OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [net/] [ipv4/] [tcp_vegas.c] - Blame information for rev 79

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * TCP Vegas congestion control
3
 *
4
 * This is based on the congestion detection/avoidance scheme described in
5
 *    Lawrence S. Brakmo and Larry L. Peterson.
6
 *    "TCP Vegas: End to end congestion avoidance on a global internet."
7
 *    IEEE Journal on Selected Areas in Communication, 13(8):1465--1480,
8
 *    October 1995. Available from:
9
 *      ftp://ftp.cs.arizona.edu/xkernel/Papers/jsac.ps
10
 *
11
 * See http://www.cs.arizona.edu/xkernel/ for their implementation.
12
 * The main aspects that distinguish this implementation from the
13
 * Arizona Vegas implementation are:
14
 *   o We do not change the loss detection or recovery mechanisms of
15
 *     Linux in any way. Linux already recovers from losses quite well,
16
 *     using fine-grained timers, NewReno, and FACK.
17
 *   o To avoid the performance penalty imposed by increasing cwnd
18
 *     only every-other RTT during slow start, we increase during
19
 *     every RTT during slow start, just like Reno.
20
 *   o Largely to allow continuous cwnd growth during slow start,
21
 *     we use the rate at which ACKs come back as the "actual"
22
 *     rate, rather than the rate at which data is sent.
23
 *   o To speed convergence to the right rate, we set the cwnd
24
 *     to achieve the right ("actual") rate when we exit slow start.
25
 *   o To filter out the noise caused by delayed ACKs, we use the
26
 *     minimum RTT sample observed during the last RTT to calculate
27
 *     the actual rate.
28
 *   o When the sender re-starts from idle, it waits until it has
29
 *     received ACKs for an entire flight of new data before making
30
 *     a cwnd adjustment decision. The original Vegas implementation
31
 *     assumed senders never went idle.
32
 */
33
 
34
#include <linux/mm.h>
35
#include <linux/module.h>
36
#include <linux/skbuff.h>
37
#include <linux/inet_diag.h>
38
 
39
#include <net/tcp.h>
40
 
41
#include "tcp_vegas.h"
42
 
43
/* Default values of the Vegas variables, in fixed-point representation
44
 * with V_PARAM_SHIFT bits to the right of the binary point.
45
 */
46
#define V_PARAM_SHIFT 1
47
static int alpha = 2<<V_PARAM_SHIFT;
48
static int beta  = 4<<V_PARAM_SHIFT;
49
static int gamma = 1<<V_PARAM_SHIFT;
50
 
51
module_param(alpha, int, 0644);
52
MODULE_PARM_DESC(alpha, "lower bound of packets in network (scale by 2)");
53
module_param(beta, int, 0644);
54
MODULE_PARM_DESC(beta, "upper bound of packets in network (scale by 2)");
55
module_param(gamma, int, 0644);
56
MODULE_PARM_DESC(gamma, "limit on increase (scale by 2)");
57
 
58
 
59
/* There are several situations when we must "re-start" Vegas:
60
 *
61
 *  o when a connection is established
62
 *  o after an RTO
63
 *  o after fast recovery
64
 *  o when we send a packet and there is no outstanding
65
 *    unacknowledged data (restarting an idle connection)
66
 *
67
 * In these circumstances we cannot do a Vegas calculation at the
68
 * end of the first RTT, because any calculation we do is using
69
 * stale info -- both the saved cwnd and congestion feedback are
70
 * stale.
71
 *
72
 * Instead we must wait until the completion of an RTT during
73
 * which we actually receive ACKs.
74
 */
75
static void vegas_enable(struct sock *sk)
76
{
77
        const struct tcp_sock *tp = tcp_sk(sk);
78
        struct vegas *vegas = inet_csk_ca(sk);
79
 
80
        /* Begin taking Vegas samples next time we send something. */
81
        vegas->doing_vegas_now = 1;
82
 
83
        /* Set the beginning of the next send window. */
84
        vegas->beg_snd_nxt = tp->snd_nxt;
85
 
86
        vegas->cntRTT = 0;
87
        vegas->minRTT = 0x7fffffff;
88
}
89
 
90
/* Stop taking Vegas samples for now. */
91
static inline void vegas_disable(struct sock *sk)
92
{
93
        struct vegas *vegas = inet_csk_ca(sk);
94
 
