |
|
|
* lost_out: Packets lost by network. TCP has no explicit
|
1915 |
|
|
* "loss notification" feedback from network (for now).
|
1916 |
|
|
* It means that this number can be only _guessed_.
|
1917 |
|
|
* Actually, it is the heuristics to predict lossage that
|
1918 |
|
|
* distinguishes different algorithms.
|
1919 |
|
|
*
|
1920 |
|
|
* F.e. after RTO, when all the queue is considered as lost,
|
1921 |
|
|
* lost_out = packets_out and in_flight = retrans_out.
|
1922 |
|
|
*
|
1923 |
|
|
* Essentially, we have now two algorithms counting
|
1924 |
|
|
* lost packets.
|
1925 |
|
|
*
|
1926 |
|
|
* FACK: It is the simplest heuristics. As soon as we decided
|
1927 |
|
|
* that something is lost, we decide that _all_ not SACKed
|
1928 |
|
|
* packets until the most forward SACK are lost. I.e.
|
1929 |
|
|
* lost_out = fackets_out - sacked_out and left_out = fackets_out.
|
1930 |
|
|
* It is absolutely correct estimate, if network does not reorder
|
1931 |
|
|
* packets. And it loses any connection to reality when reordering
|
1932 |
|
|
* takes place. We use FACK by default until reordering
|
1933 |
|
|
* is suspected on the path to this destination.
|
1934 |
|
|
*
|
1935 |
|
|
* NewReno: when Recovery is entered, we assume that one segment
|
1936 |
|
|
* is lost (classic Reno). While we are in Recovery and
|
1937 |
|
|
* a partial ACK arrives, we assume that one more packet
|
1938 |
|
|
* is lost (NewReno). This heuristics are the same in NewReno
|
1939 |
|
|
* and SACK.
|
1940 |
|
|
*
|
1941 |
|
|
* Imagine, that's all! Forget about all this shamanism about CWND inflation
|
1942 |
|
|
* deflation etc. CWND is real congestion window, never inflated, changes
|
1943 |
|
|
* only according to classic VJ rules.
|
1944 |
|
|
*
|
1945 |
|
|
* Really tricky (and requiring careful tuning) part of algorithm
|
1946 |
|
|
* is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
|
1947 |
|
|
* The first determines the moment _when_ we should reduce CWND and,
|
1948 |
|
|
* hence, slow down forward transmission. In fact, it determines the moment
|
1949 |
|
|
* when we decide that hole is caused by loss, rather than by a reorder.
|
1950 |
|
|
*
|
1951 |
|
|
* tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
|
1952 |
|
|
* holes, caused by lost packets.
|
1953 |
|
|
*
|
1954 |
|
|
* And the most logically complicated part of algorithm is undo
|
1955 |
|
|
* heuristics. We detect false retransmits due to both too early
|
1956 |
|
|
* fast retransmit (reordering) and underestimated RTO, analyzing
|
1957 |
|
|
* timestamps and D-SACKs. When we detect that some segments were
|
1958 |
|
|
* retransmitted by mistake and CWND reduction was wrong, we undo
|
1959 |
|
|
* window reduction and abort recovery phase. This logic is hidden
|
1960 |
|
|
* inside several functions named tcp_try_undo_<something>.
|
1961 |
|
|
*/
|
1962 |
|
|
|
1963 |
|
|
/* This function decides, when we should leave Disordered state
|
1964 |
|
|
* and enter Recovery phase, reducing congestion window.
|
1965 |
|
|
*
|
1966 |
|
|
* Main question: may we further continue forward transmission
|
1967 |
|
|
* with the same cwnd?
|
1968 |
|
|
*/
|
1969 |
|
|
static int tcp_time_to_recover(struct sock *sk)
|
1970 |
|
|
{
|
1971 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
1972 |
|
|
__u32 packets_out;
|
1973 |
|
|
|
1974 |
|
|
/* Do not perform any recovery during F-RTO algorithm */
|
1975 |
|
|
if (tp->frto_counter)
|
1976 |
|
|
return 0;
|
1977 |
|
|
|
1978 |
|
|
/* Trick#1: The loss is proven. */
|
1979 |
|
|
if (tp->lost_out)
|
1980 |
|
|
return 1;
|
1981 |
|
|
|
1982 |
|
|
/* Not-A-Trick#2 : Classic rule... */
|
1983 |
|
|
if (tcp_fackets_out(tp) > tp->reordering)
|
1984 |
|
|
return 1;
|
1985 |
|
|
|
1986 |
|
|
/* Trick#3 : when we use RFC2988 timer restart, fast
|
1987 |
|
|
* retransmit can be triggered by timeout of queue head.
|
1988 |
|
|
*/
|
1989 |
|
|
if (tcp_head_timedout(sk))
|
1990 |
|
|
return 1;
|
1991 |
|
|
|
1992 |
|
|
/* Trick#4: It is still not OK... But will it be useful to delay
|
1993 |
|
|
* recovery more?
|
1994 |
|
|
*/
|
1995 |
|
|
packets_out = tp->packets_out;
|
1996 |
|
|
if (packets_out <= tp->reordering &&
|
1997 |
|
|
tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
|
1998 |
|
|
!tcp_may_send_now(sk)) {
|
1999 |
|
|
/* We have nothing to send. This connection is limited
|
2000 |
|
|
* either by receiver window or by application.
|
2001 |
|
|
*/
|
2002 |
|
|
return 1;
|
2003 |
|
|
}
|
2004 |
|
|
|
2005 |
|
|
return 0;
|
2006 |
|
|
}
|
2007 |
|
|
|
2008 |
|
|
/* RFC: This is from the original, I doubt that this is necessary at all:
|
2009 |
|
|
* clear xmit_retrans hint if seq of this skb is beyond hint. How could we
|
2010 |
|
|
* retransmitted past LOST markings in the first place? I'm not fully sure
|
2011 |
|
|
* about undo and end of connection cases, which can cause R without L?
|
2012 |
|
|
*/
|
2013 |
|
|
static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
|
2014 |
|
|
struct sk_buff *skb)
|
2015 |
|
|
{
|
2016 |
|
|
if ((tp->retransmit_skb_hint != NULL) &&
|
2017 |
|
|
before(TCP_SKB_CB(skb)->seq,
|
2018 |
|
|
TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
|
2019 |
|
|
tp->retransmit_skb_hint = NULL;
|
2020 |
|
|
}
|
2021 |
|
|
|
2022 |
|
|
/* Mark head of queue up as lost. */
|
2023 |
|
|
static void tcp_mark_head_lost(struct sock *sk, int packets)
|
2024 |
|
|
{
|
2025 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
2026 |
|
|
struct sk_buff *skb;
|
2027 |
|
|
int cnt;
|
2028 |
|
|
|
2029 |
|
|
BUG_TRAP(packets <= tp->packets_out);
|
2030 |
|
|
if (tp->lost_skb_hint) {
|
2031 |
|
|
skb = tp->lost_skb_hint;
|
2032 |
|
|
cnt = tp->lost_cnt_hint;
|
2033 |
|
|
} else {
|
2034 |
|
|
skb = tcp_write_queue_head(sk);
|
2035 |
|
|
cnt = 0;
|
2036 |
|
|
}
|
2037 |
|
|
|
2038 |
|
|
tcp_for_write_queue_from(skb, sk) {
|
2039 |
|
|
if (skb == tcp_send_head(sk))
|
2040 |
|
|
break;
|
2041 |
|
|
/* TODO: do this better */
|
2042 |
|
|
/* this is not the most efficient way to do this... */
|
2043 |
|
|
tp->lost_skb_hint = skb;
|
2044 |
|
|
tp->lost_cnt_hint = cnt;
|
2045 |
|
|
cnt += tcp_skb_pcount(skb);
|
2046 |
|
|
if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
|
2047 |
|
|
break;
|
2048 |
|
|
if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
|
2049 |
|
|
TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
|
2050 |
|
|
tp->lost_out += tcp_skb_pcount(skb);
|
2051 |
|
|
tcp_verify_retransmit_hint(tp, skb);
|
2052 |
|
|
}
|
2053 |
|
|
}
|
2054 |
|
|
tcp_verify_left_out(tp);
|
2055 |
|
|
}
|
2056 |
|
|
|
2057 |
|
|
/* Account newly detected lost packet(s) */
|
2058 |
|
|
|
2059 |
|
|
static void tcp_update_scoreboard(struct sock *sk)
|
2060 |
|
|
{
|
2061 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
2062 |
|
|
|
2063 |
|
|
if (tcp_is_fack(tp)) {
|
2064 |
|
|
int lost = tp->fackets_out - tp->reordering;
|
2065 |
|
|
if (lost <= 0)
|
2066 |
|
|
lost = 1;
|
2067 |
|
|
tcp_mark_head_lost(sk, lost);
|
2068 |
|
|
} else {
|
2069 |
|
|
tcp_mark_head_lost(sk, 1);
|
2070 |
|
|
}
|
2071 |
|
|
|
2072 |
|
|
/* New heuristics: it is possible only after we switched
|
2073 |
|
|
* to restart timer each time when something is ACKed.
|
2074 |
|
|
* Hence, we can detect timed out packets during fast
|
2075 |
|
|
* retransmit without falling to slow start.
|
2076 |
|
|
*/
|
2077 |
|
|
if (!tcp_is_reno(tp) && tcp_head_timedout(sk)) {
|
2078 |
|
|
struct sk_buff *skb;
|
2079 |
|
|
|
2080 |
|
|
skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
|
2081 |
|
|
: tcp_write_queue_head(sk);
|
2082 |
|
|
|
2083 |
|
|
tcp_for_write_queue_from(skb, sk) {
|
2084 |
|
|
if (skb == tcp_send_head(sk))
|
2085 |
|
|
break;
|
2086 |
|
|
if (!tcp_skb_timedout(sk, skb))
|
2087 |
|
|
break;
|
2088 |
|
|
|
2089 |
|
|
if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
|
2090 |
|
|
TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
|
2091 |
|
|
tp->lost_out += tcp_skb_pcount(skb);
|
2092 |
|
|
tcp_verify_retransmit_hint(tp, skb);
|
2093 |
|
|
}
|
2094 |
|
|
}
|
2095 |
|
|
|
2096 |
|
|
tp->scoreboard_skb_hint = skb;
|
2097 |
|
|
|
2098 |
|
|
tcp_verify_left_out(tp);
|
2099 |
|
|
}
|
2100 |
|
|
}
|
2101 |
|
|
|
2102 |
|
|
/* CWND moderation, preventing bursts due to too big ACKs
|
2103 |
|
|
* in dubious situations.
|
2104 |
|
|
*/
|
2105 |
|
|
static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
|
2106 |
|
|
{
|
2107 |
|
|
tp->snd_cwnd = min(tp->snd_cwnd,
|
2108 |
|
|
tcp_packets_in_flight(tp)+tcp_max_burst(tp));
|
2109 |
|
|
tp->snd_cwnd_stamp = tcp_time_stamp;
|
2110 |
|
|
}
|
2111 |
|
|
|
2112 |
|
|
/* Lower bound on congestion window is slow start threshold
|
2113 |
|
|
* unless congestion avoidance choice decides to overide it.
|
2114 |
|
|
*/
|
2115 |
|
|
static inline u32 tcp_cwnd_min(const struct sock *sk)
|
2116 |
|
|
{
|
2117 |
|
|
const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
|
2118 |
|
|
|
2119 |
|
|
return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
|
2120 |
|
|
}
|
2121 |
|
|
|
2122 |
|
|
/* Decrease cwnd each second ack. */
|
2123 |
|
|
static void tcp_cwnd_down(struct sock *sk, int flag)
|
2124 |
|
|
{
|
2125 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
2126 |
|
|
int decr = tp->snd_cwnd_cnt + 1;
|
2127 |
|
|
|
2128 |
|
|
if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
|
2129 |
|
|
(tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
|
2130 |
|
|
tp->snd_cwnd_cnt = decr&1;
|
2131 |
|
|
decr >>= 1;
|
2132 |
|
|
|
2133 |
|
|
if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
|
2134 |
|
|
tp->snd_cwnd -= decr;
|
2135 |
|
|
|
2136 |
|
|
tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
|
2137 |
|
|
tp->snd_cwnd_stamp = tcp_time_stamp;
|
2138 |
|
|
}
|
2139 |
|
|
}
|
2140 |
|
|
|
2141 |
|
|
/* Nothing was retransmitted or returned timestamp is less
|
2142 |
|
|
* than timestamp of the first retransmission.
|
2143 |
|
|
*/
|
2144 |
|
|
static inline int tcp_packet_delayed(struct tcp_sock *tp)
|
2145 |
|
|
{
|
2146 |
|
|
return !tp->retrans_stamp ||
|
2147 |
|
|
(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
|
2148 |
|
|
(__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
|
2149 |
|
|
}
|
2150 |
|
|
|
2151 |
|
|
/* Undo procedures. */
|
2152 |
|
|
|
2153 |
|
|
#if FASTRETRANS_DEBUG > 1
|
2154 |
|
|
static void DBGUNDO(struct sock *sk, const char *msg)
|
2155 |
|
|
{
|
2156 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
2157 |
|
|
struct inet_sock *inet = inet_sk(sk);
|
2158 |
|
|
|
2159 |
|
|
printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
|
2160 |
|
|
msg,
|
2161 |
|
|
NIPQUAD(inet->daddr), ntohs(inet->dport),
|
2162 |
|
|
tp->snd_cwnd, tcp_left_out(tp),
|
2163 |
|
|
tp->snd_ssthresh, tp->prior_ssthresh,
|
2164 |
|
|
tp->packets_out);
|
2165 |
|
|
}
|
2166 |
|
|
#else
|
2167 |
|
|
#define DBGUNDO(x...) do { } while (0)
|
2168 |
|
|
#endif
|
2169 |
|
|
|
2170 |
|
|
static void tcp_undo_cwr(struct sock *sk, const int undo)
|
2171 |
|
|
{
|
2172 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
2173 |
|
|
|
2174 |
|
|
if (tp->prior_ssthresh) {
|
2175 |
|
|
const struct inet_connection_sock *icsk = inet_csk(sk);
|
2176 |
|
|
|
2177 |
|
|
if (icsk->icsk_ca_ops->undo_cwnd)
|
2178 |
|
|
tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
|
2179 |
|
|
else
|
2180 |
|
|
tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
|
2181 |
|
|
|
2182 |
|
|
if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
|
2183 |
|
|
tp->snd_ssthresh = tp->prior_ssthresh;
|
2184 |
|
|
TCP_ECN_withdraw_cwr(tp);
|
2185 |
|
|
}
|
2186 |
|
|
} else {
|
2187 |
|
|
tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
|
2188 |
|
|
}
|
2189 |
|
|
tcp_moderate_cwnd(tp);
|
2190 |
|
|
tp->snd_cwnd_stamp = tcp_time_stamp;
|
2191 |
|
|
|
2192 |
|
|
/* There is something screwy going on with the retrans hints after
|
2193 |
|
|
an undo */
|
2194 |
|
|
tcp_clear_all_retrans_hints(tp);
|
2195 |
|
|
}
|
2196 |
|
|
|
2197 |
|
|
static inline int tcp_may_undo(struct tcp_sock *tp)
|
2198 |
|
|
{
|
2199 |
|
|
return tp->undo_marker &&
|
2200 |
|
|
(!tp->undo_retrans || tcp_packet_delayed(tp));
|
2201 |
|
|
}
|
2202 |
|
|
|
2203 |
|
|
/* People celebrate: "We love our President!" */
|
2204 |
|
|
static int tcp_try_undo_recovery(struct sock *sk)
|
2205 |
|
|
{
|
2206 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
2207 |
|
|
|
2208 |
|
|
if (tcp_may_undo(tp)) {
|
2209 |
|
|
/* Happy end! We did not retransmit anything
|
2210 |
|
|
* or our original transmission succeeded.
|
2211 |
|
|
*/
|
2212 |
|
|
DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
|
2213 |
|
|
tcp_undo_cwr(sk, 1);
|
2214 |
|
|
if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
|
2215 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
|
2216 |
|
|
else
|
2217 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
|
2218 |
|
|
tp->undo_marker = 0;
|
2219 |
|
|
}
|
2220 |
|
|
if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
|
2221 |
|
|
/* Hold old state until something *above* high_seq
|
2222 |
|
|
* is ACKed. For Reno it is MUST to prevent false
|
2223 |
|
|
* fast retransmits (RFC2582). SACK TCP is safe. */
|
2224 |
|
|
tcp_moderate_cwnd(tp);
|
2225 |
|
|
return 1;
|
2226 |
|
|
}
|
2227 |
|
|
tcp_set_ca_state(sk, TCP_CA_Open);
|
2228 |
|
|
return 0;
|
2229 |
|
|
}
|
2230 |
|
|
|
2231 |
|
|
/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
|
2232 |
|
|
static void tcp_try_undo_dsack(struct sock *sk)
|
2233 |
|
|
{
|
2234 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
2235 |
|
|
|
2236 |
|
|
if (tp->undo_marker && !tp->undo_retrans) {
|
2237 |
|
|
DBGUNDO(sk, "D-SACK");
|
2238 |
|
|
tcp_undo_cwr(sk, 1);
|
2239 |
|
|
tp->undo_marker = 0;
|
2240 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
|
2241 |
|
|
}
|
2242 |
|
|
}
|
2243 |
|
|
|
2244 |
|
|
/* Undo during fast recovery after partial ACK. */
|
2245 |
|
|
|
2246 |
|
|
static int tcp_try_undo_partial(struct sock *sk, int acked)
|
2247 |
|
|
{
|
2248 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
2249 |
|
|
/* Partial ACK arrived. Force Hoe's retransmit. */
|
2250 |
|
|
int failed = tcp_is_reno(tp) || tp->fackets_out>tp->reordering;
|
2251 |
|
|
|
2252 |
|
|
if (tcp_may_undo(tp)) {
|
2253 |
|
|
/* Plain luck! Hole if filled with delayed
|
2254 |
|
|
* packet, rather than with a retransmit.
|
2255 |
|
|
*/
|
2256 |
|
|
if (tp->retrans_out == 0)
|
2257 |
|
|
tp->retrans_stamp = 0;
|
2258 |
|
|
|
2259 |
|
|
tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
|
2260 |
|
|
|
2261 |
|
|
DBGUNDO(sk, "Hoe");
|
2262 |
|
|
tcp_undo_cwr(sk, 0);
|
2263 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
|
2264 |
|
|
|
2265 |
|
|
/* So... Do not make Hoe's retransmit yet.
|
2266 |
|
|
* If the first packet was delayed, the rest
|
2267 |
|
|
* ones are most probably delayed as well.
|
2268 |
|
|
*/
|
2269 |
|
|
failed = 0;
|
2270 |
|
|
}
|
2271 |
|
|
return failed;
|
2272 |
|
|
}
|
2273 |
|
|
|
2274 |
|
|
/* Undo during loss recovery after partial ACK. */
|
2275 |
|
|
static int tcp_try_undo_loss(struct sock *sk)
|
2276 |
|
|
{
|
2277 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
2278 |
|
|
|
2279 |
|
|
if (tcp_may_undo(tp)) {
|
2280 |
|
|
struct sk_buff *skb;
|
2281 |
|
|
tcp_for_write_queue(skb, sk) {
|
2282 |
|
|
if (skb == tcp_send_head(sk))
|
2283 |
|
|
break;
|
2284 |
|
|
TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
|
2285 |
|
|
}
|
2286 |
|
|
|
2287 |
|
|
tcp_clear_all_retrans_hints(tp);
|
2288 |
|
|
|
2289 |
|
|
DBGUNDO(sk, "partial loss");
|
2290 |
|
|
tp->lost_out = 0;
|
2291 |
|
|
tcp_undo_cwr(sk, 1);
|
2292 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
|
2293 |
|
|
inet_csk(sk)->icsk_retransmits = 0;
|
2294 |
|
|
tp->undo_marker = 0;
|
2295 |
|
|
if (tcp_is_sack(tp))
|
2296 |
|
|
tcp_set_ca_state(sk, TCP_CA_Open);
|
2297 |
|
|
return 1;
|
2298 |
|
|
}
|
2299 |
|
|
return 0;
|
2300 |
|
|
}
|
2301 |
|
|
|
2302 |
|
|
static inline void tcp_complete_cwr(struct sock *sk)
|
2303 |
|
|
{
|
2304 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
2305 |
|
|
tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
|
2306 |
|
|
tp->snd_cwnd_stamp = tcp_time_stamp;
|
2307 |
|
|
tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
|
2308 |
|
|
}
|
2309 |
|
|
|
2310 |
|
|
static void tcp_try_to_open(struct sock *sk, int flag)
|
2311 |
|
|
{
|
2312 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
2313 |
|
|
|
2314 |
|
|
tcp_verify_left_out(tp);
|
2315 |
|
|
|
2316 |
|
|
if (tp->retrans_out == 0)
|
2317 |
|
|
tp->retrans_stamp = 0;
|
2318 |
|
|
|
2319 |
|
|
if (flag&FLAG_ECE)
|
2320 |
|
|
tcp_enter_cwr(sk, 1);
|
2321 |
|
|
|
2322 |
|
|
if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
|
2323 |
|
|
int state = TCP_CA_Open;
|
2324 |
|
|
|
2325 |
|
|
if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
|
2326 |
|
|
state = TCP_CA_Disorder;
|
2327 |
|
|
|
2328 |
|
|
if (inet_csk(sk)->icsk_ca_state != state) {
|
2329 |
|
|
tcp_set_ca_state(sk, state);
|
2330 |
|
|
tp->high_seq = tp->snd_nxt;
|
2331 |
|
|
}
|
2332 |
|
|
tcp_moderate_cwnd(tp);
|
2333 |
|
|
} else {
|
2334 |
|
|
tcp_cwnd_down(sk, flag);
|
2335 |
|
|
}
|
2336 |
|
|
}
|
2337 |
|
|
|
2338 |
|
|
static void tcp_mtup_probe_failed(struct sock *sk)
|
2339 |
|
|
{
|
2340 |
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
2341 |
|
|
|
2342 |
|
|
icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
|
2343 |
|
|
icsk->icsk_mtup.probe_size = 0;
|
2344 |
|
|
}
|
2345 |
|
|
|
2346 |
|
|
static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
|
2347 |
|
|
{
|
2348 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
2349 |
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
2350 |
|
|
|
2351 |
|
|
/* FIXME: breaks with very large cwnd */
|
2352 |
|
|
tp->prior_ssthresh = tcp_current_ssthresh(sk);
|
2353 |
|
|
tp->snd_cwnd = tp->snd_cwnd *
|
2354 |
|
|
tcp_mss_to_mtu(sk, tp->mss_cache) /
|
2355 |
|
|
icsk->icsk_mtup.probe_size;
|
2356 |
|
|
tp->snd_cwnd_cnt = 0;
|
2357 |
|
|
tp->snd_cwnd_stamp = tcp_time_stamp;
|
2358 |
|
|
tp->rcv_ssthresh = tcp_current_ssthresh(sk);
|
2359 |
|
|
|
2360 |
|
|
icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
|
2361 |
|
|
icsk->icsk_mtup.probe_size = 0;
|
2362 |
|
|
tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
|
2363 |
|
|
}
|
2364 |
|
|
|
2365 |
|
|
|
2366 |
|
|
/* Process an event, which can update packets-in-flight not trivially.
|
2367 |
|
|
* Main goal of this function is to calculate new estimate for left_out,
|
2368 |
|
|
* taking into account both packets sitting in receiver's buffer and
|
2369 |
|
|
* packets lost by network.
|
2370 |
|
|
*
|
2371 |
|
|
* Besides that it does CWND reduction, when packet loss is detected
|
2372 |
|
|
* and changes state of machine.
|
2373 |
|
|
*
|
2374 |
|
|
* It does _not_ decide what to send, it is made in function
|
2375 |
|
|
* tcp_xmit_retransmit_queue().
|
2376 |
|
|
*/
|
2377 |
|
|
static void
|
2378 |
|
|
tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
|
2379 |
|
|
{
|
2380 |
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
2381 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
2382 |
|
|
int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
|
2383 |
|
|
int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
|
2384 |
|
|
(tp->fackets_out > tp->reordering));
|
2385 |
|
|
|
2386 |
|
|
/* Some technical things:
|
2387 |
|
|
* 1. Reno does not count dupacks (sacked_out) automatically. */
|
2388 |
|
|
if (!tp->packets_out)
|
2389 |
|
|
tp->sacked_out = 0;
|
2390 |
|
|
|
2391 |
|
|
if (WARN_ON(!tp->sacked_out && tp->fackets_out))
|
2392 |
|
|
tp->fackets_out = 0;
|
2393 |
|
|
|
2394 |
|
|
/* Now state machine starts.
|
2395 |
|
|
* A. ECE, hence prohibit cwnd undoing, the reduction is required. */
|
2396 |
|
|
if (flag&FLAG_ECE)
|
2397 |
|
|
tp->prior_ssthresh = 0;
|
2398 |
|
|
|
2399 |
|
|
/* B. In all the states check for reneging SACKs. */
|
2400 |
|
|
if (tp->sacked_out && tcp_check_sack_reneging(sk))
|
2401 |
|
|
return;
|
2402 |
|
|
|
2403 |
|
|
/* C. Process data loss notification, provided it is valid. */
|
2404 |
|
|
if ((flag&FLAG_DATA_LOST) &&
|
2405 |
|
|
before(tp->snd_una, tp->high_seq) &&
|
2406 |
|
|
icsk->icsk_ca_state != TCP_CA_Open &&
|
2407 |
|
|
tp->fackets_out > tp->reordering) {
|
2408 |
|
|
tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
|
2409 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
|
2410 |
|
|
}
|
2411 |
|
|
|
2412 |
|
|
/* D. Check consistency of the current state. */
|
2413 |
|
|
tcp_verify_left_out(tp);
|
2414 |
|
|
|
2415 |
|
|
/* E. Check state exit conditions. State can be terminated
|
2416 |
|
|
* when high_seq is ACKed. */
|
2417 |
|
|
if (icsk->icsk_ca_state == TCP_CA_Open) {
|
2418 |
|
|
BUG_TRAP(tp->retrans_out == 0);
|
2419 |
|
|
tp->retrans_stamp = 0;
|
2420 |
|
|
} else if (!before(tp->snd_una, tp->high_seq)) {
|
2421 |
|
|
switch (icsk->icsk_ca_state) {
|
2422 |
|
|
case TCP_CA_Loss:
|
2423 |
|
|
icsk->icsk_retransmits = 0;
|
2424 |
|
|
if (tcp_try_undo_recovery(sk))
|
2425 |
|
|
return;
|
2426 |
|
|
break;
|
2427 |
|
|
|
2428 |
|
|
case TCP_CA_CWR:
|
2429 |
|
|
/* CWR is to be held something *above* high_seq
|
2430 |
|
|
* is ACKed for CWR bit to reach receiver. */
|
2431 |
|
|
if (tp->snd_una != tp->high_seq) {
|
2432 |
|
|
tcp_complete_cwr(sk);
|
2433 |
|
|
tcp_set_ca_state(sk, TCP_CA_Open);
|
2434 |
|
|
}
|
2435 |
|
|
break;
|
2436 |
|
|
|
2437 |
|
|
case TCP_CA_Disorder:
|
2438 |
|
|
tcp_try_undo_dsack(sk);
|
2439 |
|
|
if (!tp->undo_marker ||
|
2440 |
|
|
/* For SACK case do not Open to allow to undo
|
2441 |
|
|
* catching for all duplicate ACKs. */
|
2442 |
|
|
tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
|
2443 |
|
|
tp->undo_marker = 0;
|
2444 |
|
|
tcp_set_ca_state(sk, TCP_CA_Open);
|
2445 |
|
|
}
|
2446 |
|
|
break;
|
2447 |
|
|
|
2448 |
|
|
case TCP_CA_Recovery:
|
2449 |
|
|
if (tcp_is_reno(tp))
|
2450 |
|
|
tcp_reset_reno_sack(tp);
|
2451 |
|
|
if (tcp_try_undo_recovery(sk))
|
2452 |
|
|
return;
|
2453 |
|
|
tcp_complete_cwr(sk);
|
2454 |
|
|
break;
|
2455 |
|
|
}
|
2456 |
|
|
}
|
2457 |
|
|
|
2458 |
|
|
/* F. Process state. */
|
2459 |
|
|
switch (icsk->icsk_ca_state) {
|
2460 |
|
|
case TCP_CA_Recovery:
|
2461 |
|
|
if (!(flag & FLAG_SND_UNA_ADVANCED)) {
|
2462 |
|
|
if (tcp_is_reno(tp) && is_dupack)
|
2463 |
|
|
tcp_add_reno_sack(sk);
|
2464 |
|
|
} else
|
2465 |
|
|
do_lost = tcp_try_undo_partial(sk, pkts_acked);
|
2466 |
|
|
break;
|
2467 |
|
|
case TCP_CA_Loss:
|
2468 |
|
|
if (flag&FLAG_DATA_ACKED)
|
2469 |
|
|
icsk->icsk_retransmits = 0;
|
2470 |
|
|
if (!tcp_try_undo_loss(sk)) {
|
2471 |
|
|
tcp_moderate_cwnd(tp);
|
2472 |
|
|
tcp_xmit_retransmit_queue(sk);
|
2473 |
|
|
return;
|
2474 |
|
|
}
|
2475 |
|
|
if (icsk->icsk_ca_state != TCP_CA_Open)
|
2476 |
|
|
return;
|
2477 |
|
|
/* Loss is undone; fall through to processing in Open state. */
|
2478 |
|
|
default:
|
2479 |
|
|
if (tcp_is_reno(tp)) {
|
2480 |
|
|
if (flag & FLAG_SND_UNA_ADVANCED)
|
2481 |
|
|
tcp_reset_reno_sack(tp);
|
2482 |
|
|
if (is_dupack)
|
2483 |
|
|
tcp_add_reno_sack(sk);
|
2484 |
|
|
}
|
2485 |
|
|
|
2486 |
|
|
if (icsk->icsk_ca_state == TCP_CA_Disorder)
|
2487 |
|
|
tcp_try_undo_dsack(sk);
|
2488 |
|
|
|
2489 |
|
|
if (!tcp_time_to_recover(sk)) {
|
2490 |
|
|
tcp_try_to_open(sk, flag);
|
2491 |
|
|
return;
|
2492 |
|
|
}
|
2493 |
|
|
|
2494 |
|
|
/* MTU probe failure: don't reduce cwnd */
|
2495 |
|
|
if (icsk->icsk_ca_state < TCP_CA_CWR &&
|
2496 |
|
|
icsk->icsk_mtup.probe_size &&
|
2497 |
|
|
tp->snd_una == tp->mtu_probe.probe_seq_start) {
|
2498 |
|
|
tcp_mtup_probe_failed(sk);
|
2499 |
|
|
/* Restores the reduction we did in tcp_mtup_probe() */
|
2500 |
|
|
tp->snd_cwnd++;
|
2501 |
|
|
tcp_simple_retransmit(sk);
|
2502 |
|
|
return;
|
2503 |
|
|
}
|
2504 |
|
|
|
2505 |
|
|
/* Otherwise enter Recovery state */
|
2506 |
|
|
|
2507 |
|
|
if (tcp_is_reno(tp))
|
2508 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
|
2509 |
|
|
else
|
2510 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
|
2511 |
|
|
|
2512 |
|
|
tp->high_seq = tp->snd_nxt;
|
2513 |
|
|
tp->prior_ssthresh = 0;
|
2514 |
|
|
tp->undo_marker = tp->snd_una;
|
2515 |
|
|
tp->undo_retrans = tp->retrans_out;
|
2516 |
|
|
|
2517 |
|
|
if (icsk->icsk_ca_state < TCP_CA_CWR) {
|
2518 |
|
|
if (!(flag&FLAG_ECE))
|
2519 |
|
|
tp->prior_ssthresh = tcp_current_ssthresh(sk);
|
2520 |
|
|
tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
|
2521 |
|
|
TCP_ECN_queue_cwr(tp);
|
2522 |
|
|
}
|
2523 |
|
|
|
2524 |
|
|
tp->bytes_acked = 0;
|
2525 |
|
|
tp->snd_cwnd_cnt = 0;
|
2526 |
|
|
tcp_set_ca_state(sk, TCP_CA_Recovery);
|
2527 |
|
|
}
|
2528 |
|
|
|
2529 |
|
|
if (do_lost || tcp_head_timedout(sk))
|
2530 |
|
|
tcp_update_scoreboard(sk);
|
2531 |
|
|
tcp_cwnd_down(sk, flag);
|
2532 |
|
|
tcp_xmit_retransmit_queue(sk);
|
2533 |
|
|
}
|
2534 |
|
|
|
2535 |
|
|
/* Read draft-ietf-tcplw-high-performance before mucking
|
2536 |
|
|
* with this code. (Supersedes RFC1323)
|
2537 |
|
|
*/
|
2538 |
|
|
static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
|
2539 |
|
|
{
|
2540 |
|
|
/* RTTM Rule: A TSecr value received in a segment is used to
|
2541 |
|
|
* update the averaged RTT measurement only if the segment
|
2542 |
|
|
* acknowledges some new data, i.e., only if it advances the
|
2543 |
|
|
* left edge of the send window.
|
2544 |
|
|
*
|
2545 |
|
|
* See draft-ietf-tcplw-high-performance-00, section 3.3.
|
2546 |
|
|
* 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
|
2547 |
|
|
*
|
2548 |
|
|
* Changed: reset backoff as soon as we see the first valid sample.
|
2549 |
|
|
* If we do not, we get strongly overestimated rto. With timestamps
|
2550 |
|
|
* samples are accepted even from very old segments: f.e., when rtt=1
|
2551 |
|
|
* increases to 8, we retransmit 5 times and after 8 seconds delayed
|
2552 |
|
|
* answer arrives rto becomes 120 seconds! If at least one of segments
|
2553 |
|
|
* in window is lost... Voila. --ANK (010210)
|
2554 |
|
|
*/
|
2555 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
2556 |
|
|
const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
|
2557 |
|
|
tcp_rtt_estimator(sk, seq_rtt);
|
2558 |
|
|
tcp_set_rto(sk);
|
2559 |
|
|
inet_csk(sk)->icsk_backoff = 0;
|
2560 |
|
|
tcp_bound_rto(sk);
|
2561 |
|
|
}
|
2562 |
|
|
|
2563 |
|
|
static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
|
2564 |
|
|
{
|
2565 |
|
|
/* We don't have a timestamp. Can only use
|
2566 |
|
|
* packets that are not retransmitted to determine
|
2567 |
|
|
* rtt estimates. Also, we must not reset the
|
2568 |
|
|
* backoff for rto until we get a non-retransmitted
|
2569 |
|
|
* packet. This allows us to deal with a situation
|
2570 |
|
|
* where the network delay has increased suddenly.
|
2571 |
|
|
* I.e. Karn's algorithm. (SIGCOMM '87, p5.)
|
2572 |
|
|
*/
|
2573 |
|
|
|
2574 |
|
|
if (flag & FLAG_RETRANS_DATA_ACKED)
|
2575 |
|
|
return;
|
2576 |
|
|
|
2577 |
|
|
tcp_rtt_estimator(sk, seq_rtt);
|
2578 |
|
|
tcp_set_rto(sk);
|
2579 |
|
|
inet_csk(sk)->icsk_backoff = 0;
|
2580 |
|
|
tcp_bound_rto(sk);
|
2581 |
|
|
}
|
2582 |
|
|
|
2583 |
|
|
static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
|
2584 |
|
|
const s32 seq_rtt)
|
2585 |
|
|
{
|
2586 |
|
|
const struct tcp_sock *tp = tcp_sk(sk);
|
2587 |
|
|
/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
|
2588 |
|
|
if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
|
2589 |
|
|
tcp_ack_saw_tstamp(sk, flag);
|
2590 |
|
|
else if (seq_rtt >= 0)
|
2591 |
|
|
tcp_ack_no_tstamp(sk, seq_rtt, flag);
|
2592 |
|
|
}
|
2593 |
|
|
|
2594 |
|
|
static void tcp_cong_avoid(struct sock *sk, u32 ack,
|
2595 |
|
|
u32 in_flight, int good)
|
2596 |
|
|
{
|
2597 |
|
|
const struct inet_connection_sock *icsk = inet_csk(sk);
|
2598 |
|
|
icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
|
2599 |
|
|
tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
|
2600 |
|
|
}
|
2601 |
|
|
|
2602 |
|
|
/* Restart timer after forward progress on connection.
|
2603 |
|
|
* RFC2988 recommends to restart timer to now+rto.
|
2604 |
|
|
*/
|
2605 |
|
|
static void tcp_rearm_rto(struct sock *sk)
|
2606 |
|
|
{
|
2607 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
2608 |
|
|
|
2609 |
|
|
if (!tp->packets_out) {
|
2610 |
|
|
inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
|
2611 |
|
|
} else {
|
2612 |
|
|
inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
|
2613 |
|
|
}
|
2614 |
|
|
}
|
2615 |
|
|
|
2616 |
|
|
/* If we get here, the whole TSO packet has not been acked. */
|
2617 |
|
|
static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
|
2618 |
|
|
{
|
2619 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
2620 |
|
|
u32 packets_acked;
|
2621 |
|
|
|
2622 |
|
|
BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
|
2623 |
|
|
|
2624 |
|
|
packets_acked = tcp_skb_pcount(skb);
|
2625 |
|
|
if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
|
2626 |
|
|
return 0;
|
2627 |
|
|
packets_acked -= tcp_skb_pcount(skb);
|
2628 |
|
|
|
2629 |
|
|
if (packets_acked) {
|
2630 |
|
|
BUG_ON(tcp_skb_pcount(skb) == 0);
|
2631 |
|
|
BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
|
2632 |
|
|
}
|
2633 |
|
|
|
2634 |
|
|
return packets_acked;
|
2635 |
|
|
}
|
2636 |
|
|
|
2637 |
|
|
/* Remove acknowledged frames from the retransmission queue. If our packet
|
2638 |
|
|
* is before the ack sequence we can discard it as it's confirmed to have
|
2639 |
|
|
* arrived at the other end.
|
2640 |
|
|
*/
|
2641 |
|
|
static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p,
|
2642 |
|
|
int prior_fackets)
|
2643 |
|
|
{
|
2644 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
2645 |
|
|
const struct inet_connection_sock *icsk = inet_csk(sk);
|
2646 |
|
|
struct sk_buff *skb;
|
2647 |
|
|
u32 now = tcp_time_stamp;
|
2648 |
|
|
int fully_acked = 1;
|
2649 |
|
|
int flag = 0;
|
2650 |
|
|
int prior_packets = tp->packets_out;
|
2651 |
|
|
u32 cnt = 0;
|
2652 |
|
|
u32 reord = tp->packets_out;
|
2653 |
|
|
s32 seq_rtt = -1;
|
2654 |
|
|
s32 ca_seq_rtt = -1;
|
2655 |
|
|
ktime_t last_ackt = net_invalid_timestamp();
|
2656 |
|
|
|
2657 |
|
|
while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
|
2658 |
|
|
struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
|
2659 |
|
|
u32 end_seq;
|
2660 |
|
|
u32 packets_acked;
|
2661 |
|
|
u8 sacked = scb->sacked;
|
2662 |
|
|
|
2663 |
|
|
/* Determine how many packets and what bytes were acked, tso and else */
|
2664 |
|
|
if (after(scb->end_seq, tp->snd_una)) {
|
2665 |
|
|
if (tcp_skb_pcount(skb) == 1 ||
|
2666 |
|
|
!after(tp->snd_una, scb->seq))
|
2667 |
|
|
break;
|
2668 |
|
|
|
2669 |
|
|
packets_acked = tcp_tso_acked(sk, skb);
|
2670 |
|
|
if (!packets_acked)
|
2671 |
|
|
break;
|
2672 |
|
|
|
2673 |
|
|
fully_acked = 0;
|
2674 |
|
|
end_seq = tp->snd_una;
|
2675 |
|
|
} else {
|
2676 |
|
|
packets_acked = tcp_skb_pcount(skb);
|
2677 |
|
|
end_seq = scb->end_seq;
|
2678 |
|
|
}
|
2679 |
|
|
|
2680 |
|
|
/* MTU probing checks */
|
2681 |
|
|
if (fully_acked && icsk->icsk_mtup.probe_size &&
|
2682 |
|
|
!after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
|
2683 |
|
|
tcp_mtup_probe_success(sk, skb);
|
2684 |
|
|
}
|
2685 |
|
|
|
2686 |
|
|
if (sacked) {
|
2687 |
|
|
if (sacked & TCPCB_RETRANS) {
|
2688 |
|
|
if (sacked & TCPCB_SACKED_RETRANS)
|
2689 |
|
|
tp->retrans_out -= packets_acked;
|
2690 |
|
|
flag |= FLAG_RETRANS_DATA_ACKED;
|
2691 |
|
|
ca_seq_rtt = -1;
|
2692 |
|
|
seq_rtt = -1;
|
2693 |
|
|
if ((flag & FLAG_DATA_ACKED) ||
|
2694 |
|
|
(packets_acked > 1))
|
2695 |
|
|
flag |= FLAG_NONHEAD_RETRANS_ACKED;
|
2696 |
|
|
} else {
|
2697 |
|
|
ca_seq_rtt = now - scb->when;
|
2698 |
|
|
last_ackt = skb->tstamp;
|
2699 |
|
|
if (seq_rtt < 0) {
|
2700 |
|
|
seq_rtt = ca_seq_rtt;
|
2701 |
|
|
}
|
2702 |
|
|
if (!(sacked & TCPCB_SACKED_ACKED))
|
2703 |
|
|
reord = min(cnt, reord);
|
2704 |
|
|
}
|
2705 |
|
|
|
2706 |
|
|
if (sacked & TCPCB_SACKED_ACKED)
|
2707 |
|
|
tp->sacked_out -= packets_acked;
|
2708 |
|
|
if (sacked & TCPCB_LOST)
|
2709 |
|
|
tp->lost_out -= packets_acked;
|
2710 |
|
|
|
2711 |
|
|
if ((sacked & TCPCB_URG) && tp->urg_mode &&
|
2712 |
|
|
!before(end_seq, tp->snd_up))
|
2713 |
|
|
tp->urg_mode = 0;
|
2714 |
|
|
} else {
|
2715 |
|
|
ca_seq_rtt = now - scb->when;
|
2716 |
|
|
last_ackt = skb->tstamp;
|
2717 |
|
|
if (seq_rtt < 0) {
|
2718 |
|
|
seq_rtt = ca_seq_rtt;
|
2719 |
|
|
}
|
2720 |
|
|
reord = min(cnt, reord);
|
2721 |
|
|
}
|
2722 |
|
|
tp->packets_out -= packets_acked;
|
2723 |
|
|
cnt += packets_acked;
|
2724 |
|
|
|
2725 |
|
|
/* Initial outgoing SYN's get put onto the write_queue
|
2726 |
|
|
* just like anything else we transmit. It is not
|
2727 |
|
|
* true data, and if we misinform our callers that
|
2728 |
|
|
* this ACK acks real data, we will erroneously exit
|
2729 |
|
|
* connection startup slow start one packet too
|
2730 |
|
|
* quickly. This is severely frowned upon behavior.