95
        vegas->doing_vegas_now = 0;
96
}
97
 
98
void tcp_vegas_init(struct sock *sk)
99
{
100
        struct vegas *vegas = inet_csk_ca(sk);
101
 
102
        vegas->baseRTT = 0x7fffffff;
103
        vegas_enable(sk);
104
}
105
EXPORT_SYMBOL_GPL(tcp_vegas_init);
106
 
107
/* Do RTT sampling needed for Vegas.
108
 * Basically we:
109
 *   o min-filter RTT samples from within an RTT to get the current
110
 *     propagation delay + queuing delay (we are min-filtering to try to
111
 *     avoid the effects of delayed ACKs)
112
 *   o min-filter RTT samples from a much longer window (forever for now)
113
 *     to find the propagation delay (baseRTT)
114
 */
115
void tcp_vegas_pkts_acked(struct sock *sk, u32 cnt, s32 rtt_us)
116
{
117
        struct vegas *vegas = inet_csk_ca(sk);
118
        u32 vrtt;
119
 
120
        if (rtt_us < 0)
121
                return;
122
 
123
        /* Never allow zero rtt or baseRTT */
124
        vrtt = rtt_us + 1;
125
 
126
        /* Filter to find propagation delay: */
127
        if (vrtt < vegas->baseRTT)
128
                vegas->baseRTT = vrtt;
129
 
130
        /* Find the min RTT during the last RTT to find
131
         * the current prop. delay + queuing delay:
132
         */
133
        vegas->minRTT = min(vegas->minRTT, vrtt);
134
        vegas->cntRTT++;
135
}
136
EXPORT_SYMBOL_GPL(tcp_vegas_pkts_acked);
137
 
138
void tcp_vegas_state(struct sock *sk, u8 ca_state)
139
{
140
 
141
        if (ca_state == TCP_CA_Open)
142
                vegas_enable(sk);
143
        else
144
                vegas_disable(sk);
145
}
146
EXPORT_SYMBOL_GPL(tcp_vegas_state);
147
 
148
/*
149
 * If the connection is idle and we are restarting,
150
 * then we don't want to do any Vegas calculations
151
 * until we get fresh RTT samples.  So when we
152
 * restart, we reset our Vegas state to a clean
153
 * slate. After we get acks for this flight of
154
 * packets, _then_ we can make Vegas calculations
155
 * again.
156
 */
157
void tcp_vegas_cwnd_event(struct sock *sk, enum tcp_ca_event event)
158
{
159
        if (event == CA_EVENT_CWND_RESTART ||
160
            event == CA_EVENT_TX_START)
161
                tcp_vegas_init(sk);
162
}
163
EXPORT_SYMBOL_GPL(tcp_vegas_cwnd_event);
164
 
165
static void tcp_vegas_cong_avoid(struct sock *sk, u32 ack,
166
                                 u32 in_flight, int flag)
167
{
168
        struct tcp_sock *tp = tcp_sk(sk);
169
        struct vegas *vegas = inet_csk_ca(sk);
170
 
171
        if (!vegas->doing_vegas_now)
172
                return tcp_reno_cong_avoid(sk, ack, in_flight, flag);
173
 
174
        /* The key players are v_beg_snd_una and v_beg_snd_nxt.
175
         *
176
         * These are so named because they represent the approximate values
177
         * of snd_una and snd_nxt at the beginning of the current RTT. More
178
         * precisely, they represent the amount of data sent during the RTT.
179
         * At the end of the RTT, when we receive an ACK for v_beg_snd_nxt,
180
         * we will calculate that (v_beg_snd_nxt - v_beg_snd_una) outstanding
181
         * bytes of data have been ACKed during the course of the RTT, giving
182
         * an "actual" rate of:
183
         *
184
         *     (v_beg_snd_nxt - v_beg_snd_una) / (rtt duration)
185
         *
186
         * Unfortunately, v_beg_snd_una is not exactly equal to snd_una,
187
         * because delayed ACKs can cover more than one segment, so they
188
         * don't line up nicely with the boundaries of RTTs.
189
         *
190
         * Another unfortunate fact of life is that delayed ACKs delay the
191
         * advance of the left edge of our send window, so that the number
192
         * of bytes we send in an RTT is often less than our cwnd will allow.
193
         * So we keep track of our cwnd separately, in v_beg_snd_cwnd.
194
         */
195
 