|
2731 |
|
|
*/
|
2732 |
|
|
if (!(scb->flags & TCPCB_FLAG_SYN)) {
|
2733 |
|
|
flag |= FLAG_DATA_ACKED;
|
2734 |
|
|
} else {
|
2735 |
|
|
flag |= FLAG_SYN_ACKED;
|
2736 |
|
|
tp->retrans_stamp = 0;
|
2737 |
|
|
}
|
2738 |
|
|
|
2739 |
|
|
if (!fully_acked)
|
2740 |
|
|
break;
|
2741 |
|
|
|
2742 |
|
|
tcp_unlink_write_queue(skb, sk);
|
2743 |
|
|
sk_stream_free_skb(sk, skb);
|
2744 |
|
|
tcp_clear_all_retrans_hints(tp);
|
2745 |
|
|
}
|
2746 |
|
|
|
2747 |
|
|
if (flag & FLAG_ACKED) {
|
2748 |
|
|
u32 pkts_acked = prior_packets - tp->packets_out;
|
2749 |
|
|
const struct tcp_congestion_ops *ca_ops
|
2750 |
|
|
= inet_csk(sk)->icsk_ca_ops;
|
2751 |
|
|
|
2752 |
|
|
tcp_ack_update_rtt(sk, flag, seq_rtt);
|
2753 |
|
|
tcp_rearm_rto(sk);
|
2754 |
|
|
|
2755 |
|
|
if (tcp_is_reno(tp)) {
|
2756 |
|
|
tcp_remove_reno_sacks(sk, pkts_acked);
|
2757 |
|
|
} else {
|
2758 |
|
|
/* Non-retransmitted hole got filled? That's reordering */
|
2759 |
|
|
if (reord < prior_fackets)
|
2760 |
|
|
tcp_update_reordering(sk, tp->fackets_out - reord, 0);
|
2761 |
|
|
}
|
2762 |
|
|
|
2763 |
|
|
tp->fackets_out -= min(pkts_acked, tp->fackets_out);
|
2764 |
|
|
/* hint's skb might be NULL but we don't need to care */
|
2765 |
|
|
tp->fastpath_cnt_hint -= min_t(u32, pkts_acked,
|
2766 |
|
|
tp->fastpath_cnt_hint);
|
2767 |
|
|
if (ca_ops->pkts_acked) {
|
2768 |
|
|
s32 rtt_us = -1;
|
2769 |
|
|
|
2770 |
|
|
/* Is the ACK triggering packet unambiguous? */
|
2771 |
|
|
if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
|
2772 |
|
|
/* High resolution needed and available? */
|
2773 |
|
|
if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
|
2774 |
|
|
!ktime_equal(last_ackt,
|
2775 |
|
|
net_invalid_timestamp()))
|
2776 |
|
|
rtt_us = ktime_us_delta(ktime_get_real(),
|
2777 |
|
|
last_ackt);
|
2778 |
|
|
else if (ca_seq_rtt > 0)
|
2779 |
|
|
rtt_us = jiffies_to_usecs(ca_seq_rtt);
|
2780 |
|
|
}
|
2781 |
|
|
|
2782 |
|
|
ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
|
2783 |
|
|
}
|
2784 |
|
|
}
|
2785 |
|
|
|
2786 |
|
|
#if FASTRETRANS_DEBUG > 0
|
2787 |
|
|
BUG_TRAP((int)tp->sacked_out >= 0);
|
2788 |
|
|
BUG_TRAP((int)tp->lost_out >= 0);
|
2789 |
|
|
BUG_TRAP((int)tp->retrans_out >= 0);
|
2790 |
|
|
if (!tp->packets_out && tcp_is_sack(tp)) {
|
2791 |
|
|
icsk = inet_csk(sk);
|
2792 |
|
|
if (tp->lost_out) {
|
2793 |
|
|
printk(KERN_DEBUG "Leak l=%u %d\n",
|
2794 |
|
|
tp->lost_out, icsk->icsk_ca_state);
|
2795 |
|
|
tp->lost_out = 0;
|
2796 |
|
|
}
|
2797 |
|
|
if (tp->sacked_out) {
|
2798 |
|
|
printk(KERN_DEBUG "Leak s=%u %d\n",
|
2799 |
|
|
tp->sacked_out, icsk->icsk_ca_state);
|
2800 |
|
|
tp->sacked_out = 0;
|
2801 |
|
|
}
|
2802 |
|
|
if (tp->retrans_out) {
|
2803 |
|
|
printk(KERN_DEBUG "Leak r=%u %d\n",
|
2804 |
|
|
tp->retrans_out, icsk->icsk_ca_state);
|
2805 |
|
|
tp->retrans_out = 0;
|
2806 |
|
|
}
|
2807 |
|
|
}
|
2808 |
|
|
#endif
|
2809 |
|
|
*seq_rtt_p = seq_rtt;
|
2810 |
|
|
return flag;
|
2811 |
|
|
}
|
2812 |
|
|
|
2813 |
|
|
static void tcp_ack_probe(struct sock *sk)
|
2814 |
|
|
{
|
2815 |
|
|
const struct tcp_sock *tp = tcp_sk(sk);
|
2816 |
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
2817 |
|
|
|
2818 |
|
|
/* Was it a usable window open? */
|
2819 |
|
|
|
2820 |
|
|
if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
|
2821 |
|
|
tp->snd_una + tp->snd_wnd)) {
|
2822 |
|
|
icsk->icsk_backoff = 0;
|
2823 |
|
|
inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
|
2824 |
|
|
/* Socket must be waked up by subsequent tcp_data_snd_check().
|
2825 |
|
|
* This function is not for random using!
|
2826 |
|
|
*/
|
2827 |
|
|
} else {
|
2828 |
|
|
inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
|
2829 |
|
|
min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
|
2830 |
|
|
TCP_RTO_MAX);
|
2831 |
|
|
}
|
2832 |
|
|
}
|
2833 |
|
|
|
2834 |
|
|
static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
|
2835 |
|
|
{
|
2836 |
|
|
return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
|
2837 |
|
|
inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
|
2838 |
|
|
}
|
2839 |
|
|
|
2840 |
|
|
static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
|
2841 |
|
|
{
|
2842 |
|
|
const struct tcp_sock *tp = tcp_sk(sk);
|
2843 |
|
|
return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
|
2844 |
|
|
!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
|
2845 |
|
|
}
|
2846 |
|
|
|
2847 |
|
|
/* Check that window update is acceptable.
|
2848 |
|
|
* The function assumes that snd_una<=ack<=snd_next.
|
2849 |
|
|
*/
|
2850 |
|
|
static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
|
2851 |
|
|
const u32 ack_seq, const u32 nwin)
|
2852 |
|
|
{
|
2853 |
|
|
return (after(ack, tp->snd_una) ||
|
2854 |
|
|
after(ack_seq, tp->snd_wl1) ||
|
2855 |
|
|
(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
|
2856 |
|
|
}
|
2857 |
|
|
|
2858 |
|
|
/* Update our send window.
|
2859 |
|
|
*
|
2860 |
|
|
* Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
|
2861 |
|
|
* and in FreeBSD. NetBSD's one is even worse.) is wrong.
|
2862 |
|
|
*/
|
2863 |
|
|
static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
|
2864 |
|
|
u32 ack_seq)
|
2865 |
|
|
{
|
2866 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
2867 |
|
|
int flag = 0;
|
2868 |
|
|
u32 nwin = ntohs(tcp_hdr(skb)->window);
|
2869 |
|
|
|
2870 |
|
|
if (likely(!tcp_hdr(skb)->syn))
|
2871 |
|
|
nwin <<= tp->rx_opt.snd_wscale;
|
2872 |
|
|
|
2873 |
|
|
if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
|
2874 |
|
|
flag |= FLAG_WIN_UPDATE;
|
2875 |
|
|
tcp_update_wl(tp, ack, ack_seq);
|
2876 |
|
|
|
2877 |
|
|
if (tp->snd_wnd != nwin) {
|
2878 |
|
|
tp->snd_wnd = nwin;
|
2879 |
|
|
|
2880 |
|
|
/* Note, it is the only place, where
|
2881 |
|
|
* fast path is recovered for sending TCP.
|
2882 |
|
|
*/
|
2883 |
|
|
tp->pred_flags = 0;
|
2884 |
|
|
tcp_fast_path_check(sk);
|
2885 |
|
|
|
2886 |
|
|
if (nwin > tp->max_window) {
|
2887 |
|
|
tp->max_window = nwin;
|
2888 |
|
|
tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
|
2889 |
|
|
}
|
2890 |
|
|
}
|
2891 |
|
|
}
|
2892 |
|
|
|
2893 |
|
|
tp->snd_una = ack;
|
2894 |
|
|
|
2895 |
|
|
return flag;
|
2896 |
|
|
}
|
2897 |
|
|
|
2898 |
|
|
/* A very conservative spurious RTO response algorithm: reduce cwnd and
|
2899 |
|
|
* continue in congestion avoidance.
|
2900 |
|
|
*/
|
2901 |
|
|
static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
|
2902 |
|
|
{
|
2903 |
|
|
tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
|
2904 |
|
|
tp->snd_cwnd_cnt = 0;
|
2905 |
|
|
tp->bytes_acked = 0;
|
2906 |
|
|
TCP_ECN_queue_cwr(tp);
|
2907 |
|
|
tcp_moderate_cwnd(tp);
|
2908 |
|
|
}
|
2909 |
|
|
|
2910 |
|
|
/* A conservative spurious RTO response algorithm: reduce cwnd using
|
2911 |
|
|
* rate halving and continue in congestion avoidance.
|
2912 |
|
|
*/
|
2913 |
|
|
static void tcp_ratehalving_spur_to_response(struct sock *sk)
|
2914 |
|
|
{
|
2915 |
|
|
tcp_enter_cwr(sk, 0);
|
2916 |
|
|
}
|
2917 |
|
|
|
2918 |
|
|
static void tcp_undo_spur_to_response(struct sock *sk, int flag)
|
2919 |
|
|
{
|
2920 |
|
|
if (flag&FLAG_ECE)
|
2921 |
|
|
tcp_ratehalving_spur_to_response(sk);
|
2922 |
|
|
else
|
2923 |
|
|
tcp_undo_cwr(sk, 1);
|
2924 |
|
|
}
|
2925 |
|
|
|
2926 |
|
|
/* F-RTO spurious RTO detection algorithm (RFC4138)
|
2927 |
|
|
*
|
2928 |
|
|
* F-RTO affects during two new ACKs following RTO (well, almost, see inline
|
2929 |
|
|
* comments). State (ACK number) is kept in frto_counter. When ACK advances
|
2930 |
|
|
* window (but not to or beyond highest sequence sent before RTO):
|
2931 |
|
|
* On First ACK, send two new segments out.
|
2932 |
|
|
* On Second ACK, RTO was likely spurious. Do spurious response (response
|
2933 |
|
|
* algorithm is not part of the F-RTO detection algorithm
|
2934 |
|
|
* given in RFC4138 but can be selected separately).
|
2935 |
|
|
* Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
|
2936 |
|
|
* and TCP falls back to conventional RTO recovery. F-RTO allows overriding
|
2937 |
|
|
* of Nagle, this is done using frto_counter states 2 and 3, when a new data
|
2938 |
|
|
* segment of any size sent during F-RTO, state 2 is upgraded to 3.
|
2939 |
|
|
*
|
2940 |
|
|
* Rationale: if the RTO was spurious, new ACKs should arrive from the
|
2941 |
|
|
* original window even after we transmit two new data segments.
|
2942 |
|
|
*
|
2943 |
|
|
* SACK version:
|
2944 |
|
|
* on first step, wait until first cumulative ACK arrives, then move to
|
2945 |
|
|
* the second step. In second step, the next ACK decides.
|
2946 |
|
|
*
|
2947 |
|
|
* F-RTO is implemented (mainly) in four functions:
|
2948 |
|
|
* - tcp_use_frto() is used to determine if TCP is can use F-RTO
|
2949 |
|
|
* - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
|
2950 |
|
|
* called when tcp_use_frto() showed green light
|
2951 |
|
|
* - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
|
2952 |
|
|
* - tcp_enter_frto_loss() is called if there is not enough evidence
|
2953 |
|
|
* to prove that the RTO is indeed spurious. It transfers the control
|
2954 |
|
|
* from F-RTO to the conventional RTO recovery
|
2955 |
|
|
*/
|
2956 |
|
|
static int tcp_process_frto(struct sock *sk, int flag)
|
2957 |
|
|
{
|
2958 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
2959 |
|
|
|
2960 |
|
|
tcp_verify_left_out(tp);
|
2961 |
|
|
|
2962 |
|
|
/* Duplicate the behavior from Loss state (fastretrans_alert) */
|
2963 |
|
|
if (flag&FLAG_DATA_ACKED)
|
2964 |
|
|
inet_csk(sk)->icsk_retransmits = 0;
|
2965 |
|
|
|
2966 |
|
|
if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
|
2967 |
|
|
((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
|
2968 |
|
|
tp->undo_marker = 0;
|
2969 |
|
|
|
2970 |
|
|
if (!before(tp->snd_una, tp->frto_highmark)) {
|
2971 |
|
|
tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
|
2972 |
|
|
return 1;
|
2973 |
|
|
}
|
2974 |
|
|
|
2975 |
|
|
if (!IsSackFrto() || tcp_is_reno(tp)) {
|
2976 |
|
|
/* RFC4138 shortcoming in step 2; should also have case c):
|
2977 |
|
|
* ACK isn't duplicate nor advances window, e.g., opposite dir
|
2978 |
|
|
* data, winupdate
|
2979 |
|
|
*/
|
2980 |
|
|
if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
|
2981 |
|
|
return 1;
|
2982 |
|
|
|
2983 |
|
|
if (!(flag&FLAG_DATA_ACKED)) {
|
2984 |
|
|
tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
|
2985 |
|
|
flag);
|
2986 |
|
|
return 1;
|
2987 |
|
|
}
|
2988 |
|
|
} else {
|
2989 |
|
|
if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
|
2990 |
|
|
/* Prevent sending of new data. */
|
2991 |
|
|
tp->snd_cwnd = min(tp->snd_cwnd,
|
2992 |
|
|
tcp_packets_in_flight(tp));
|
2993 |
|
|
return 1;
|
2994 |
|
|
}
|
2995 |
|
|
|
2996 |
|
|
if ((tp->frto_counter >= 2) &&
|
2997 |
|
|
(!(flag&FLAG_FORWARD_PROGRESS) ||
|
2998 |
|
|
((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
|
2999 |
|
|
/* RFC4138 shortcoming (see comment above) */
|
3000 |
|
|
if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
|
3001 |
|
|
return 1;
|
3002 |
|
|
|
3003 |
|
|
tcp_enter_frto_loss(sk, 3, flag);
|
3004 |
|
|
return 1;
|
3005 |
|
|
}
|
3006 |
|
|
}
|
3007 |
|
|
|
3008 |
|
|
if (tp->frto_counter == 1) {
|
3009 |
|
|
/* tcp_may_send_now needs to see updated state */
|
3010 |
|
|
tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
|
3011 |
|
|
tp->frto_counter = 2;
|
3012 |
|
|
|
3013 |
|
|
if (!tcp_may_send_now(sk))
|
3014 |
|
|
tcp_enter_frto_loss(sk, 2, flag);
|
3015 |
|
|
|
3016 |
|
|
return 1;
|
3017 |
|
|
} else {
|
3018 |
|
|
switch (sysctl_tcp_frto_response) {
|
3019 |
|
|
case 2:
|
3020 |
|
|
tcp_undo_spur_to_response(sk, flag);
|
3021 |
|
|
break;
|
3022 |
|
|
case 1:
|
3023 |
|
|
tcp_conservative_spur_to_response(tp);
|
3024 |
|
|
break;
|
3025 |
|
|
default:
|
3026 |
|
|
tcp_ratehalving_spur_to_response(sk);
|
3027 |
|
|
break;
|
3028 |
|
|
}
|
3029 |
|
|
tp->frto_counter = 0;
|
3030 |
|
|
tp->undo_marker = 0;
|
3031 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
|
3032 |
|
|
}
|
3033 |
|
|
return 0;
|
3034 |
|
|
}
|
3035 |
|
|
|
3036 |
|
|
/* This routine deals with incoming acks, but not outgoing ones. */
|
3037 |
|
|
static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
|
3038 |
|
|
{
|
3039 |
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
3040 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
3041 |
|
|
u32 prior_snd_una = tp->snd_una;
|
3042 |
|
|
u32 ack_seq = TCP_SKB_CB(skb)->seq;
|
3043 |
|
|
u32 ack = TCP_SKB_CB(skb)->ack_seq;
|
3044 |
|
|
u32 prior_in_flight;
|
3045 |
|
|
u32 prior_fackets;
|
3046 |
|
|
s32 seq_rtt;
|
3047 |
|
|
int prior_packets;
|
3048 |
|
|
int frto_cwnd = 0;
|
3049 |
|
|
|
3050 |
|
|
/* If the ack is newer than sent or older than previous acks
|
3051 |
|
|
* then we can probably ignore it.
|
3052 |
|
|
*/
|
3053 |
|
|
if (after(ack, tp->snd_nxt))
|
3054 |
|
|
goto uninteresting_ack;
|
3055 |
|
|
|
3056 |
|
|
if (before(ack, prior_snd_una))
|
3057 |
|
|
goto old_ack;
|
3058 |
|
|
|
3059 |
|
|
if (after(ack, prior_snd_una))
|
3060 |
|
|
flag |= FLAG_SND_UNA_ADVANCED;
|
3061 |
|
|
|
3062 |
|
|
if (sysctl_tcp_abc) {
|
3063 |
|
|
if (icsk->icsk_ca_state < TCP_CA_CWR)
|
3064 |
|
|
tp->bytes_acked += ack - prior_snd_una;
|
3065 |
|
|
else if (icsk->icsk_ca_state == TCP_CA_Loss)
|
3066 |
|
|
/* we assume just one segment left network */
|
3067 |
|
|
tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
|
3068 |
|
|
}
|
3069 |
|
|
|
3070 |
|
|
prior_fackets = tp->fackets_out;
|
3071 |
|
|
prior_in_flight = tcp_packets_in_flight(tp);
|
3072 |
|
|
|
3073 |
|
|
if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
|
3074 |
|
|
/* Window is constant, pure forward advance.
|
3075 |
|
|
* No more checks are required.
|
3076 |
|
|
* Note, we use the fact that SND.UNA>=SND.WL2.
|
3077 |
|
|
*/
|
3078 |
|
|
tcp_update_wl(tp, ack, ack_seq);
|
3079 |
|
|
tp->snd_una = ack;
|
3080 |
|
|
flag |= FLAG_WIN_UPDATE;
|
3081 |
|
|
|
3082 |
|
|
tcp_ca_event(sk, CA_EVENT_FAST_ACK);
|
3083 |
|
|
|
3084 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
|
3085 |
|
|
} else {
|
3086 |
|
|
if (ack_seq != TCP_SKB_CB(skb)->end_seq)
|
3087 |
|
|
flag |= FLAG_DATA;
|
3088 |
|
|
else
|
3089 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
|
3090 |
|
|
|
3091 |
|
|
flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
|
3092 |
|
|
|
3093 |
|
|
if (TCP_SKB_CB(skb)->sacked)
|
3094 |
|
|
flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
|
3095 |
|
|
|
3096 |
|
|
if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
|
3097 |
|
|
flag |= FLAG_ECE;
|
3098 |
|
|
|
3099 |
|
|
tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
|
3100 |
|
|
}
|
3101 |
|
|
|
3102 |
|
|
/* We passed data and got it acked, remove any soft error
|
3103 |
|
|
* log. Something worked...
|
3104 |
|
|
*/
|
3105 |
|
|
sk->sk_err_soft = 0;
|
3106 |
|
|
tp->rcv_tstamp = tcp_time_stamp;
|
3107 |
|
|
prior_packets = tp->packets_out;
|
3108 |
|
|
if (!prior_packets)
|
3109 |
|
|
goto no_queue;
|
3110 |
|
|
|
3111 |
|
|
/* See if we can take anything off of the retransmit queue. */
|
3112 |
|
|
flag |= tcp_clean_rtx_queue(sk, &seq_rtt, prior_fackets);
|
3113 |
|
|
|
3114 |
|
|
if (tp->frto_counter)
|
3115 |
|
|
frto_cwnd = tcp_process_frto(sk, flag);
|
3116 |
|
|
/* Guarantee sacktag reordering detection against wrap-arounds */
|
3117 |
|
|
if (before(tp->frto_highmark, tp->snd_una))
|
3118 |
|
|
tp->frto_highmark = 0;
|
3119 |
|
|
|
3120 |
|
|
if (tcp_ack_is_dubious(sk, flag)) {
|
3121 |
|
|
/* Advance CWND, if state allows this. */
|
3122 |
|
|
if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
|
3123 |
|
|
tcp_may_raise_cwnd(sk, flag))
|
3124 |
|
|
tcp_cong_avoid(sk, ack, prior_in_flight, 0);
|
3125 |
|
|
tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
|
3126 |
|
|
} else {
|
3127 |
|
|
if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
|
3128 |
|
|
tcp_cong_avoid(sk, ack, prior_in_flight, 1);
|
3129 |
|
|
}
|
3130 |
|
|
|
3131 |
|
|
if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
|
3132 |
|
|
dst_confirm(sk->sk_dst_cache);
|
3133 |
|
|
|
3134 |
|
|
return 1;
|
3135 |
|
|
|
3136 |
|
|
no_queue:
|
3137 |
|
|
icsk->icsk_probes_out = 0;
|
3138 |
|
|
|
3139 |
|
|
/* If this ack opens up a zero window, clear backoff. It was
|
3140 |
|
|
* being used to time the probes, and is probably far higher than
|
3141 |
|
|
* it needs to be for normal retransmission.
|
3142 |
|
|
*/
|
3143 |
|
|
if (tcp_send_head(sk))
|
3144 |
|
|
tcp_ack_probe(sk);
|
3145 |
|
|
return 1;
|
3146 |
|
|
|
3147 |
|
|
old_ack:
|
3148 |
|
|
if (TCP_SKB_CB(skb)->sacked)
|
3149 |
|
|
tcp_sacktag_write_queue(sk, skb, prior_snd_una);
|
3150 |
|
|
|
3151 |
|
|
uninteresting_ack:
|
3152 |
|
|
SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
|
3153 |
|
|
return 0;
|
3154 |
|
|
}
|
3155 |
|
|
|
3156 |
|
|
|
3157 |
|
|
/* Look for tcp options. Normally only called on SYN and SYNACK packets.
|
3158 |
|
|
* But, this can also be called on packets in the established flow when
|
3159 |
|
|
* the fast version below fails.
|
3160 |
|
|
*/
|
3161 |
|
|
void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
|
3162 |
|
|
{
|
3163 |
|
|
unsigned char *ptr;
|
3164 |
|
|
struct tcphdr *th = tcp_hdr(skb);
|
3165 |
|
|
int length=(th->doff*4)-sizeof(struct tcphdr);
|
3166 |
|
|
|
3167 |
|
|
ptr = (unsigned char *)(th + 1);
|
3168 |
|
|
opt_rx->saw_tstamp = 0;
|
3169 |
|
|
|
3170 |
|
|
while (length > 0) {
|
3171 |
|
|
int opcode=*ptr++;
|
3172 |
|
|
int opsize;
|
3173 |
|
|
|
3174 |
|
|
switch (opcode) {
|
3175 |
|
|
case TCPOPT_EOL:
|
3176 |
|
|
return;
|
3177 |
|
|
case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
|
3178 |
|
|
length--;
|
3179 |
|
|
continue;
|
3180 |
|
|
default:
|
3181 |
|
|
opsize=*ptr++;
|
3182 |
|
|
if (opsize < 2) /* "silly options" */
|
3183 |
|
|
return;
|
3184 |
|
|
if (opsize > length)
|
3185 |
|
|
return; /* don't parse partial options */
|
3186 |
|
|
switch (opcode) {
|
3187 |
|
|
case TCPOPT_MSS:
|
3188 |
|
|
if (opsize==TCPOLEN_MSS && th->syn && !estab) {
|
3189 |
|
|
u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
|
3190 |
|
|
if (in_mss) {
|
3191 |
|
|
if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
|
3192 |
|
|
in_mss = opt_rx->user_mss;
|
3193 |
|
|
opt_rx->mss_clamp = in_mss;
|
3194 |
|
|
}
|
3195 |
|
|
}
|
3196 |
|
|
break;
|
3197 |
|
|
case TCPOPT_WINDOW:
|
3198 |
|
|
if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
|
3199 |
|
|
if (sysctl_tcp_window_scaling) {
|
3200 |
|
|
__u8 snd_wscale = *(__u8 *) ptr;
|
3201 |
|
|
opt_rx->wscale_ok = 1;
|
3202 |
|
|
if (snd_wscale > 14) {
|
3203 |
|
|
if (net_ratelimit())
|
3204 |
|
|
printk(KERN_INFO "tcp_parse_options: Illegal window "
|
3205 |
|
|
"scaling value %d >14 received.\n",
|
3206 |
|
|
snd_wscale);
|
3207 |
|
|
snd_wscale = 14;
|
3208 |
|
|
}
|
3209 |
|
|
opt_rx->snd_wscale = snd_wscale;
|
3210 |
|
|
}
|
3211 |
|
|
break;
|
3212 |
|
|
case TCPOPT_TIMESTAMP:
|
3213 |
|
|
if (opsize==TCPOLEN_TIMESTAMP) {
|
3214 |
|
|
if ((estab && opt_rx->tstamp_ok) ||
|
3215 |
|
|
(!estab && sysctl_tcp_timestamps)) {
|
3216 |
|
|
opt_rx->saw_tstamp = 1;
|
3217 |
|
|
opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
|
3218 |
|
|
opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
|
3219 |
|
|
}
|
3220 |
|
|
}
|
3221 |
|
|
break;
|
3222 |
|
|
case TCPOPT_SACK_PERM:
|
3223 |
|
|
if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
|
3224 |
|
|
if (sysctl_tcp_sack) {
|
3225 |
|
|
opt_rx->sack_ok = 1;
|
3226 |
|
|
tcp_sack_reset(opt_rx);
|
3227 |
|
|
}
|
3228 |
|
|
}
|
3229 |
|
|
break;
|
3230 |
|
|
|
3231 |
|
|
case TCPOPT_SACK:
|
3232 |
|
|
if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
|
3233 |
|
|
!((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
|
3234 |
|
|
opt_rx->sack_ok) {
|
3235 |
|
|
TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
|
3236 |
|
|
}
|
3237 |
|
|
break;
|
3238 |
|
|
#ifdef CONFIG_TCP_MD5SIG
|
3239 |
|
|
case TCPOPT_MD5SIG:
|
3240 |
|
|
/*
|
3241 |
|
|
* The MD5 Hash has already been
|
3242 |
|
|
* checked (see tcp_v{4,6}_do_rcv()).
|
3243 |
|
|
*/
|
3244 |
|
|
break;
|
3245 |
|
|
#endif
|
3246 |
|
|
}
|
3247 |
|
|
|
3248 |
|
|
ptr+=opsize-2;
|
3249 |
|
|
length-=opsize;
|
3250 |
|
|
}
|
3251 |
|
|
}
|
3252 |
|
|
}
|
3253 |
|
|
|
3254 |
|
|
/* Fast parse options. This hopes to only see timestamps.
|
3255 |
|
|
* If it is wrong it falls back on tcp_parse_options().
|
3256 |
|
|
*/
|
3257 |
|
|
static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
|
3258 |
|
|
struct tcp_sock *tp)
|
3259 |
|
|
{
|
3260 |
|
|
if (th->doff == sizeof(struct tcphdr)>>2) {
|
3261 |
|
|
tp->rx_opt.saw_tstamp = 0;
|
3262 |
|
|
return 0;
|
3263 |
|
|
} else if (tp->rx_opt.tstamp_ok &&
|
3264 |
|
|
th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
|
3265 |
|
|
__be32 *ptr = (__be32 *)(th + 1);
|
3266 |
|
|
if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
|
3267 |
|
|
| (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
|
3268 |
|
|
tp->rx_opt.saw_tstamp = 1;
|
3269 |
|
|
++ptr;
|
3270 |
|
|
tp->rx_opt.rcv_tsval = ntohl(*ptr);
|
3271 |
|
|
++ptr;
|
3272 |
|
|
tp->rx_opt.rcv_tsecr = ntohl(*ptr);
|
3273 |
|
|
return 1;
|
3274 |
|
|
}
|
3275 |
|
|
}
|
3276 |
|
|
tcp_parse_options(skb, &tp->rx_opt, 1);
|
3277 |
|
|
return 1;
|
3278 |
|
|
}
|
3279 |
|
|
|
3280 |
|
|
static inline void tcp_store_ts_recent(struct tcp_sock *tp)
|
3281 |
|
|
{
|
3282 |
|
|
tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
|
3283 |
|
|
tp->rx_opt.ts_recent_stamp = get_seconds();
|
3284 |
|
|
}
|
3285 |
|
|
|
3286 |
|
|
static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
|
3287 |
|
|
{
|
3288 |
|
|
if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
|
3289 |
|
|
/* PAWS bug workaround wrt. ACK frames, the PAWS discard
|
3290 |
|
|
* extra check below makes sure this can only happen
|
3291 |
|
|
* for pure ACK frames. -DaveM
|
3292 |
|
|
*
|
3293 |
|
|
* Not only, also it occurs for expired timestamps.
|
3294 |
|
|
*/
|
3295 |
|
|
|
3296 |
|
|
if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
|
3297 |
|
|
get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
|
3298 |
|
|
tcp_store_ts_recent(tp);
|
3299 |
|
|
}
|
3300 |
|
|
}
|
3301 |
|
|
|
3302 |
|
|
/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
|
3303 |
|
|
*
|
3304 |
|
|
* It is not fatal. If this ACK does _not_ change critical state (seqs, window)
|
3305 |
|
|
* it can pass through stack. So, the following predicate verifies that
|
3306 |
|
|
* this segment is not used for anything but congestion avoidance or
|
3307 |
|
|
* fast retransmit. Moreover, we even are able to eliminate most of such
|
3308 |
|
|
* second order effects, if we apply some small "replay" window (~RTO)
|
3309 |
|
|
* to timestamp space.
|
3310 |
|
|
*
|
3311 |
|
|
* All these measures still do not guarantee that we reject wrapped ACKs
|
3312 |
|
|
* on networks with high bandwidth, when sequence space is recycled fastly,
|
3313 |
|
|
* but it guarantees that such events will be very rare and do not affect
|
3314 |
|
|
* connection seriously. This doesn't look nice, but alas, PAWS is really
|
3315 |
|
|
* buggy extension.
|
3316 |
|
|
*
|
3317 |
|
|
* [ Later note. Even worse! It is buggy for segments _with_ data. RFC
|
3318 |
|
|
* states that events when retransmit arrives after original data are rare.
|
3319 |
|
|
* It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
|
3320 |
|
|
* the biggest problem on large power networks even with minor reordering.
|
3321 |
|
|
* OK, let's give it small replay window. If peer clock is even 1hz, it is safe
|
3322 |
|
|
* up to bandwidth of 18Gigabit/sec. 8) ]
|
3323 |
|
|
*/
|
3324 |
|
|
|
3325 |
|
|
static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
|
3326 |
|
|
{
|
3327 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
3328 |
|
|
struct tcphdr *th = tcp_hdr(skb);
|
3329 |
|
|
u32 seq = TCP_SKB_CB(skb)->seq;
|
3330 |
|
|
u32 ack = TCP_SKB_CB(skb)->ack_seq;
|
3331 |
|
|
|
3332 |
|
|
return (/* 1. Pure ACK with correct sequence number. */
|
3333 |
|
|
(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
|
3334 |
|
|
|
3335 |
|
|
/* 2. ... and duplicate ACK. */
|
3336 |
|
|
ack == tp->snd_una &&
|
3337 |
|
|
|
3338 |
|
|
/* 3. ... and does not update window. */
|
3339 |
|
|
!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
|
3340 |
|
|
|
3341 |
|
|
/* 4. ... and sits in replay window. */
|
3342 |
|
|
(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
|
3343 |
|
|
}
|
3344 |
|
|
|
3345 |
|
|
static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
|
3346 |
|
|
{
|
3347 |
|
|
const struct tcp_sock *tp = tcp_sk(sk);
|
3348 |
|
|
return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
|
3349 |
|
|
get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
|
3350 |
|
|
!tcp_disordered_ack(sk, skb));
|
3351 |
|
|
}
|
3352 |
|
|
|
3353 |
|
|
/* Check segment sequence number for validity.
|
3354 |
|
|
*
|
3355 |
|
|
* Segment controls are considered valid, if the segment
|
3356 |
|
|
* fits to the window after truncation to the window. Acceptability
|
3357 |
|
|
* of data (and SYN, FIN, of course) is checked separately.
|
3358 |
|
|
* See tcp_data_queue(), for example.
|
3359 |
|
|
*
|
3360 |
|
|
* Also, controls (RST is main one) are accepted using RCV.WUP instead
|
3361 |
|
|
* of RCV.NXT. Peer still did not advance his SND.UNA when we
|
3362 |
|
|
* delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
|
3363 |
|
|
* (borrowed from freebsd)
|
3364 |
|
|
*/
|
3365 |
|
|
|
3366 |
|
|
static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
|
3367 |
|
|
{
|
3368 |
|
|
return !before(end_seq, tp->rcv_wup) &&
|
3369 |
|
|
!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
|
3370 |
|
|
}
|
3371 |
|
|
|
3372 |
|
|
/* When we get a reset we do this. */
|
3373 |
|
|
static void tcp_reset(struct sock *sk)
|
3374 |
|
|
{
|
3375 |
|
|
/* We want the right error as BSD sees it (and indeed as we do). */
|
3376 |
|
|
switch (sk->sk_state) {
|
3377 |
|
|
case TCP_SYN_SENT:
|
3378 |
|
|
sk->sk_err = ECONNREFUSED;
|
3379 |
|
|
break;
|
3380 |
|
|
case TCP_CLOSE_WAIT:
|
3381 |
|
|
sk->sk_err = EPIPE;
|
3382 |
|
|
break;
|
3383 |
|
|
case TCP_CLOSE:
|
3384 |
|
|
return;
|
3385 |
|
|
default:
|
3386 |
|
|
sk->sk_err = ECONNRESET;
|
3387 |
|
|
}
|
3388 |
|
|
|
3389 |
|
|
if (!sock_flag(sk, SOCK_DEAD))
|
3390 |
|
|
sk->sk_error_report(sk);
|
3391 |
|
|
|
3392 |
|
|
tcp_done(sk);
|
3393 |
|
|
}
|
3394 |
|
|
|
3395 |
|
|
/*
|
3396 |
|
|
* Process the FIN bit. This now behaves as it is supposed to work
|
3397 |
|
|
* and the FIN takes effect when it is validly part of sequence
|
3398 |
|
|
* space. Not before when we get holes.
|
3399 |
|
|
*
|
3400 |
|
|
* If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
|
3401 |
|
|
* (and thence onto LAST-ACK and finally, CLOSE, we never enter
|
3402 |
|
|
* TIME-WAIT)
|
3403 |
|
|
*
|
3404 |
|
|
* If we are in FINWAIT-1, a received FIN indicates simultaneous
|
3405 |
|
|
* close and we go into CLOSING (and later onto TIME-WAIT)
|
3406 |
|
|
*
|
3407 |
|
|
* If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
|
3408 |
|
|
*/
|
3409 |
|
|
static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
|
3410 |
|
|
{
|
3411 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
3412 |
|
|
|
3413 |
|
|
inet_csk_schedule_ack(sk);
|
3414 |
|
|
|
3415 |
|
|
sk->sk_shutdown |= RCV_SHUTDOWN;
|
3416 |
|
|
sock_set_flag(sk, SOCK_DONE);
|
3417 |
|
|
|
3418 |
|
|
switch (sk->sk_state) {
|
3419 |
|
|
case TCP_SYN_RECV:
|
3420 |
|
|
case TCP_ESTABLISHED:
|
3421 |
|
|
/* Move to CLOSE_WAIT */
|
3422 |
|
|
tcp_set_state(sk, TCP_CLOSE_WAIT);
|
3423 |
|
|
inet_csk(sk)->icsk_ack.pingpong = 1;
|
3424 |
|
|
break;
|
3425 |
|
|
|
3426 |
|
|
case TCP_CLOSE_WAIT:
|
3427 |
|
|
case TCP_CLOSING:
|
3428 |
|
|
/* Received a retransmission of the FIN, do
|
3429 |
|
|
* nothing.
|
3430 |
|
|
*/
|
3431 |
|
|
break;
|
3432 |
|
|
case TCP_LAST_ACK:
|
3433 |
|
|
/* RFC793: Remain in the LAST-ACK state. */
|
3434 |
|
|
break;
|
3435 |
|
|
|
3436 |
|
|
case TCP_FIN_WAIT1:
|
3437 |
|
|
/* This case occurs when a simultaneous close
|
3438 |
|
|
* happens, we must ack the received FIN and
|
3439 |
|
|
* enter the CLOSING state.
|
3440 |
|
|
*/
|
3441 |
|
|
tcp_send_ack(sk);
|
3442 |
|
|
tcp_set_state(sk, TCP_CLOSING);
|
3443 |
|
|
break;
|
3444 |
|
|
case TCP_FIN_WAIT2:
|
3445 |
|
|
/* Received a FIN -- send ACK and enter TIME_WAIT. */
|
3446 |
|
|
tcp_send_ack(sk);
|
3447 |
|
|
tcp_time_wait(sk, TCP_TIME_WAIT, 0);
|
3448 |
|
|
break;
|
3449 |
|
|
default:
|
3450 |
|
|
/* Only TCP_LISTEN and TCP_CLOSE are left, in these
|
3451 |
|
|
* cases we should never reach this piece of code.
|
3452 |
|
|
*/
|
3453 |
|
|
printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
|
3454 |
|
|
__FUNCTION__, sk->sk_state);
|
3455 |
|
|
break;
|
3456 |
|
|
}
|
3457 |
|
|
|
3458 |
|
|
/* It _is_ possible, that we have something out-of-order _after_ FIN.
|
3459 |
|
|
* Probably, we should reset in this case. For now drop them.
|
3460 |
|
|
*/
|
3461 |
|
|
__skb_queue_purge(&tp->out_of_order_queue);
|
3462 |
|
|
if (tcp_is_sack(tp))
|
3463 |
|
|
tcp_sack_reset(&tp->rx_opt);
|
3464 |
|
|
sk_stream_mem_reclaim(sk);
|
3465 |
|
|
|
3466 |
|
|
if (!sock_flag(sk, SOCK_DEAD)) {
|
3467 |
|
|
sk->sk_state_change(sk);
|
3468 |
|
|
|
3469 |
|
|
/* Do not send POLL_HUP for half duplex close. */
|
3470 |
|
|
if (sk->sk_shutdown == SHUTDOWN_MASK ||
|
3471 |
|
|
sk->sk_state == TCP_CLOSE)
|
3472 |
|
|
sk_wake_async(sk, 1, POLL_HUP);
|
3473 |
|
|
else
|
3474 |
|
|
sk_wake_async(sk, 1, POLL_IN);
|
3475 |
|
|
}
|
3476 |
|
|
}
|
3477 |
|
|
|
3478 |
|
|
static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
|
3479 |
|
|
{
|
3480 |
|
|
if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
|
3481 |
|
|
if (before(seq, sp->start_seq))
|
3482 |
|
|
sp->start_seq = seq;
|
3483 |
|
|
if (after(end_seq, sp->end_seq))
|
3484 |
|
|
sp->end_seq = end_seq;
|
3485 |
|
|
return 1;
|
3486 |
|
|
}
|
3487 |
|
|
return 0;
|
3488 |
|
|
}
|
3489 |
|
|
|
3490 |
|
|
static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
|
3491 |
|
|
{
|
3492 |
|
|
if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
|
3493 |
|
|
if (before(seq, tp->rcv_nxt))
|
3494 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
|
3495 |
|
|
else
|
3496 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
|
3497 |
|
|
|
3498 |
|
|
tp->rx_opt.dsack = 1;
|
3499 |
|
|
tp->duplicate_sack[0].start_seq = seq;
|
3500 |
|
|
tp->duplicate_sack[0].end_seq = end_seq;
|
3501 |
|
|
tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
|
3502 |
|
|
}
|
3503 |
|
|
}
|
3504 |
|
|
|
3505 |
|
|
static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
|
3506 |
|
|
{
|
3507 |
|
|
if (!tp->rx_opt.dsack)
|
3508 |
|
|
tcp_dsack_set(tp, seq, end_seq);
|
3509 |
|
|
else
|
3510 |
|
|
tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
|
3511 |
|
|
}
|
3512 |
|
|
|
3513 |
|
|
static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
|
3514 |
|
|
{
|
3515 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
3516 |
|
|
|
3517 |
|
|
if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
|
3518 |
|
|
before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
|
3519 |
|
|
NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
|
3520 |
|
|
tcp_enter_quickack_mode(sk);
|
3521 |
|
|
|
3522 |
|
|
if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
|
3523 |
|
|
u32 end_seq = TCP_SKB_CB(skb)->end_seq;
|
3524 |
|
|
|
3525 |
|
|
if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
|
3526 |
|
|
end_seq = tp->rcv_nxt;
|
3527 |
|
|
tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
|
3528 |
|
|
}
|
3529 |
|
|
}
|
3530 |
|
|
|
3531 |
|
|
tcp_send_ack(sk);
|
3532 |
|
|
}
|
3533 |
|
|
|
3534 |
|
|
/* These routines update the SACK block as out-of-order packets arrive or
|
3535 |
|
|
* in-order packets close up the sequence space.