196
        if (after(ack, vegas->beg_snd_nxt)) {
197
                /* Do the Vegas once-per-RTT cwnd adjustment. */
198
                u32 old_wnd, old_snd_cwnd;
199
 
200
 
201
                /* Here old_wnd is essentially the window of data that was
202
                 * sent during the previous RTT, and has all
203
                 * been acknowledged in the course of the RTT that ended
204
                 * with the ACK we just received. Likewise, old_snd_cwnd
205
                 * is the cwnd during the previous RTT.
206
                 */
207
                old_wnd = (vegas->beg_snd_nxt - vegas->beg_snd_una) /
208
                        tp->mss_cache;
209
                old_snd_cwnd = vegas->beg_snd_cwnd;
210
 
211
                /* Save the extent of the current window so we can use this
212
                 * at the end of the next RTT.
213
                 */
214
                vegas->beg_snd_una  = vegas->beg_snd_nxt;
215
                vegas->beg_snd_nxt  = tp->snd_nxt;
216
                vegas->beg_snd_cwnd = tp->snd_cwnd;
217
 
218
                /* We do the Vegas calculations only if we got enough RTT
219
                 * samples that we can be reasonably sure that we got
220
                 * at least one RTT sample that wasn't from a delayed ACK.
221
                 * If we only had 2 samples total,
222
                 * then that means we're getting only 1 ACK per RTT, which
223
                 * means they're almost certainly delayed ACKs.
224
                 * If  we have 3 samples, we should be OK.
225
                 */
226
 
227
                if (vegas->cntRTT <= 2) {
228
                        /* We don't have enough RTT samples to do the Vegas
229
                         * calculation, so we'll behave like Reno.
230
                         */
231
                        tcp_reno_cong_avoid(sk, ack, in_flight, flag);
232
                } else {
233
                        u32 rtt, target_cwnd, diff;
234
 
235
                        /* We have enough RTT samples, so, using the Vegas
236
                         * algorithm, we determine if we should increase or
237
                         * decrease cwnd, and by how much.
238
                         */
239
 
240
                        /* Pluck out the RTT we are using for the Vegas
241
                         * calculations. This is the min RTT seen during the
242
                         * last RTT. Taking the min filters out the effects
243
                         * of delayed ACKs, at the cost of noticing congestion
244
                         * a bit later.
245
                         */
246
                        rtt = vegas->minRTT;
247
 
248
                        /* Calculate the cwnd we should have, if we weren't
249
                         * going too fast.
250
                         *
251
                         * This is:
252
                         *     (actual rate in segments) * baseRTT
253
                         * We keep it as a fixed point number with
254
                         * V_PARAM_SHIFT bits to the right of the binary point.
255
                         */
256
                        target_cwnd = ((old_wnd * vegas->baseRTT)
257
                                       << V_PARAM_SHIFT) / rtt;
258
 
259
                        /* Calculate the difference between the window we had,
260
                         * and the window we would like to have. This quantity
261
                         * is the "Diff" from the Arizona Vegas papers.
262
                         *
263
                         * Again, this is a fixed point number with
264
                         * V_PARAM_SHIFT bits to the right of the binary
265
                         * point.
266
                         */
267
                        diff = (old_wnd << V_PARAM_SHIFT) - target_cwnd;
268
 
269
                        if (diff > gamma && tp->snd_ssthresh > 2 ) {
270
                                /* Going too fast. Time to slow down
271
                                 * and switch to congestion avoidance.
272
                                 */
273
                                tp->snd_ssthresh = 2;
274
 
275
                                /* Set cwnd to match the actual rate
276
                                 * exactly:
277
                                 *   cwnd = (actual rate) * baseRTT
278
                                 * Then we add 1 because the integer
279
                                 * truncation robs us of full link
280
                                 * utilization.
281
                                 */
282
                                tp->snd_cwnd = min(tp->snd_cwnd,
283
                                                   (target_cwnd >>
284
                                                    V_PARAM_SHIFT)+1);
285
 