|
3536 |
|
|
*/
|
3537 |
|
|
static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
|
3538 |
|
|
{
|
3539 |
|
|
int this_sack;
|
3540 |
|
|
struct tcp_sack_block *sp = &tp->selective_acks[0];
|
3541 |
|
|
struct tcp_sack_block *swalk = sp+1;
|
3542 |
|
|
|
3543 |
|
|
/* See if the recent change to the first SACK eats into
|
3544 |
|
|
* or hits the sequence space of other SACK blocks, if so coalesce.
|
3545 |
|
|
*/
|
3546 |
|
|
for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
|
3547 |
|
|
if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
|
3548 |
|
|
int i;
|
3549 |
|
|
|
3550 |
|
|
/* Zap SWALK, by moving every further SACK up by one slot.
|
3551 |
|
|
* Decrease num_sacks.
|
3552 |
|
|
*/
|
3553 |
|
|
tp->rx_opt.num_sacks--;
|
3554 |
|
|
tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
|
3555 |
|
|
for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
|
3556 |
|
|
sp[i] = sp[i+1];
|
3557 |
|
|
continue;
|
3558 |
|
|
}
|
3559 |
|
|
this_sack++, swalk++;
|
3560 |
|
|
}
|
3561 |
|
|
}
|
3562 |
|
|
|
3563 |
|
|
static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
|
3564 |
|
|
{
|
3565 |
|
|
__u32 tmp;
|
3566 |
|
|
|
3567 |
|
|
tmp = sack1->start_seq;
|
3568 |
|
|
sack1->start_seq = sack2->start_seq;
|
3569 |
|
|
sack2->start_seq = tmp;
|
3570 |
|
|
|
3571 |
|
|
tmp = sack1->end_seq;
|
3572 |
|
|
sack1->end_seq = sack2->end_seq;
|
3573 |
|
|
sack2->end_seq = tmp;
|
3574 |
|
|
}
|
3575 |
|
|
|
3576 |
|
|
static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
|
3577 |
|
|
{
|
3578 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
3579 |
|
|
struct tcp_sack_block *sp = &tp->selective_acks[0];
|
3580 |
|
|
int cur_sacks = tp->rx_opt.num_sacks;
|
3581 |
|
|
int this_sack;
|
3582 |
|
|
|
3583 |
|
|
if (!cur_sacks)
|
3584 |
|
|
goto new_sack;
|
3585 |
|
|
|
3586 |
|
|
for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
|
3587 |
|
|
if (tcp_sack_extend(sp, seq, end_seq)) {
|
3588 |
|
|
/* Rotate this_sack to the first one. */
|
3589 |
|
|
for (; this_sack>0; this_sack--, sp--)
|
3590 |
|
|
tcp_sack_swap(sp, sp-1);
|
3591 |
|
|
if (cur_sacks > 1)
|
3592 |
|
|
tcp_sack_maybe_coalesce(tp);
|
3593 |
|
|
return;
|
3594 |
|
|
}
|
3595 |
|
|
}
|
3596 |
|
|
|
3597 |
|
|
/* Could not find an adjacent existing SACK, build a new one,
|
3598 |
|
|
* put it at the front, and shift everyone else down. We
|
3599 |
|
|
* always know there is at least one SACK present already here.
|
3600 |
|
|
*
|
3601 |
|
|
* If the sack array is full, forget about the last one.
|
3602 |
|
|
*/
|
3603 |
|
|
if (this_sack >= 4) {
|
3604 |
|
|
this_sack--;
|
3605 |
|
|
tp->rx_opt.num_sacks--;
|
3606 |
|
|
sp--;
|
3607 |
|
|
}
|
3608 |
|
|
for (; this_sack > 0; this_sack--, sp--)
|
3609 |
|
|
*sp = *(sp-1);
|
3610 |
|
|
|
3611 |
|
|
new_sack:
|
3612 |
|
|
/* Build the new head SACK, and we're done. */
|
3613 |
|
|
sp->start_seq = seq;
|
3614 |
|
|
sp->end_seq = end_seq;
|
3615 |
|
|
tp->rx_opt.num_sacks++;
|
3616 |
|
|
tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
|
3617 |
|
|
}
|
3618 |
|
|
|
3619 |
|
|
/* RCV.NXT advances, some SACKs should be eaten. */
|
3620 |
|
|
|
3621 |
|
|
static void tcp_sack_remove(struct tcp_sock *tp)
|
3622 |
|
|
{
|
3623 |
|
|
struct tcp_sack_block *sp = &tp->selective_acks[0];
|
3624 |
|
|
int num_sacks = tp->rx_opt.num_sacks;
|
3625 |
|
|
int this_sack;
|
3626 |
|
|
|
3627 |
|
|
/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
|
3628 |
|
|
if (skb_queue_empty(&tp->out_of_order_queue)) {
|
3629 |
|
|
tp->rx_opt.num_sacks = 0;
|
3630 |
|
|
tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
|
3631 |
|
|
return;
|
3632 |
|
|
}
|
3633 |
|
|
|
3634 |
|
|
for (this_sack = 0; this_sack < num_sacks; ) {
|
3635 |
|
|
/* Check if the start of the sack is covered by RCV.NXT. */
|
3636 |
|
|
if (!before(tp->rcv_nxt, sp->start_seq)) {
|
3637 |
|
|
int i;
|
3638 |
|
|
|
3639 |
|
|
/* RCV.NXT must cover all the block! */
|
3640 |
|
|
BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
|
3641 |
|
|
|
3642 |
|
|
/* Zap this SACK, by moving forward any other SACKS. */
|
3643 |
|
|
for (i=this_sack+1; i < num_sacks; i++)
|
3644 |
|
|
tp->selective_acks[i-1] = tp->selective_acks[i];
|
3645 |
|
|
num_sacks--;
|
3646 |
|
|
continue;
|
3647 |
|
|
}
|
3648 |
|
|
this_sack++;
|
3649 |
|
|
sp++;
|
3650 |
|
|
}
|
3651 |
|
|
if (num_sacks != tp->rx_opt.num_sacks) {
|
3652 |
|
|
tp->rx_opt.num_sacks = num_sacks;
|
3653 |
|
|
tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
|
3654 |
|
|
}
|
3655 |
|
|
}
|
3656 |
|
|
|
3657 |
|
|
/* This one checks to see if we can put data from the
|
3658 |
|
|
* out_of_order queue into the receive_queue.
|
3659 |
|
|
*/
|
3660 |
|
|
static void tcp_ofo_queue(struct sock *sk)
|
3661 |
|
|
{
|
3662 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
3663 |
|
|
__u32 dsack_high = tp->rcv_nxt;
|
3664 |
|
|
struct sk_buff *skb;
|
3665 |
|
|
|
3666 |
|
|
while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
|
3667 |
|
|
if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
|
3668 |
|
|
break;
|
3669 |
|
|
|
3670 |
|
|
if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
|
3671 |
|
|
__u32 dsack = dsack_high;
|
3672 |
|
|
if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
|
3673 |
|
|
dsack_high = TCP_SKB_CB(skb)->end_seq;
|
3674 |
|
|
tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
|
3675 |
|
|
}
|
3676 |
|
|
|
3677 |
|
|
if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
|
3678 |
|
|
SOCK_DEBUG(sk, "ofo packet was already received \n");
|
3679 |
|
|
__skb_unlink(skb, &tp->out_of_order_queue);
|
3680 |
|
|
__kfree_skb(skb);
|
3681 |
|
|
continue;
|
3682 |
|
|
}
|
3683 |
|
|
SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
|
3684 |
|
|
tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
|
3685 |
|
|
TCP_SKB_CB(skb)->end_seq);
|
3686 |
|
|
|
3687 |
|
|
__skb_unlink(skb, &tp->out_of_order_queue);
|
3688 |
|
|
__skb_queue_tail(&sk->sk_receive_queue, skb);
|
3689 |
|
|
tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
|
3690 |
|
|
if (tcp_hdr(skb)->fin)
|
3691 |
|
|
tcp_fin(skb, sk, tcp_hdr(skb));
|
3692 |
|
|
}
|
3693 |
|
|
}
|
3694 |
|
|
|
3695 |
|
|
static int tcp_prune_queue(struct sock *sk);
|
3696 |
|
|
|
3697 |
|
|
static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
|
3698 |
|
|
{
|
3699 |
|
|
struct tcphdr *th = tcp_hdr(skb);
|
3700 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
3701 |
|
|
int eaten = -1;
|
3702 |
|
|
|
3703 |
|
|
if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
|
3704 |
|
|
goto drop;
|
3705 |
|
|
|
3706 |
|
|
__skb_pull(skb, th->doff*4);
|
3707 |
|
|
|
3708 |
|
|
TCP_ECN_accept_cwr(tp, skb);
|
3709 |
|
|
|
3710 |
|
|
if (tp->rx_opt.dsack) {
|
3711 |
|
|
tp->rx_opt.dsack = 0;
|
3712 |
|
|
tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
|
3713 |
|
|
4 - tp->rx_opt.tstamp_ok);
|
3714 |
|
|
}
|
3715 |
|
|
|
3716 |
|
|
/* Queue data for delivery to the user.
|
3717 |
|
|
* Packets in sequence go to the receive queue.
|
3718 |
|
|
* Out of sequence packets to the out_of_order_queue.
|
3719 |
|
|
*/
|
3720 |
|
|
if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
|
3721 |
|
|
if (tcp_receive_window(tp) == 0)
|
3722 |
|
|
goto out_of_window;
|
3723 |
|
|
|
3724 |
|
|
/* Ok. In sequence. In window. */
|
3725 |
|
|
if (tp->ucopy.task == current &&
|
3726 |
|
|
tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
|
3727 |
|
|
sock_owned_by_user(sk) && !tp->urg_data) {
|
3728 |
|
|
int chunk = min_t(unsigned int, skb->len,
|
3729 |
|
|
tp->ucopy.len);
|
3730 |
|
|
|
3731 |
|
|
__set_current_state(TASK_RUNNING);
|
3732 |
|
|
|
3733 |
|
|
local_bh_enable();
|
3734 |
|
|
if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
|
3735 |
|
|
tp->ucopy.len -= chunk;
|
3736 |
|
|
tp->copied_seq += chunk;
|
3737 |
|
|
eaten = (chunk == skb->len && !th->fin);
|
3738 |
|
|
tcp_rcv_space_adjust(sk);
|
3739 |
|
|
}
|
3740 |
|
|
local_bh_disable();
|
3741 |
|
|
}
|
3742 |
|
|
|
3743 |
|
|
if (eaten <= 0) {
|
3744 |
|
|
queue_and_out:
|
3745 |
|
|
if (eaten < 0 &&
|
3746 |
|
|
(atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
|
3747 |
|
|
!sk_stream_rmem_schedule(sk, skb))) {
|
3748 |
|
|
if (tcp_prune_queue(sk) < 0 ||
|
3749 |
|
|
!sk_stream_rmem_schedule(sk, skb))
|
3750 |
|
|
goto drop;
|
3751 |
|
|
}
|
3752 |
|
|
sk_stream_set_owner_r(skb, sk);
|
3753 |
|
|
__skb_queue_tail(&sk->sk_receive_queue, skb);
|
3754 |
|
|
}
|
3755 |
|
|
tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
|
3756 |
|
|
if (skb->len)
|
3757 |
|
|
tcp_event_data_recv(sk, skb);
|
3758 |
|
|
if (th->fin)
|
3759 |
|
|
tcp_fin(skb, sk, th);
|
3760 |
|
|
|
3761 |
|
|
if (!skb_queue_empty(&tp->out_of_order_queue)) {
|
3762 |
|
|
tcp_ofo_queue(sk);
|
3763 |
|
|
|
3764 |
|
|
/* RFC2581. 4.2. SHOULD send immediate ACK, when
|
3765 |
|
|
* gap in queue is filled.
|
3766 |
|
|
*/
|
3767 |
|
|
if (skb_queue_empty(&tp->out_of_order_queue))
|
3768 |
|
|
inet_csk(sk)->icsk_ack.pingpong = 0;
|
3769 |
|
|
}
|
3770 |
|
|
|
3771 |
|
|
if (tp->rx_opt.num_sacks)
|
3772 |
|
|
tcp_sack_remove(tp);
|
3773 |
|
|
|
3774 |
|
|
tcp_fast_path_check(sk);
|
3775 |
|
|
|
3776 |
|
|
if (eaten > 0)
|
3777 |
|
|
__kfree_skb(skb);
|
3778 |
|
|
else if (!sock_flag(sk, SOCK_DEAD))
|
3779 |
|
|
sk->sk_data_ready(sk, 0);
|
3780 |
|
|
return;
|
3781 |
|
|
}
|
3782 |
|
|
|
3783 |
|
|
if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
|
3784 |
|
|
/* A retransmit, 2nd most common case. Force an immediate ack. */
|
3785 |
|
|
NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
|
3786 |
|
|
tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
|
3787 |
|
|
|
3788 |
|
|
out_of_window:
|
3789 |
|
|
tcp_enter_quickack_mode(sk);
|
3790 |
|
|
inet_csk_schedule_ack(sk);
|
3791 |
|
|
drop:
|
3792 |
|
|
__kfree_skb(skb);
|
3793 |
|
|
return;
|
3794 |
|
|
}
|
3795 |
|
|
|
3796 |
|
|
/* Out of window. F.e. zero window probe. */
|
3797 |
|
|
if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
|
3798 |
|
|
goto out_of_window;
|
3799 |
|
|
|
3800 |
|
|
tcp_enter_quickack_mode(sk);
|
3801 |
|
|
|
3802 |
|
|
if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
|
3803 |
|
|
/* Partial packet, seq < rcv_next < end_seq */
|
3804 |
|
|
SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
|
3805 |
|
|
tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
|
3806 |
|
|
TCP_SKB_CB(skb)->end_seq);
|
3807 |
|
|
|
3808 |
|
|
tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
|
3809 |
|
|
|
3810 |
|
|
/* If window is closed, drop tail of packet. But after
|
3811 |
|
|
* remembering D-SACK for its head made in previous line.
|
3812 |
|
|
*/
|
3813 |
|
|
if (!tcp_receive_window(tp))
|
3814 |
|
|
goto out_of_window;
|
3815 |
|
|
goto queue_and_out;
|
3816 |
|
|
}
|
3817 |
|
|
|
3818 |
|
|
TCP_ECN_check_ce(tp, skb);
|
3819 |
|
|
|
3820 |
|
|
if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
|
3821 |
|
|
!sk_stream_rmem_schedule(sk, skb)) {
|
3822 |
|
|
if (tcp_prune_queue(sk) < 0 ||
|
3823 |
|
|
!sk_stream_rmem_schedule(sk, skb))
|
3824 |
|
|
goto drop;
|
3825 |
|
|
}
|
3826 |
|
|
|
3827 |
|
|
/* Disable header prediction. */
|
3828 |
|
|
tp->pred_flags = 0;
|
3829 |
|
|
inet_csk_schedule_ack(sk);
|
3830 |
|
|
|
3831 |
|
|
SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
|
3832 |
|
|
tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
|
3833 |
|
|
|
3834 |
|
|
sk_stream_set_owner_r(skb, sk);
|
3835 |
|
|
|
3836 |
|
|
if (!skb_peek(&tp->out_of_order_queue)) {
|
3837 |
|
|
/* Initial out of order segment, build 1 SACK. */
|
3838 |
|
|
if (tcp_is_sack(tp)) {
|
3839 |
|
|
tp->rx_opt.num_sacks = 1;
|
3840 |
|
|
tp->rx_opt.dsack = 0;
|
3841 |
|
|
tp->rx_opt.eff_sacks = 1;
|
3842 |
|
|
tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
|
3843 |
|
|
tp->selective_acks[0].end_seq =
|
3844 |
|
|
TCP_SKB_CB(skb)->end_seq;
|
3845 |
|
|
}
|
3846 |
|
|
__skb_queue_head(&tp->out_of_order_queue,skb);
|
3847 |
|
|
} else {
|
3848 |
|
|
struct sk_buff *skb1 = tp->out_of_order_queue.prev;
|
3849 |
|
|
u32 seq = TCP_SKB_CB(skb)->seq;
|
3850 |
|
|
u32 end_seq = TCP_SKB_CB(skb)->end_seq;
|
3851 |
|
|
|
3852 |
|
|
if (seq == TCP_SKB_CB(skb1)->end_seq) {
|
3853 |
|
|
__skb_append(skb1, skb, &tp->out_of_order_queue);
|
3854 |
|
|
|
3855 |
|
|
if (!tp->rx_opt.num_sacks ||
|
3856 |
|
|
tp->selective_acks[0].end_seq != seq)
|
3857 |
|
|
goto add_sack;
|
3858 |
|
|
|
3859 |
|
|
/* Common case: data arrive in order after hole. */
|
3860 |
|
|
tp->selective_acks[0].end_seq = end_seq;
|
3861 |
|
|
return;
|
3862 |
|
|
}
|
3863 |
|
|
|
3864 |
|
|
/* Find place to insert this segment. */
|
3865 |
|
|
do {
|
3866 |
|
|
if (!after(TCP_SKB_CB(skb1)->seq, seq))
|
3867 |
|
|
break;
|
3868 |
|
|
} while ((skb1 = skb1->prev) !=
|
3869 |
|
|
(struct sk_buff*)&tp->out_of_order_queue);
|
3870 |
|
|
|
3871 |
|
|
/* Do skb overlap to previous one? */
|
3872 |
|
|
if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
|
3873 |
|
|
before(seq, TCP_SKB_CB(skb1)->end_seq)) {
|
3874 |
|
|
if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
|
3875 |
|
|
/* All the bits are present. Drop. */
|
3876 |
|
|
__kfree_skb(skb);
|
3877 |
|
|
tcp_dsack_set(tp, seq, end_seq);
|
3878 |
|
|
goto add_sack;
|
3879 |
|
|
}
|
3880 |
|
|
if (after(seq, TCP_SKB_CB(skb1)->seq)) {
|
3881 |
|
|
/* Partial overlap. */
|
3882 |
|
|
tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
|
3883 |
|
|
} else {
|
3884 |
|
|
skb1 = skb1->prev;
|
3885 |
|
|
}
|
3886 |
|
|
}
|
3887 |
|
|
__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
|
3888 |
|
|
|
3889 |
|
|
/* And clean segments covered by new one as whole. */
|
3890 |
|
|
while ((skb1 = skb->next) !=
|
3891 |
|
|
(struct sk_buff*)&tp->out_of_order_queue &&
|
3892 |
|
|
after(end_seq, TCP_SKB_CB(skb1)->seq)) {
|
3893 |
|
|
if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
|
3894 |
|
|
tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
|
3895 |
|
|
break;
|
3896 |
|
|
}
|
3897 |
|
|
__skb_unlink(skb1, &tp->out_of_order_queue);
|
3898 |
|
|
tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
|
3899 |
|
|
__kfree_skb(skb1);
|
3900 |
|
|
}
|
3901 |
|
|
|
3902 |
|
|
add_sack:
|
3903 |
|
|
if (tcp_is_sack(tp))
|
3904 |
|
|
tcp_sack_new_ofo_skb(sk, seq, end_seq);
|
3905 |
|
|
}
|
3906 |
|
|
}
|
3907 |
|
|
|
3908 |
|
|
/* Collapse contiguous sequence of skbs head..tail with
|
3909 |
|
|
* sequence numbers start..end.
|
3910 |
|
|
* Segments with FIN/SYN are not collapsed (only because this
|
3911 |
|
|
* simplifies code)
|
3912 |
|
|
*/
|
3913 |
|
|
static void
|
3914 |
|
|
tcp_collapse(struct sock *sk, struct sk_buff_head *list,
|
3915 |
|
|
struct sk_buff *head, struct sk_buff *tail,
|
3916 |
|
|
u32 start, u32 end)
|
3917 |
|
|
{
|
3918 |
|
|
struct sk_buff *skb;
|
3919 |
|
|
|
3920 |
|
|
/* First, check that queue is collapsible and find
|
3921 |
|
|
* the point where collapsing can be useful. */
|
3922 |
|
|
for (skb = head; skb != tail; ) {
|
3923 |
|
|
/* No new bits? It is possible on ofo queue. */
|
3924 |
|
|
if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
|
3925 |
|
|
struct sk_buff *next = skb->next;
|
3926 |
|
|
__skb_unlink(skb, list);
|
3927 |
|
|
__kfree_skb(skb);
|
3928 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
|
3929 |
|
|
skb = next;
|
3930 |
|
|
continue;
|
3931 |
|
|
}
|
3932 |
|
|
|
3933 |
|
|
/* The first skb to collapse is:
|
3934 |
|
|
* - not SYN/FIN and
|
3935 |
|
|
* - bloated or contains data before "start" or
|
3936 |
|
|
* overlaps to the next one.
|
3937 |
|
|
*/
|
3938 |
|
|
if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
|
3939 |
|
|
(tcp_win_from_space(skb->truesize) > skb->len ||
|
3940 |
|
|
before(TCP_SKB_CB(skb)->seq, start) ||
|
3941 |
|
|
(skb->next != tail &&
|
3942 |
|
|
TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
|
3943 |
|
|
break;
|
3944 |
|
|
|
3945 |
|
|
/* Decided to skip this, advance start seq. */
|
3946 |
|
|
start = TCP_SKB_CB(skb)->end_seq;
|
3947 |
|
|
skb = skb->next;
|
3948 |
|
|
}
|
3949 |
|
|
if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
|
3950 |
|
|
return;
|
3951 |
|
|
|
3952 |
|
|
while (before(start, end)) {
|
3953 |
|
|
struct sk_buff *nskb;
|
3954 |
|
|
unsigned int header = skb_headroom(skb);
|
3955 |
|
|
int copy = SKB_MAX_ORDER(header, 0);
|
3956 |
|
|
|
3957 |
|
|
/* Too big header? This can happen with IPv6. */
|
3958 |
|
|
if (copy < 0)
|
3959 |
|
|
return;
|
3960 |
|
|
if (end-start < copy)
|
3961 |
|
|
copy = end-start;
|
3962 |
|
|
nskb = alloc_skb(copy+header, GFP_ATOMIC);
|
3963 |
|
|
if (!nskb)
|
3964 |
|
|
return;
|
3965 |
|
|
|
3966 |
|
|
skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
|
3967 |
|
|
skb_set_network_header(nskb, (skb_network_header(skb) -
|
3968 |
|
|
skb->head));
|
3969 |
|
|
skb_set_transport_header(nskb, (skb_transport_header(skb) -
|
3970 |
|
|
skb->head));
|
3971 |
|
|
skb_reserve(nskb, header);
|
3972 |
|
|
memcpy(nskb->head, skb->head, header);
|
3973 |
|
|
memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
|
3974 |
|
|
TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
|
3975 |
|
|
__skb_insert(nskb, skb->prev, skb, list);
|
3976 |
|
|
sk_stream_set_owner_r(nskb, sk);
|
3977 |
|
|
|
3978 |
|
|
/* Copy data, releasing collapsed skbs. */
|
3979 |
|
|
while (copy > 0) {
|
3980 |
|
|
int offset = start - TCP_SKB_CB(skb)->seq;
|
3981 |
|
|
int size = TCP_SKB_CB(skb)->end_seq - start;
|
3982 |
|
|
|
3983 |
|
|
BUG_ON(offset < 0);
|
3984 |
|
|
if (size > 0) {
|
3985 |
|
|
size = min(copy, size);
|
3986 |
|
|
if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
|
3987 |
|
|
BUG();
|
3988 |
|
|
TCP_SKB_CB(nskb)->end_seq += size;
|
3989 |
|
|
copy -= size;
|
3990 |
|
|
start += size;
|
3991 |
|
|
}
|
3992 |
|
|
if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
|
3993 |
|
|
struct sk_buff *next = skb->next;
|
3994 |
|
|
__skb_unlink(skb, list);
|
3995 |
|
|
__kfree_skb(skb);
|
3996 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
|
3997 |
|
|
skb = next;
|
3998 |
|
|
if (skb == tail ||
|
3999 |
|
|
tcp_hdr(skb)->syn ||
|
4000 |
|
|
tcp_hdr(skb)->fin)
|
4001 |
|
|
return;
|
4002 |
|
|
}
|
4003 |
|
|
}
|
4004 |
|
|
}
|
4005 |
|
|
}
|
4006 |
|
|
|
4007 |
|
|
/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
|
4008 |
|
|
* and tcp_collapse() them until all the queue is collapsed.
|
4009 |
|
|
*/
|
4010 |
|
|
static void tcp_collapse_ofo_queue(struct sock *sk)
|
4011 |
|
|
{
|
4012 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
4013 |
|
|
struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
|
4014 |
|
|
struct sk_buff *head;
|
4015 |
|
|
u32 start, end;
|
4016 |
|
|
|
4017 |
|
|
if (skb == NULL)
|
4018 |
|
|
return;
|
4019 |
|
|
|
4020 |
|
|
start = TCP_SKB_CB(skb)->seq;
|
4021 |
|
|
end = TCP_SKB_CB(skb)->end_seq;
|
4022 |
|
|
head = skb;
|
4023 |
|
|
|
4024 |
|
|
for (;;) {
|
4025 |
|
|
skb = skb->next;
|
4026 |
|
|
|
4027 |
|
|
/* Segment is terminated when we see gap or when
|
4028 |
|
|
* we are at the end of all the queue. */
|
4029 |
|
|
if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
|
4030 |
|
|
after(TCP_SKB_CB(skb)->seq, end) ||
|
4031 |
|
|
before(TCP_SKB_CB(skb)->end_seq, start)) {
|
4032 |
|
|
tcp_collapse(sk, &tp->out_of_order_queue,
|
4033 |
|
|
head, skb, start, end);
|
4034 |
|
|
head = skb;
|
4035 |
|
|
if (skb == (struct sk_buff *)&tp->out_of_order_queue)
|
4036 |
|
|
break;
|
4037 |
|
|
/* Start new segment */
|
4038 |
|
|
start = TCP_SKB_CB(skb)->seq;
|
4039 |
|
|
end = TCP_SKB_CB(skb)->end_seq;
|
4040 |
|
|
} else {
|
4041 |
|
|
if (before(TCP_SKB_CB(skb)->seq, start))
|
4042 |
|
|
start = TCP_SKB_CB(skb)->seq;
|
4043 |
|
|
if (after(TCP_SKB_CB(skb)->end_seq, end))
|
4044 |
|
|
end = TCP_SKB_CB(skb)->end_seq;
|
4045 |
|
|
}
|
4046 |
|
|
}
|
4047 |
|
|
}
|
4048 |
|
|
|
4049 |
|
|
/* Reduce allocated memory if we can, trying to get
|
4050 |
|
|
* the socket within its memory limits again.
|
4051 |
|
|
*
|
4052 |
|
|
* Return less than zero if we should start dropping frames
|
4053 |
|
|
* until the socket owning process reads some of the data
|
4054 |
|
|
* to stabilize the situation.
|
4055 |
|
|
*/
|
4056 |
|
|
static int tcp_prune_queue(struct sock *sk)
|
4057 |
|
|
{
|
4058 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
4059 |
|
|
|
4060 |
|
|
SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
|
4061 |
|
|
|
4062 |
|
|
NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
|
4063 |
|
|
|
4064 |
|
|
if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
|
4065 |
|
|
tcp_clamp_window(sk);
|
4066 |
|
|
else if (tcp_memory_pressure)
|
4067 |
|
|
tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
|
4068 |
|
|
|
4069 |
|
|
tcp_collapse_ofo_queue(sk);
|
4070 |
|
|
tcp_collapse(sk, &sk->sk_receive_queue,
|
4071 |
|
|
sk->sk_receive_queue.next,
|
4072 |
|
|
(struct sk_buff*)&sk->sk_receive_queue,
|
4073 |
|
|
tp->copied_seq, tp->rcv_nxt);
|
4074 |
|
|
sk_stream_mem_reclaim(sk);
|
4075 |
|
|
|
4076 |
|
|
if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
|
4077 |
|
|
return 0;
|
4078 |
|
|
|
4079 |
|
|
/* Collapsing did not help, destructive actions follow.
|
4080 |
|
|
* This must not ever occur. */
|
4081 |
|
|
|
4082 |
|
|
/* First, purge the out_of_order queue. */
|
4083 |
|
|
if (!skb_queue_empty(&tp->out_of_order_queue)) {
|
4084 |
|
|
NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
|
4085 |
|
|
__skb_queue_purge(&tp->out_of_order_queue);
|
4086 |
|
|
|
4087 |
|
|
/* Reset SACK state. A conforming SACK implementation will
|
4088 |
|
|
* do the same at a timeout based retransmit. When a connection
|
4089 |
|
|
* is in a sad state like this, we care only about integrity
|
4090 |
|
|
* of the connection not performance.
|
4091 |
|
|
*/
|
4092 |
|
|
if (tcp_is_sack(tp))
|
4093 |
|
|
tcp_sack_reset(&tp->rx_opt);
|
4094 |
|
|
sk_stream_mem_reclaim(sk);
|
4095 |
|
|
}
|
4096 |
|
|
|
4097 |
|
|
if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
|
4098 |
|
|
return 0;
|
4099 |
|
|
|
4100 |
|
|
/* If we are really being abused, tell the caller to silently
|
4101 |
|
|
* drop receive data on the floor. It will get retransmitted
|
4102 |
|
|
* and hopefully then we'll have sufficient space.
|
4103 |
|
|
*/
|
4104 |
|
|
NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
|
4105 |
|
|
|
4106 |
|
|
/* Massive buffer overcommit. */
|
4107 |
|
|
tp->pred_flags = 0;
|
4108 |
|
|
return -1;
|
4109 |
|
|
}
|
4110 |
|
|
|
4111 |
|
|
|
4112 |
|
|
/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
|
4113 |
|
|
* As additional protections, we do not touch cwnd in retransmission phases,
|
4114 |
|
|
* and if application hit its sndbuf limit recently.
|
4115 |
|
|
*/
|
4116 |
|
|
void tcp_cwnd_application_limited(struct sock *sk)
|
4117 |
|
|
{
|
4118 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
4119 |
|
|
|
4120 |
|
|
if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
|
4121 |
|
|
sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
|
4122 |
|
|
/* Limited by application or receiver window. */
|
4123 |
|
|
u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
|
4124 |
|
|
u32 win_used = max(tp->snd_cwnd_used, init_win);
|
4125 |
|
|
if (win_used < tp->snd_cwnd) {
|
4126 |
|
|
tp->snd_ssthresh = tcp_current_ssthresh(sk);
|
4127 |
|
|
tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
|
4128 |
|
|
}
|
4129 |
|
|
tp->snd_cwnd_used = 0;
|
4130 |
|
|
}
|
4131 |
|
|
tp->snd_cwnd_stamp = tcp_time_stamp;
|
4132 |
|
|
}
|
4133 |
|
|
|
4134 |
|
|
static int tcp_should_expand_sndbuf(struct sock *sk)
|
4135 |
|
|
{
|
4136 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
4137 |
|
|
|
4138 |
|
|
/* If the user specified a specific send buffer setting, do
|
4139 |
|
|
* not modify it.
|
4140 |
|
|
*/
|
4141 |
|
|
if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
|
4142 |
|
|
return 0;
|
4143 |
|
|
|
4144 |
|
|
/* If we are under global TCP memory pressure, do not expand. */
|
4145 |
|
|
if (tcp_memory_pressure)
|
4146 |
|
|
return 0;
|
4147 |
|
|
|
4148 |
|
|
/* If we are under soft global TCP memory pressure, do not expand. */
|
4149 |
|
|
if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
|
4150 |
|
|
return 0;
|
4151 |
|
|
|
4152 |
|
|
/* If we filled the congestion window, do not expand. */
|
4153 |
|
|
if (tp->packets_out >= tp->snd_cwnd)
|
4154 |
|
|
return 0;
|
4155 |
|
|
|
4156 |
|
|
return 1;
|
4157 |
|
|
}
|
4158 |
|
|
|
4159 |
|
|
/* When incoming ACK allowed to free some skb from write_queue,
|
4160 |
|
|
* we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
|
4161 |
|
|
* on the exit from tcp input handler.
|
4162 |
|
|
*
|
4163 |
|
|
* PROBLEM: sndbuf expansion does not work well with largesend.
|
4164 |
|
|
*/
|
4165 |
|
|
static void tcp_new_space(struct sock *sk)
|
4166 |
|
|
{
|
4167 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
4168 |
|
|
|
4169 |
|
|
if (tcp_should_expand_sndbuf(sk)) {
|
4170 |
|
|
int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
|
4171 |
|
|
MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
|
4172 |
|
|
demanded = max_t(unsigned int, tp->snd_cwnd,
|
4173 |
|
|
tp->reordering + 1);
|
4174 |
|
|
sndmem *= 2*demanded;
|
4175 |
|
|
if (sndmem > sk->sk_sndbuf)
|
4176 |
|
|
sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
|
4177 |
|
|
tp->snd_cwnd_stamp = tcp_time_stamp;
|
4178 |
|
|
}
|
4179 |
|
|
|
4180 |
|
|
sk->sk_write_space(sk);
|
4181 |
|
|
}
|
4182 |
|
|
|
4183 |
|
|
static void tcp_check_space(struct sock *sk)
|
4184 |
|
|
{
|
4185 |
|
|
if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
|
4186 |
|
|
sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
|
4187 |
|
|
if (sk->sk_socket &&
|
4188 |
|
|
test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
|
4189 |
|
|
tcp_new_space(sk);
|
4190 |
|
|
}
|
4191 |
|
|
}
|
4192 |
|
|
|
4193 |
|
|
static inline void tcp_data_snd_check(struct sock *sk)
|
4194 |
|
|
{
|
4195 |
|
|
tcp_push_pending_frames(sk);
|
4196 |
|
|
tcp_check_space(sk);
|
4197 |
|
|
}
|
4198 |
|
|
|
4199 |
|
|
/*
|
4200 |
|
|
* Check if sending an ack is needed.
|
4201 |
|
|
*/
|
4202 |
|
|
static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
|
4203 |
|
|
{
|
4204 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
4205 |
|
|
|
4206 |
|
|
/* More than one full frame received... */
|
4207 |
|
|
if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
|
4208 |
|
|
/* ... and right edge of window advances far enough.
|
4209 |
|
|
* (tcp_recvmsg() will send ACK otherwise). Or...
|
4210 |
|
|
*/
|
4211 |
|
|
&& __tcp_select_window(sk) >= tp->rcv_wnd) ||
|
4212 |
|
|
/* We ACK each frame or... */
|
4213 |
|
|
tcp_in_quickack_mode(sk) ||
|
4214 |
|
|
/* We have out of order data. */
|
4215 |
|
|
(ofo_possible &&
|
4216 |
|
|
skb_peek(&tp->out_of_order_queue))) {
|
4217 |
|
|
/* Then ack it now */
|
4218 |
|
|
tcp_send_ack(sk);
|
4219 |
|
|
} else {
|
4220 |
|
|
/* Else, send delayed ack. */
|
4221 |
|
|
tcp_send_delayed_ack(sk);
|
4222 |
|
|
}
|
4223 |
|
|
}
|
4224 |
|
|
|
4225 |
|
|
static inline void tcp_ack_snd_check(struct sock *sk)
|
4226 |
|
|
{
|
4227 |
|
|
if (!inet_csk_ack_scheduled(sk)) {
|
4228 |
|
|
/* We sent a data segment already. */
|
4229 |
|
|
return;
|
4230 |
|
|
}
|
4231 |
|
|
__tcp_ack_snd_check(sk, 1);
|
4232 |
|
|
}
|
4233 |
|
|
|
4234 |
|
|
/*
|
4235 |
|
|
* This routine is only called when we have urgent data
|
4236 |
|
|
* signaled. Its the 'slow' part of tcp_urg. It could be
|
4237 |
|
|
* moved inline now as tcp_urg is only called from one
|
4238 |
|
|
* place. We handle URGent data wrong. We have to - as
|
4239 |
|
|
* BSD still doesn't use the correction from RFC961.
|
4240 |
|
|
* For 1003.1g we should support a new option TCP_STDURG to permit
|
4241 |
|
|
* either form (or just set the sysctl tcp_stdurg).
|
4242 |
|
|
*/
|
4243 |
|
|
|
4244 |
|
|
static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
|
4245 |
|
|
{
|
4246 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
4247 |
|
|
u32 ptr = ntohs(th->urg_ptr);
|
4248 |
|
|
|
4249 |
|
|
if (ptr && !sysctl_tcp_stdurg)
|
4250 |
|
|
ptr--;
|
4251 |
|
|
ptr += ntohl(th->seq);
|
4252 |
|
|
|
4253 |
|
|
/* Ignore urgent data that we've already seen and read. */
|
4254 |
|
|
if (after(tp->copied_seq, ptr))
|
4255 |
|
|
return;
|
4256 |
|
|
|
4257 |
|
|
/* Do not replay urg ptr.
|
4258 |
|
|
*
|
4259 |
|
|
* NOTE: interesting situation not covered by specs.
|
4260 |
|
|
* Misbehaving sender may send urg ptr, pointing to segment,
|
4261 |
|
|
* which we already have in ofo queue. We are not able to fetch
|
4262 |
|
|
* such data and will stay in TCP_URG_NOTYET until will be eaten
|
4263 |
|
|
* by recvmsg(). Seems, we are not obliged to handle such wicked
|
4264 |
|
|
* situations. But it is worth to think about possibility of some
|
4265 |
|
|
* DoSes using some hypothetical application level deadlock.
|
4266 |
|
|
*/
|
4267 |
|
|
if (before(ptr, tp->rcv_nxt))
|
4268 |
|
|
return;
|
4269 |
|
|
|
4270 |
|
|
/* Do we already have a newer (or duplicate) urgent pointer? */
|
4271 |
|
|
if (tp->urg_data && !after(ptr, tp->urg_seq))
|
4272 |
|
|
return;
|
4273 |
|
|
|
4274 |
|
|
/* Tell the world about our new urgent pointer. */
|
4275 |
|
|
sk_send_sigurg(sk);
|
4276 |
|
|
|
4277 |
|
|
/* We may be adding urgent data when the last byte read was
|
4278 |
|
|
* urgent. To do this requires some care. We cannot just ignore
|
4279 |
|
|
* tp->copied_seq since we would read the last urgent byte again
|
4280 |
|
|
* as data, nor can we alter copied_seq until this data arrives
|
4281 |
|
|
* or we break the semantics of SIOCATMARK (and thus sockatmark())
|
4282 |
|
|
*
|
4283 |
|
|
* NOTE. Double Dutch. Rendering to plain English: author of comment
|
4284 |
|
|
* above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
|
4285 |
|
|
* and expect that both A and B disappear from stream. This is _wrong_.
|
4286 |
|
|
* Though this happens in BSD with high probability, this is occasional.
|
4287 |
|
|
* Any application relying on this is buggy. Note also, that fix "works"
|
4288 |
|
|
* only in this artificial test. Insert some normal data between A and B and we will
|
4289 |
|
|
* decline of BSD again. Verdict: it is better to remove to trap
|
4290 |
|
|
* buggy users.
|
4291 |
|
|
*/
|
4292 |
|
|
if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
|
4293 |
|
|
!sock_flag(sk, SOCK_URGINLINE) &&
|
4294 |
|
|
tp->copied_seq != tp->rcv_nxt) {
|
4295 |
|
|
struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
|
4296 |
|
|
tp->copied_seq++;
|
4297 |
|
|
if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
|
4298 |
|
|
__skb_unlink(skb, &sk->sk_receive_queue);
|
4299 |
|
|
__kfree_skb(skb);
|
4300 |
|
|
}
|
4301 |
|
|
}
|
4302 |
|
|
|
4303 |
|
|
tp->urg_data = TCP_URG_NOTYET;
|
4304 |
|
|
tp->urg_seq = ptr;
|
4305 |
|
|
|
4306 |
|
|
/* Disable header prediction. */
|
4307 |
|
|
tp->pred_flags = 0;
|
4308 |
|
|
}
|
4309 |
|
|
|
4310 |
|
|
/* This is the 'fast' part of urgent handling. */
|
4311 |
|
|
static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
|
4312 |
|
|
{
|
4313 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
4314 |
|
|
|
4315 |
|
|
/* Check if we get a new urgent pointer - normally not. */
|
4316 |
|
|
if (th->urg)
|
4317 |
|
|
tcp_check_urg(sk,th);
|
4318 |
|
|
|
4319 |
|
|
/* Do we wait for any urgent data? - normally not... */
|
4320 |
|
|
if (tp->urg_data == TCP_URG_NOTYET) {
|
4321 |
|
|
u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
|
4322 |
|
|
th->syn;
|
4323 |
|
|
|
4324 |
|
|
/* Is the urgent pointer pointing into this packet? */
|
4325 |
|
|
if (ptr < skb->len) {
|
4326 |
|
|
u8 tmp;
|
4327 |
|
|
if (skb_copy_bits(skb, ptr, &tmp, 1))
|
4328 |
|
|
BUG();
|
4329 |
|
|
tp->urg_data = TCP_URG_VALID | tmp;
|
4330 |
|
|
if (!sock_flag(sk, SOCK_DEAD))
|
4331 |
|
|
sk->sk_data_ready(sk, 0);
|
4332 |
|
|
}
|
4333 |
|
|
}
|
4334 |
|
|
}
|
4335 |
|
|
|
4336 |
|
|
static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
|
4337 |
|
|
{
|
4338 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
4339 |
|
|
int chunk = skb->len - hlen;
|
4340 |
|
|
int err;
|
4341 |
|
|
|
4342 |
|
|
local_bh_enable();
|
4343 |
|
|
if (skb_csum_unnecessary(skb))
|
4344 |
|
|
err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
|
4345 |
|
|
else
|
4346 |
|
|
err = skb_copy_and_csum_datagram_iovec(skb, hlen,
|
4347 |
|
|
tp->ucopy.iov);
|
4348 |
|
|
|
4349 |
|
|
if (!err) {
|
4350 |
|
|
tp->ucopy.len -= chunk;
|
4351 |
|
|
tp->copied_seq += chunk;
|
4352 |
|
|
tcp_rcv_space_adjust(sk);
|
4353 |
|
|
}
|
4354 |
|
|
|
4355 |
|
|
local_bh_disable();
|
4356 |
|
|
return err;
|
4357 |
|
|
}
|
4358 |
|
|
|
4359 |
|
|
static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
|
4360 |
|
|
{
|
4361 |
|
|
__sum16 result;
|
4362 |
|
|
|
4363 |
|
|
if (sock_owned_by_user(sk)) {
|
4364 |
|
|
local_bh_enable();
|
4365 |
|
|
result = __tcp_checksum_complete(skb);
|
4366 |
|
|
local_bh_disable();
|
4367 |
|
|
} else {
|
4368 |
|
|
result = __tcp_checksum_complete(skb);
|
4369 |
|
|
}
|
4370 |
|
|
return result;
|
4371 |
|
|
}
|
4372 |
|
|
|
4373 |
|
|
static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
|
4374 |
|
|
{
|
4375 |
|
|
return !skb_csum_unnecessary(skb) &&
|
4376 |
|
|
__tcp_checksum_complete_user(sk, skb);
|
4377 |
|
|
}
|
4378 |
|
|
|
4379 |
|
|
#ifdef CONFIG_NET_DMA
|
4380 |
|
|
static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
|
4381 |
|
|
{
|
4382 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
4383 |
|
|
int chunk = skb->len - hlen;
|
4384 |
|
|
int dma_cookie;
|
4385 |
|
|
int copied_early = 0;
|
4386 |
|
|
|
4387 |
|
|
if (tp->ucopy.wakeup)
|
4388 |
|
|
return 0;
|
4389 |
|
|
|
4390 |
|
|
if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
|
4391 |
|
|
tp->ucopy.dma_chan = get_softnet_dma();
|
4392 |
|
|
|
4393 |
|
|
if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
|
4394 |
|
|
|
4395 |
|
|
dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
|
4396 |
|
|
skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
|
4397 |
|
|
|
4398 |
|
|
if (dma_cookie < 0)
|
4399 |
|
|
goto out;
|
4400 |
|
|
|
4401 |
|
|
tp->ucopy.dma_cookie = dma_cookie;
|
4402 |
|
|
copied_early = 1;
|
4403 |
|
|
|
4404 |
|
|
tp->ucopy.len -= chunk;
|
4405 |
|
|
tp->copied_seq += chunk;
|
4406 |
|
|
tcp_rcv_space_adjust(sk);
|
4407 |
|
|
|
4408 |
|
|
if ((tp->ucopy.len == 0) ||
|
4409 |
|
|
(tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
|
4410 |
|
|
(atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
|
4411 |
|
|
tp->ucopy.wakeup = 1;
|
4412 |
|
|
sk->sk_data_ready(sk, 0);
|
4413 |
|
|
}
|
4414 |
|
|
} else if (chunk > 0) {
|
4415 |
|
|
tp->ucopy.wakeup = 1;
|
4416 |
|
|
sk->sk_data_ready(sk, 0);
|
4417 |
|
|
}
|
4418 |
|
|
out:
|
4419 |
|
|
return copied_early;
|
4420 |
|
|
}
|
4421 |
|
|
#endif /* CONFIG_NET_DMA */
|
4422 |
|
|
|
4423 |
|
|
/*
|
4424 |
|
|
* TCP receive function for the ESTABLISHED state.