286
                        } else if (tp->snd_cwnd <= tp->snd_ssthresh) {
287
                                /* Slow start.  */
288
                                tcp_slow_start(tp);
289
                        } else {
290
                                /* Congestion avoidance. */
291
                                u32 next_snd_cwnd;
292
 
293
                                /* Figure out where we would like cwnd
294
                                 * to be.
295
                                 */
296
                                if (diff > beta) {
297
                                        /* The old window was too fast, so
298
                                         * we slow down.
299
                                         */
300
                                        next_snd_cwnd = old_snd_cwnd - 1;
301
                                } else if (diff < alpha) {
302
                                        /* We don't have enough extra packets
303
                                         * in the network, so speed up.
304
                                         */
305
                                        next_snd_cwnd = old_snd_cwnd + 1;
306
                                } else {
307
                                        /* Sending just as fast as we
308
                                         * should be.
309
                                         */
310
                                        next_snd_cwnd = old_snd_cwnd;
311
                                }
312
 
313
                                /* Adjust cwnd upward or downward, toward the
314
                                 * desired value.
315
                                 */
316
                                if (next_snd_cwnd > tp->snd_cwnd)
317
                                        tp->snd_cwnd++;
318
                                else if (next_snd_cwnd < tp->snd_cwnd)
319
                                        tp->snd_cwnd--;
320
                        }
321
 
322
                        if (tp->snd_cwnd < 2)
323
                                tp->snd_cwnd = 2;
324
                        else if (tp->snd_cwnd > tp->snd_cwnd_clamp)
325
                                tp->snd_cwnd = tp->snd_cwnd_clamp;
326
                }
327
 
328
                /* Wipe the slate clean for the next RTT. */
329
                vegas->cntRTT = 0;
330
                vegas->minRTT = 0x7fffffff;
331
        }
332
        /* Use normal slow start */
333
        else if (tp->snd_cwnd <= tp->snd_ssthresh)
334
                tcp_slow_start(tp);
335
 
336
}
337
 
338
/* Extract info for Tcp socket info provided via netlink. */
339
void tcp_vegas_get_info(struct sock *sk, u32 ext, struct sk_buff *skb)
340
{
341
        const struct vegas *ca = inet_csk_ca(sk);
342
        if (ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
343
                struct tcpvegas_info info = {
344
                        .tcpv_enabled = ca->doing_vegas_now,
345
                        .tcpv_rttcnt = ca->cntRTT,
346
                        .tcpv_rtt = ca->baseRTT,
347
                        .tcpv_minrtt = ca->minRTT,
348
                };
349
 
350
                nla_put(skb, INET_DIAG_VEGASINFO, sizeof(info), &info);
351
        }
352
}
353
EXPORT_SYMBOL_GPL(tcp_vegas_get_info);
354
 
355
static struct tcp_congestion_ops tcp_vegas = {
356
        .flags          = TCP_CONG_RTT_STAMP,
357
        .init           = tcp_vegas_init,
358
        .ssthresh       = tcp_reno_ssthresh,
359
        .cong_avoid     = tcp_vegas_cong_avoid,
360
        .min_cwnd       = tcp_reno_min_cwnd,
361
        .pkts_acked     = tcp_vegas_pkts_acked,
362
        .set_state      = tcp_vegas_state,
363
        .cwnd_event     = tcp_vegas_cwnd_event,
364
        .get_info       = tcp_vegas_get_info,
365
 
366
        .owner          = THIS_MODULE,
367
        .name           = "vegas",
368
};
369
 
370
static int __init tcp_vegas_register(void)
371
{
372
        BUILD_BUG_ON(sizeof(struct vegas) > ICSK_CA_PRIV_SIZE);
373
        tcp_register_congestion_control(&tcp_vegas);
374
        return 0;
375
}
376
 
377
static void __exit tcp_vegas_unregister(void)
378
{
379
        tcp_unregister_congestion_control(&tcp_vegas);
380
}
381
 
382
module_init(tcp_vegas_register);
383
module_exit(tcp_vegas_unregister);
384
 
385
MODULE_AUTHOR("Stephen Hemminger");
386
MODULE_LICENSE("GPL");
387
MODULE_DESCRIPTION("TCP Vegas");

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.