|
4425 |
|
|
*
|
4426 |
|
|
* It is split into a fast path and a slow path. The fast path is
|
4427 |
|
|
* disabled when:
|
4428 |
|
|
* - A zero window was announced from us - zero window probing
|
4429 |
|
|
* is only handled properly in the slow path.
|
4430 |
|
|
* - Out of order segments arrived.
|
4431 |
|
|
* - Urgent data is expected.
|
4432 |
|
|
* - There is no buffer space left
|
4433 |
|
|
* - Unexpected TCP flags/window values/header lengths are received
|
4434 |
|
|
* (detected by checking the TCP header against pred_flags)
|
4435 |
|
|
* - Data is sent in both directions. Fast path only supports pure senders
|
4436 |
|
|
* or pure receivers (this means either the sequence number or the ack
|
4437 |
|
|
* value must stay constant)
|
4438 |
|
|
* - Unexpected TCP option.
|
4439 |
|
|
*
|
4440 |
|
|
* When these conditions are not satisfied it drops into a standard
|
4441 |
|
|
* receive procedure patterned after RFC793 to handle all cases.
|
4442 |
|
|
* The first three cases are guaranteed by proper pred_flags setting,
|
4443 |
|
|
* the rest is checked inline. Fast processing is turned on in
|
4444 |
|
|
* tcp_data_queue when everything is OK.
|
4445 |
|
|
*/
|
4446 |
|
|
int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
|
4447 |
|
|
struct tcphdr *th, unsigned len)
|
4448 |
|
|
{
|
4449 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
4450 |
|
|
|
4451 |
|
|
/*
|
4452 |
|
|
* Header prediction.
|
4453 |
|
|
* The code loosely follows the one in the famous
|
4454 |
|
|
* "30 instruction TCP receive" Van Jacobson mail.
|
4455 |
|
|
*
|
4456 |
|
|
* Van's trick is to deposit buffers into socket queue
|
4457 |
|
|
* on a device interrupt, to call tcp_recv function
|
4458 |
|
|
* on the receive process context and checksum and copy
|
4459 |
|
|
* the buffer to user space. smart...
|
4460 |
|
|
*
|
4461 |
|
|
* Our current scheme is not silly either but we take the
|
4462 |
|
|
* extra cost of the net_bh soft interrupt processing...
|
4463 |
|
|
* We do checksum and copy also but from device to kernel.
|
4464 |
|
|
*/
|
4465 |
|
|
|
4466 |
|
|
tp->rx_opt.saw_tstamp = 0;
|
4467 |
|
|
|
4468 |
|
|
/* pred_flags is 0xS?10 << 16 + snd_wnd
|
4469 |
|
|
* if header_prediction is to be made
|
4470 |
|
|
* 'S' will always be tp->tcp_header_len >> 2
|
4471 |
|
|
* '?' will be 0 for the fast path, otherwise pred_flags is 0 to
|
4472 |
|
|
* turn it off (when there are holes in the receive
|
4473 |
|
|
* space for instance)
|
4474 |
|
|
* PSH flag is ignored.
|
4475 |
|
|
*/
|
4476 |
|
|
|
4477 |
|
|
if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
|
4478 |
|
|
TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
|
4479 |
|
|
int tcp_header_len = tp->tcp_header_len;
|
4480 |
|
|
|
4481 |
|
|
/* Timestamp header prediction: tcp_header_len
|
4482 |
|
|
* is automatically equal to th->doff*4 due to pred_flags
|
4483 |
|
|
* match.
|
4484 |
|
|
*/
|
4485 |
|
|
|
4486 |
|
|
/* Check timestamp */
|
4487 |
|
|
if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
|
4488 |
|
|
__be32 *ptr = (__be32 *)(th + 1);
|
4489 |
|
|
|
4490 |
|
|
/* No? Slow path! */
|
4491 |
|
|
if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
|
4492 |
|
|
| (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
|
4493 |
|
|
goto slow_path;
|
4494 |
|
|
|
4495 |
|
|
tp->rx_opt.saw_tstamp = 1;
|
4496 |
|
|
++ptr;
|
4497 |
|
|
tp->rx_opt.rcv_tsval = ntohl(*ptr);
|
4498 |
|
|
++ptr;
|
4499 |
|
|
tp->rx_opt.rcv_tsecr = ntohl(*ptr);
|
4500 |
|
|
|
4501 |
|
|
/* If PAWS failed, check it more carefully in slow path */
|
4502 |
|
|
if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
|
4503 |
|
|
goto slow_path;
|
4504 |
|
|
|
4505 |
|
|
/* DO NOT update ts_recent here, if checksum fails
|
4506 |
|
|
* and timestamp was corrupted part, it will result
|
4507 |
|
|
* in a hung connection since we will drop all
|
4508 |
|
|
* future packets due to the PAWS test.
|
4509 |
|
|
*/
|
4510 |
|
|
}
|
4511 |
|
|
|
4512 |
|
|
if (len <= tcp_header_len) {
|
4513 |
|
|
/* Bulk data transfer: sender */
|
4514 |
|
|
if (len == tcp_header_len) {
|
4515 |
|
|
/* Predicted packet is in window by definition.
|
4516 |
|
|
* seq == rcv_nxt and rcv_wup <= rcv_nxt.
|
4517 |
|
|
* Hence, check seq<=rcv_wup reduces to:
|
4518 |
|
|
*/
|
4519 |
|
|
if (tcp_header_len ==
|
4520 |
|
|
(sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
|
4521 |
|
|
tp->rcv_nxt == tp->rcv_wup)
|
4522 |
|
|
tcp_store_ts_recent(tp);
|
4523 |
|
|
|
4524 |
|
|
/* We know that such packets are checksummed
|
4525 |
|
|
* on entry.
|
4526 |
|
|
*/
|
4527 |
|
|
tcp_ack(sk, skb, 0);
|
4528 |
|
|
__kfree_skb(skb);
|
4529 |
|
|
tcp_data_snd_check(sk);
|
4530 |
|
|
return 0;
|
4531 |
|
|
} else { /* Header too small */
|
4532 |
|
|
TCP_INC_STATS_BH(TCP_MIB_INERRS);
|
4533 |
|
|
goto discard;
|
4534 |
|
|
}
|
4535 |
|
|
} else {
|
4536 |
|
|
int eaten = 0;
|
4537 |
|
|
int copied_early = 0;
|
4538 |
|
|
|
4539 |
|
|
if (tp->copied_seq == tp->rcv_nxt &&
|
4540 |
|
|
len - tcp_header_len <= tp->ucopy.len) {
|
4541 |
|
|
#ifdef CONFIG_NET_DMA
|
4542 |
|
|
if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
|
4543 |
|
|
copied_early = 1;
|
4544 |
|
|
eaten = 1;
|
4545 |
|
|
}
|
4546 |
|
|
#endif
|
4547 |
|
|
if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
|
4548 |
|
|
__set_current_state(TASK_RUNNING);
|
4549 |
|
|
|
4550 |
|
|
if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
|
4551 |
|
|
eaten = 1;
|
4552 |
|
|
}
|
4553 |
|
|
if (eaten) {
|
4554 |
|
|
/* Predicted packet is in window by definition.
|
4555 |
|
|
* seq == rcv_nxt and rcv_wup <= rcv_nxt.
|
4556 |
|
|
* Hence, check seq<=rcv_wup reduces to:
|
4557 |
|
|
*/
|
4558 |
|
|
if (tcp_header_len ==
|
4559 |
|
|
(sizeof(struct tcphdr) +
|
4560 |
|
|
TCPOLEN_TSTAMP_ALIGNED) &&
|
4561 |
|
|
tp->rcv_nxt == tp->rcv_wup)
|
4562 |
|
|
tcp_store_ts_recent(tp);
|
4563 |
|
|
|
4564 |
|
|
tcp_rcv_rtt_measure_ts(sk, skb);
|
4565 |
|
|
|
4566 |
|
|
__skb_pull(skb, tcp_header_len);
|
4567 |
|
|
tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
|
4568 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
|
4569 |
|
|
}
|
4570 |
|
|
if (copied_early)
|
4571 |
|
|
tcp_cleanup_rbuf(sk, skb->len);
|
4572 |
|
|
}
|
4573 |
|
|
if (!eaten) {
|
4574 |
|
|
if (tcp_checksum_complete_user(sk, skb))
|
4575 |
|
|
goto csum_error;
|
4576 |
|
|
|
4577 |
|
|
/* Predicted packet is in window by definition.
|
4578 |
|
|
* seq == rcv_nxt and rcv_wup <= rcv_nxt.
|
4579 |
|
|
* Hence, check seq<=rcv_wup reduces to:
|
4580 |
|
|
*/
|
4581 |
|
|
if (tcp_header_len ==
|
4582 |
|
|
(sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
|
4583 |
|
|
tp->rcv_nxt == tp->rcv_wup)
|
4584 |
|
|
tcp_store_ts_recent(tp);
|
4585 |
|
|
|
4586 |
|
|
tcp_rcv_rtt_measure_ts(sk, skb);
|
4587 |
|
|
|
4588 |
|
|
if ((int)skb->truesize > sk->sk_forward_alloc)
|
4589 |
|
|
goto step5;
|
4590 |
|
|
|
4591 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
|
4592 |
|
|
|
4593 |
|
|
/* Bulk data transfer: receiver */
|
4594 |
|
|
__skb_pull(skb,tcp_header_len);
|
4595 |
|
|
__skb_queue_tail(&sk->sk_receive_queue, skb);
|
4596 |
|
|
sk_stream_set_owner_r(skb, sk);
|
4597 |
|
|
tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
|
4598 |
|
|
}
|
4599 |
|
|
|
4600 |
|
|
tcp_event_data_recv(sk, skb);
|
4601 |
|
|
|
4602 |
|
|
if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
|
4603 |
|
|
/* Well, only one small jumplet in fast path... */
|
4604 |
|
|
tcp_ack(sk, skb, FLAG_DATA);
|
4605 |
|
|
tcp_data_snd_check(sk);
|
4606 |
|
|
if (!inet_csk_ack_scheduled(sk))
|
4607 |
|
|
goto no_ack;
|
4608 |
|
|
}
|
4609 |
|
|
|
4610 |
|
|
__tcp_ack_snd_check(sk, 0);
|
4611 |
|
|
no_ack:
|
4612 |
|
|
#ifdef CONFIG_NET_DMA
|
4613 |
|
|
if (copied_early)
|
4614 |
|
|
__skb_queue_tail(&sk->sk_async_wait_queue, skb);
|
4615 |
|
|
else
|
4616 |
|
|
#endif
|
4617 |
|
|
if (eaten)
|
4618 |
|
|
__kfree_skb(skb);
|
4619 |
|
|
else
|
4620 |
|
|
sk->sk_data_ready(sk, 0);
|
4621 |
|
|
return 0;
|
4622 |
|
|
}
|
4623 |
|
|
}
|
4624 |
|
|
|
4625 |
|
|
slow_path:
|
4626 |
|
|
if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
|
4627 |
|
|
goto csum_error;
|
4628 |
|
|
|
4629 |
|
|
/*
|
4630 |
|
|
* RFC1323: H1. Apply PAWS check first.
|
4631 |
|
|
*/
|
4632 |
|
|
if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
|
4633 |
|
|
tcp_paws_discard(sk, skb)) {
|
4634 |
|
|
if (!th->rst) {
|
4635 |
|
|
NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
|
4636 |
|
|
tcp_send_dupack(sk, skb);
|
4637 |
|
|
goto discard;
|
4638 |
|
|
}
|
4639 |
|
|
/* Resets are accepted even if PAWS failed.
|
4640 |
|
|
|
4641 |
|
|
ts_recent update must be made after we are sure
|
4642 |
|
|
that the packet is in window.
|
4643 |
|
|
*/
|
4644 |
|
|
}
|
4645 |
|
|
|
4646 |
|
|
/*
|
4647 |
|
|
* Standard slow path.
|
4648 |
|
|
*/
|
4649 |
|
|
|
4650 |
|
|
if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
|
4651 |
|
|
/* RFC793, page 37: "In all states except SYN-SENT, all reset
|
4652 |
|
|
* (RST) segments are validated by checking their SEQ-fields."
|
4653 |
|
|
* And page 69: "If an incoming segment is not acceptable,
|
4654 |
|
|
* an acknowledgment should be sent in reply (unless the RST bit
|
4655 |
|
|
* is set, if so drop the segment and return)".
|
4656 |
|
|
*/
|
4657 |
|
|
if (!th->rst)
|
4658 |
|
|
tcp_send_dupack(sk, skb);
|
4659 |
|
|
goto discard;
|
4660 |
|
|
}
|
4661 |
|
|
|
4662 |
|
|
if (th->rst) {
|
4663 |
|
|
tcp_reset(sk);
|
4664 |
|
|
goto discard;
|
4665 |
|
|
}
|
4666 |
|
|
|
4667 |
|
|
tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
|
4668 |
|
|
|
4669 |
|
|
if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
|
4670 |
|
|
TCP_INC_STATS_BH(TCP_MIB_INERRS);
|
4671 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
|
4672 |
|
|
tcp_reset(sk);
|
4673 |
|
|
return 1;
|
4674 |
|
|
}
|
4675 |
|
|
|
4676 |
|
|
step5:
|
4677 |
|
|
if (th->ack)
|
4678 |
|
|
tcp_ack(sk, skb, FLAG_SLOWPATH);
|
4679 |
|
|
|
4680 |
|
|
tcp_rcv_rtt_measure_ts(sk, skb);
|
4681 |
|
|
|
4682 |
|
|
/* Process urgent data. */
|
4683 |
|
|
tcp_urg(sk, skb, th);
|
4684 |
|
|
|
4685 |
|
|
/* step 7: process the segment text */
|
4686 |
|
|
tcp_data_queue(sk, skb);
|
4687 |
|
|
|
4688 |
|
|
tcp_data_snd_check(sk);
|
4689 |
|
|
tcp_ack_snd_check(sk);
|
4690 |
|
|
return 0;
|
4691 |
|
|
|
4692 |
|
|
csum_error:
|
4693 |
|
|
TCP_INC_STATS_BH(TCP_MIB_INERRS);
|
4694 |
|
|
|
4695 |
|
|
discard:
|
4696 |
|
|
__kfree_skb(skb);
|
4697 |
|
|
return 0;
|
4698 |
|
|
}
|
4699 |
|
|
|
4700 |
|
|
static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
|
4701 |
|
|
struct tcphdr *th, unsigned len)
|
4702 |
|
|
{
|
4703 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
4704 |
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
4705 |
|
|
int saved_clamp = tp->rx_opt.mss_clamp;
|
4706 |
|
|
|
4707 |
|
|
tcp_parse_options(skb, &tp->rx_opt, 0);
|
4708 |
|
|
|
4709 |
|
|
if (th->ack) {
|
4710 |
|
|
/* rfc793:
|
4711 |
|
|
* "If the state is SYN-SENT then
|
4712 |
|
|
* first check the ACK bit
|
4713 |
|
|
* If the ACK bit is set
|
4714 |
|
|
* If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
|
4715 |
|
|
* a reset (unless the RST bit is set, if so drop
|
4716 |
|
|
* the segment and return)"
|
4717 |
|
|
*
|
4718 |
|
|
* We do not send data with SYN, so that RFC-correct
|
4719 |
|
|
* test reduces to:
|
4720 |
|
|
*/
|
4721 |
|
|
if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
|
4722 |
|
|
goto reset_and_undo;
|
4723 |
|
|
|
4724 |
|
|
if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
|
4725 |
|
|
!between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
|
4726 |
|
|
tcp_time_stamp)) {
|
4727 |
|
|
NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
|
4728 |
|
|
goto reset_and_undo;
|
4729 |
|
|
}
|
4730 |
|
|
|
4731 |
|
|
/* Now ACK is acceptable.
|
4732 |
|
|
*
|
4733 |
|
|
* "If the RST bit is set
|
4734 |
|
|
* If the ACK was acceptable then signal the user "error:
|
4735 |
|
|
* connection reset", drop the segment, enter CLOSED state,
|
4736 |
|
|
* delete TCB, and return."
|
4737 |
|
|
*/
|
4738 |
|
|
|
4739 |
|
|
if (th->rst) {
|
4740 |
|
|
tcp_reset(sk);
|
4741 |
|
|
goto discard;
|
4742 |
|
|
}
|
4743 |
|
|
|
4744 |
|
|
/* rfc793:
|
4745 |
|
|
* "fifth, if neither of the SYN or RST bits is set then
|
4746 |
|
|
* drop the segment and return."
|
4747 |
|
|
*
|
4748 |
|
|
* See note below!
|
4749 |
|
|
* --ANK(990513)
|
4750 |
|
|
*/
|
4751 |
|
|
if (!th->syn)
|
4752 |
|
|
goto discard_and_undo;
|
4753 |
|
|
|
4754 |
|
|
/* rfc793:
|
4755 |
|
|
* "If the SYN bit is on ...
|
4756 |
|
|
* are acceptable then ...
|
4757 |
|
|
* (our SYN has been ACKed), change the connection
|
4758 |
|
|
* state to ESTABLISHED..."
|
4759 |
|
|
*/
|
4760 |
|
|
|
4761 |
|
|
TCP_ECN_rcv_synack(tp, th);
|
4762 |
|
|
|
4763 |
|
|
tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
|
4764 |
|
|
tcp_ack(sk, skb, FLAG_SLOWPATH);
|
4765 |
|
|
|
4766 |
|
|
/* Ok.. it's good. Set up sequence numbers and
|
4767 |
|
|
* move to established.
|
4768 |
|
|
*/
|
4769 |
|
|
tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
|
4770 |
|
|
tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
|
4771 |
|
|
|
4772 |
|
|
/* RFC1323: The window in SYN & SYN/ACK segments is
|
4773 |
|
|
* never scaled.
|
4774 |
|
|
*/
|
4775 |
|
|
tp->snd_wnd = ntohs(th->window);
|
4776 |
|
|
tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
|
4777 |
|
|
|
4778 |
|
|
if (!tp->rx_opt.wscale_ok) {
|
4779 |
|
|
tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
|
4780 |
|
|
tp->window_clamp = min(tp->window_clamp, 65535U);
|
4781 |
|
|
}
|
4782 |
|
|
|
4783 |
|
|
if (tp->rx_opt.saw_tstamp) {
|
4784 |
|
|
tp->rx_opt.tstamp_ok = 1;
|
4785 |
|
|
tp->tcp_header_len =
|
4786 |
|
|
sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
|
4787 |
|
|
tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
|
4788 |
|
|
tcp_store_ts_recent(tp);
|
4789 |
|
|
} else {
|
4790 |
|
|
tp->tcp_header_len = sizeof(struct tcphdr);
|
4791 |
|
|
}
|
4792 |
|
|
|
4793 |
|
|
if (tcp_is_sack(tp) && sysctl_tcp_fack)
|
4794 |
|
|
tcp_enable_fack(tp);
|
4795 |
|
|
|
4796 |
|
|
tcp_mtup_init(sk);
|
4797 |
|
|
tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
|
4798 |
|
|
tcp_initialize_rcv_mss(sk);
|
4799 |
|
|
|
4800 |
|
|
/* Remember, tcp_poll() does not lock socket!
|
4801 |
|
|
* Change state from SYN-SENT only after copied_seq
|
4802 |
|
|
* is initialized. */
|
4803 |
|
|
tp->copied_seq = tp->rcv_nxt;
|
4804 |
|
|
smp_mb();
|
4805 |
|
|
tcp_set_state(sk, TCP_ESTABLISHED);
|
4806 |
|
|
|
4807 |
|
|
security_inet_conn_established(sk, skb);
|
4808 |
|
|
|
4809 |
|
|
/* Make sure socket is routed, for correct metrics. */
|
4810 |
|
|
icsk->icsk_af_ops->rebuild_header(sk);
|
4811 |
|
|
|
4812 |
|
|
tcp_init_metrics(sk);
|
4813 |
|
|
|
4814 |
|
|
tcp_init_congestion_control(sk);
|
4815 |
|
|
|
4816 |
|
|
/* Prevent spurious tcp_cwnd_restart() on first data
|
4817 |
|
|
* packet.
|
4818 |
|
|
*/
|
4819 |
|
|
tp->lsndtime = tcp_time_stamp;
|
4820 |
|
|
|
4821 |
|
|
tcp_init_buffer_space(sk);
|
4822 |
|
|
|
4823 |
|
|
if (sock_flag(sk, SOCK_KEEPOPEN))
|
4824 |
|
|
inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
|
4825 |
|
|
|
4826 |
|
|
if (!tp->rx_opt.snd_wscale)
|
4827 |
|
|
__tcp_fast_path_on(tp, tp->snd_wnd);
|
4828 |
|
|
else
|
4829 |
|
|
tp->pred_flags = 0;
|
4830 |
|
|
|
4831 |
|
|
if (!sock_flag(sk, SOCK_DEAD)) {
|
4832 |
|
|
sk->sk_state_change(sk);
|
4833 |
|
|
sk_wake_async(sk, 0, POLL_OUT);
|
4834 |
|
|
}
|
4835 |
|
|
|
4836 |
|
|
if (sk->sk_write_pending ||
|
4837 |
|
|
icsk->icsk_accept_queue.rskq_defer_accept ||
|
4838 |
|
|
icsk->icsk_ack.pingpong) {
|
4839 |
|
|
/* Save one ACK. Data will be ready after
|
4840 |
|
|
* several ticks, if write_pending is set.
|
4841 |
|
|
*
|
4842 |
|
|
* It may be deleted, but with this feature tcpdumps
|
4843 |
|
|
* look so _wonderfully_ clever, that I was not able
|
4844 |
|
|
* to stand against the temptation 8) --ANK
|
4845 |
|
|
*/
|
4846 |
|
|
inet_csk_schedule_ack(sk);
|
4847 |
|
|
icsk->icsk_ack.lrcvtime = tcp_time_stamp;
|
4848 |
|
|
icsk->icsk_ack.ato = TCP_ATO_MIN;
|
4849 |
|
|
tcp_incr_quickack(sk);
|
4850 |
|
|
tcp_enter_quickack_mode(sk);
|
4851 |
|
|
inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
|
4852 |
|
|
TCP_DELACK_MAX, TCP_RTO_MAX);
|
4853 |
|
|
|
4854 |
|
|
discard:
|
4855 |
|
|
__kfree_skb(skb);
|
4856 |
|
|
return 0;
|
4857 |
|
|
} else {
|
4858 |
|
|
tcp_send_ack(sk);
|
4859 |
|
|
}
|
4860 |
|
|
return -1;
|
4861 |
|
|
}
|
4862 |
|
|
|
4863 |
|
|
/* No ACK in the segment */
|
4864 |
|
|
|
4865 |
|
|
if (th->rst) {
|
4866 |
|
|
/* rfc793:
|
4867 |
|
|
* "If the RST bit is set
|
4868 |
|
|
*
|
4869 |
|
|
* Otherwise (no ACK) drop the segment and return."
|
4870 |
|
|
*/
|
4871 |
|
|
|
4872 |
|
|
goto discard_and_undo;
|
4873 |
|
|
}
|
4874 |
|
|
|
4875 |
|
|
/* PAWS check. */
|
4876 |
|
|
if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
|
4877 |
|
|
goto discard_and_undo;
|
4878 |
|
|
|
4879 |
|
|
if (th->syn) {
|
4880 |
|
|
/* We see SYN without ACK. It is attempt of
|
4881 |
|
|
* simultaneous connect with crossed SYNs.
|
4882 |
|
|
* Particularly, it can be connect to self.
|
4883 |
|
|
*/
|
4884 |
|
|
tcp_set_state(sk, TCP_SYN_RECV);
|
4885 |
|
|
|
4886 |
|
|
if (tp->rx_opt.saw_tstamp) {
|
4887 |
|
|
tp->rx_opt.tstamp_ok = 1;
|
4888 |
|
|
tcp_store_ts_recent(tp);
|
4889 |
|
|
tp->tcp_header_len =
|
4890 |
|
|
sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
|
4891 |
|
|
} else {
|
4892 |
|
|
tp->tcp_header_len = sizeof(struct tcphdr);
|
4893 |
|
|
}
|
4894 |
|
|
|
4895 |
|
|
tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
|
4896 |
|
|
tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
|
4897 |
|
|
|
4898 |
|
|
/* RFC1323: The window in SYN & SYN/ACK segments is
|
4899 |
|
|
* never scaled.
|
4900 |
|
|
*/
|
4901 |
|
|
tp->snd_wnd = ntohs(th->window);
|
4902 |
|
|
tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
|
4903 |
|
|
tp->max_window = tp->snd_wnd;
|
4904 |
|
|
|
4905 |
|
|
TCP_ECN_rcv_syn(tp, th);
|
4906 |
|
|
|
4907 |
|
|
tcp_mtup_init(sk);
|
4908 |
|
|
tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
|
4909 |
|
|
tcp_initialize_rcv_mss(sk);
|
4910 |
|
|
|
4911 |
|
|
|
4912 |
|
|
tcp_send_synack(sk);
|
4913 |
|
|
#if 0
|
4914 |
|
|
/* Note, we could accept data and URG from this segment.
|
4915 |
|
|
* There are no obstacles to make this.
|
4916 |
|
|
*
|
4917 |
|
|
* However, if we ignore data in ACKless segments sometimes,
|
4918 |
|
|
* we have no reasons to accept it sometimes.
|
4919 |
|
|
* Also, seems the code doing it in step6 of tcp_rcv_state_process
|
4920 |
|
|
* is not flawless. So, discard packet for sanity.
|
4921 |
|
|
* Uncomment this return to process the data.
|
4922 |
|
|
*/
|
4923 |
|
|
return -1;
|
4924 |
|
|
#else
|
4925 |
|
|
goto discard;
|
4926 |
|
|
#endif
|
4927 |
|
|
}
|
4928 |
|
|
/* "fifth, if neither of the SYN or RST bits is set then
|
4929 |
|
|
* drop the segment and return."
|
4930 |
|
|
*/
|
4931 |
|
|
|
4932 |
|
|
discard_and_undo:
|
4933 |
|
|
tcp_clear_options(&tp->rx_opt);
|
4934 |
|
|
tp->rx_opt.mss_clamp = saved_clamp;
|
4935 |
|
|
goto discard;
|
4936 |
|
|
|
4937 |
|
|
reset_and_undo:
|
4938 |
|
|
tcp_clear_options(&tp->rx_opt);
|
4939 |
|
|
tp->rx_opt.mss_clamp = saved_clamp;
|
4940 |
|
|
return 1;
|
4941 |
|
|
}
|
4942 |
|
|
|
4943 |
|
|
|
4944 |
|
|
/*
|
4945 |
|
|
* This function implements the receiving procedure of RFC 793 for
|
4946 |
|
|
* all states except ESTABLISHED and TIME_WAIT.
|
4947 |
|
|
* It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
|
4948 |
|
|
* address independent.
|
4949 |
|
|
*/
|
4950 |
|
|
|
4951 |
|
|
int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
|
4952 |
|
|
struct tcphdr *th, unsigned len)
|
4953 |
|
|
{
|
4954 |
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
4955 |
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
4956 |
|
|
int queued = 0;
|
4957 |
|
|
|
4958 |
|
|
tp->rx_opt.saw_tstamp = 0;
|
4959 |
|
|
|
4960 |
|
|
switch (sk->sk_state) {
|
4961 |
|
|
case TCP_CLOSE:
|
4962 |
|
|
goto discard;
|
4963 |
|
|
|
4964 |
|
|
case TCP_LISTEN:
|
4965 |
|
|
if (th->ack)
|
4966 |
|
|
return 1;
|
4967 |
|
|
|
4968 |
|
|
if (th->rst)
|
4969 |
|
|
goto discard;
|
4970 |
|
|
|
4971 |
|
|
if (th->syn) {
|
4972 |
|
|
if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
|
4973 |
|
|
return 1;
|
4974 |
|
|
|
4975 |
|
|
/* Now we have several options: In theory there is
|
4976 |
|
|
* nothing else in the frame. KA9Q has an option to
|
4977 |
|
|
* send data with the syn, BSD accepts data with the
|
4978 |
|
|
* syn up to the [to be] advertised window and
|
4979 |
|
|
* Solaris 2.1 gives you a protocol error. For now
|
4980 |
|
|
* we just ignore it, that fits the spec precisely
|
4981 |
|
|
* and avoids incompatibilities. It would be nice in
|
4982 |
|
|
* future to drop through and process the data.
|
4983 |
|
|
*
|
4984 |
|
|
* Now that TTCP is starting to be used we ought to
|
4985 |
|
|
* queue this data.
|
4986 |
|
|
* But, this leaves one open to an easy denial of
|
4987 |
|
|
* service attack, and SYN cookies can't defend
|
4988 |
|
|
* against this problem. So, we drop the data
|
4989 |
|
|
* in the interest of security over speed unless
|
4990 |
|
|
* it's still in use.
|
4991 |
|
|
*/
|
4992 |
|
|
kfree_skb(skb);
|
4993 |
|
|
return 0;
|
4994 |
|
|
}
|
4995 |
|
|
goto discard;
|
4996 |
|
|
|
4997 |
|
|
case TCP_SYN_SENT:
|
4998 |
|
|
queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
|
4999 |
|
|
if (queued >= 0)
|
5000 |
|
|
return queued;
|
5001 |
|
|
|
5002 |
|
|
/* Do step6 onward by hand. */
|
5003 |
|
|
tcp_urg(sk, skb, th);
|
5004 |
|
|
__kfree_skb(skb);
|
5005 |
|
|
tcp_data_snd_check(sk);
|
5006 |
|
|
return 0;
|
5007 |
|
|
}
|
5008 |
|
|
|
5009 |
|
|
if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
|
5010 |
|
|
tcp_paws_discard(sk, skb)) {
|
5011 |
|
|
if (!th->rst) {
|
5012 |
|
|
NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
|
5013 |
|
|
tcp_send_dupack(sk, skb);
|
5014 |
|
|
goto discard;
|
5015 |
|
|
}
|
5016 |
|
|
/* Reset is accepted even if it did not pass PAWS. */
|
5017 |
|
|
}
|
5018 |
|
|
|
5019 |
|
|
/* step 1: check sequence number */
|
5020 |
|
|
if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
|
5021 |
|
|
if (!th->rst)
|
5022 |
|
|
tcp_send_dupack(sk, skb);
|
5023 |
|
|
goto discard;
|
5024 |
|
|
}
|
5025 |
|
|
|
5026 |
|
|
/* step 2: check RST bit */
|
5027 |
|
|
if (th->rst) {
|
5028 |
|
|
tcp_reset(sk);
|
5029 |
|
|
goto discard;
|
5030 |
|
|
}
|
5031 |
|
|
|
5032 |
|
|
tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
|
5033 |
|
|
|
5034 |
|
|
/* step 3: check security and precedence [ignored] */
|
5035 |
|
|
|
5036 |
|
|
/* step 4:
|
5037 |
|
|
*
|
5038 |
|
|
* Check for a SYN in window.
|
5039 |
|
|
*/
|
5040 |
|
|
if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
|
5041 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
|
5042 |
|
|
tcp_reset(sk);
|
5043 |
|
|
return 1;
|
5044 |
|
|
}
|
5045 |
|
|
|
5046 |
|
|
/* step 5: check the ACK field */
|
5047 |
|
|
if (th->ack) {
|
5048 |
|
|
int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
|
5049 |
|
|
|
5050 |
|
|
switch (sk->sk_state) {
|
5051 |
|
|
case TCP_SYN_RECV:
|
5052 |
|
|
if (acceptable) {
|
5053 |
|
|
tp->copied_seq = tp->rcv_nxt;
|
5054 |
|
|
smp_mb();
|
5055 |
|
|
tcp_set_state(sk, TCP_ESTABLISHED);
|
5056 |
|
|
sk->sk_state_change(sk);
|
5057 |
|
|
|
5058 |
|
|
/* Note, that this wakeup is only for marginal
|
5059 |
|
|
* crossed SYN case. Passively open sockets
|
5060 |
|
|
* are not waked up, because sk->sk_sleep ==
|
5061 |
|
|
* NULL and sk->sk_socket == NULL.
|
5062 |
|
|
*/
|
5063 |
|
|
if (sk->sk_socket) {
|
5064 |
|
|
sk_wake_async(sk,0,POLL_OUT);
|
5065 |
|
|
}
|
5066 |
|
|
|
5067 |
|
|
tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
|
5068 |
|
|
tp->snd_wnd = ntohs(th->window) <<
|
5069 |
|
|
tp->rx_opt.snd_wscale;
|
5070 |
|
|
tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
|
5071 |
|
|
TCP_SKB_CB(skb)->seq);
|
5072 |
|
|
|
5073 |
|
|
/* tcp_ack considers this ACK as duplicate
|
5074 |
|
|
* and does not calculate rtt.
|
5075 |
|
|
* Fix it at least with timestamps.
|
5076 |
|
|
*/
|
5077 |
|
|
if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
|
5078 |
|
|
!tp->srtt)
|
5079 |
|
|
tcp_ack_saw_tstamp(sk, 0);
|
5080 |
|
|
|
5081 |
|
|
if (tp->rx_opt.tstamp_ok)
|
5082 |
|
|
tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
|
5083 |
|
|
|
5084 |
|
|
/* Make sure socket is routed, for
|
5085 |
|
|
* correct metrics.
|
5086 |
|
|
*/
|
5087 |
|
|
icsk->icsk_af_ops->rebuild_header(sk);
|
5088 |
|
|
|
5089 |
|
|
tcp_init_metrics(sk);
|
5090 |
|
|
|
5091 |
|
|
tcp_init_congestion_control(sk);
|
5092 |
|
|
|
5093 |
|
|
/* Prevent spurious tcp_cwnd_restart() on
|
5094 |
|
|
* first data packet.
|
5095 |
|
|
*/
|
5096 |
|
|
tp->lsndtime = tcp_time_stamp;
|
5097 |
|
|
|
5098 |
|
|
tcp_mtup_init(sk);
|
5099 |
|
|
tcp_initialize_rcv_mss(sk);
|
5100 |
|
|
tcp_init_buffer_space(sk);
|
5101 |
|
|
tcp_fast_path_on(tp);
|
5102 |
|
|
} else {
|
5103 |
|
|
return 1;
|
5104 |
|
|
}
|
5105 |
|
|
break;
|
5106 |
|
|
|
5107 |
|
|
case TCP_FIN_WAIT1:
|
5108 |
|
|
if (tp->snd_una == tp->write_seq) {
|
5109 |
|
|
tcp_set_state(sk, TCP_FIN_WAIT2);
|
5110 |
|
|
sk->sk_shutdown |= SEND_SHUTDOWN;
|
5111 |
|
|
dst_confirm(sk->sk_dst_cache);
|
5112 |
|
|
|
5113 |
|
|
if (!sock_flag(sk, SOCK_DEAD))
|
5114 |
|
|
/* Wake up lingering close() */
|
5115 |
|
|
sk->sk_state_change(sk);
|
5116 |
|
|
else {
|
5117 |
|
|
int tmo;
|
5118 |
|
|
|
5119 |
|
|
if (tp->linger2 < 0 ||
|
5120 |
|
|
(TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
|
5121 |
|
|
after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
|
5122 |
|
|
tcp_done(sk);
|
5123 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
|
5124 |
|
|
return 1;
|
5125 |
|
|
}
|
5126 |
|
|
|
5127 |
|
|
tmo = tcp_fin_time(sk);
|
5128 |
|
|
if (tmo > TCP_TIMEWAIT_LEN) {
|
5129 |
|
|
inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
|
5130 |
|
|
} else if (th->fin || sock_owned_by_user(sk)) {
|
5131 |
|
|
/* Bad case. We could lose such FIN otherwise.
|
5132 |
|
|
* It is not a big problem, but it looks confusing
|
5133 |
|
|
* and not so rare event. We still can lose it now,
|
5134 |
|
|
* if it spins in bh_lock_sock(), but it is really
|
5135 |
|
|
* marginal case.
|
5136 |
|
|
*/
|
5137 |
|
|
inet_csk_reset_keepalive_timer(sk, tmo);
|
5138 |
|
|
} else {
|
5139 |
|
|
tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
|
5140 |
|
|
goto discard;
|
5141 |
|
|
}
|
5142 |
|
|
}
|
5143 |
|
|
}
|
5144 |
|
|
break;
|
5145 |
|
|
|
5146 |
|
|
case TCP_CLOSING:
|
5147 |
|
|
if (tp->snd_una == tp->write_seq) {
|
5148 |
|
|
tcp_time_wait(sk, TCP_TIME_WAIT, 0);
|
5149 |
|
|
goto discard;
|
5150 |
|
|
}
|
5151 |
|
|
break;
|
5152 |
|
|
|
5153 |
|
|
case TCP_LAST_ACK:
|
5154 |
|
|
if (tp->snd_una == tp->write_seq) {
|
5155 |
|
|
tcp_update_metrics(sk);
|
5156 |
|
|
tcp_done(sk);
|
5157 |
|
|
goto discard;
|
5158 |
|
|
}
|
5159 |
|
|
break;
|
5160 |
|
|
}
|
5161 |
|
|
} else
|
5162 |
|
|
goto discard;
|
5163 |
|
|
|
5164 |
|
|
/* step 6: check the URG bit */
|
5165 |
|
|
tcp_urg(sk, skb, th);
|
5166 |
|
|
|
5167 |
|
|
/* step 7: process the segment text */
|
5168 |
|
|
switch (sk->sk_state) {
|
5169 |
|
|
case TCP_CLOSE_WAIT:
|
5170 |
|
|
case TCP_CLOSING:
|
5171 |
|
|
case TCP_LAST_ACK:
|
5172 |
|
|
if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
|
5173 |
|
|
break;
|
5174 |
|
|
case TCP_FIN_WAIT1:
|
5175 |
|
|
case TCP_FIN_WAIT2:
|
5176 |
|
|
/* RFC 793 says to queue data in these states,
|
5177 |
|
|
* RFC 1122 says we MUST send a reset.
|
5178 |
|
|
* BSD 4.4 also does reset.
|
5179 |
|
|
*/
|
5180 |
|
|
if (sk->sk_shutdown & RCV_SHUTDOWN) {
|
5181 |
|
|
if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
|
5182 |
|
|
after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
|
5183 |
|
|
NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
|
5184 |
|
|
tcp_reset(sk);
|
5185 |
|
|
return 1;
|
5186 |
|
|
}
|
5187 |
|
|
}
|
5188 |
|
|
/* Fall through */
|
5189 |
|
|
case TCP_ESTABLISHED:
|
5190 |
|
|
tcp_data_queue(sk, skb);
|
5191 |
|
|
queued = 1;
|
5192 |
|
|
break;
|
5193 |
|
|
}
|
5194 |
|
|
|
5195 |
|
|
/* tcp_data could move socket to TIME-WAIT */
|
5196 |
|
|
if (sk->sk_state != TCP_CLOSE) {
|
5197 |
|
|
tcp_data_snd_check(sk);
|
5198 |
|
|
tcp_ack_snd_check(sk);
|
5199 |
|
|
}
|
5200 |
|
|
|
5201 |
|
|
if (!queued) {
|
5202 |
|
|
discard:
|
5203 |
|
|
__kfree_skb(skb);
|
5204 |
|
|
}
|
5205 |
|
|
return 0;
|
5206 |
|
|
}
|
5207 |
|
|
|
5208 |
|
|
EXPORT_SYMBOL(sysctl_tcp_ecn);
|
5209 |
|
|
EXPORT_SYMBOL(sysctl_tcp_reordering);
|
5210 |
|
|
EXPORT_SYMBOL(tcp_parse_options);
|
5211 |
|
|
EXPORT_SYMBOL(tcp_rcv_established);
|
5212 |
|
|
EXPORT_SYMBOL(tcp_rcv_state_process);
|
5213 |
|
|
EXPORT_SYMBOL(tcp_initialize_rcv_mss);
|