1 |
62 |
marcus.erl |
/*********************************************************************
|
2 |
|
|
*
|
3 |
|
|
* Filename: irttp.c
|
4 |
|
|
* Version: 1.2
|
5 |
|
|
* Description: Tiny Transport Protocol (TTP) implementation
|
6 |
|
|
* Status: Stable
|
7 |
|
|
* Author: Dag Brattli <dagb@cs.uit.no>
|
8 |
|
|
* Created at: Sun Aug 31 20:14:31 1997
|
9 |
|
|
* Modified at: Wed Jan 5 11:31:27 2000
|
10 |
|
|
* Modified by: Dag Brattli <dagb@cs.uit.no>
|
11 |
|
|
*
|
12 |
|
|
* Copyright (c) 1998-2000 Dag Brattli <dagb@cs.uit.no>,
|
13 |
|
|
* All Rights Reserved.
|
14 |
|
|
* Copyright (c) 2000-2003 Jean Tourrilhes <jt@hpl.hp.com>
|
15 |
|
|
*
|
16 |
|
|
* This program is free software; you can redistribute it and/or
|
17 |
|
|
* modify it under the terms of the GNU General Public License as
|
18 |
|
|
* published by the Free Software Foundation; either version 2 of
|
19 |
|
|
* the License, or (at your option) any later version.
|
20 |
|
|
*
|
21 |
|
|
* Neither Dag Brattli nor University of Tromsø admit liability nor
|
22 |
|
|
* provide warranty for any of this software. This material is
|
23 |
|
|
* provided "AS-IS" and at no charge.
|
24 |
|
|
*
|
25 |
|
|
********************************************************************/
|
26 |
|
|
|
27 |
|
|
#include <linux/skbuff.h>
|
28 |
|
|
#include <linux/init.h>
|
29 |
|
|
#include <linux/fs.h>
|
30 |
|
|
#include <linux/seq_file.h>
|
31 |
|
|
|
32 |
|
|
#include <asm/byteorder.h>
|
33 |
|
|
#include <asm/unaligned.h>
|
34 |
|
|
|
35 |
|
|
#include <net/irda/irda.h>
|
36 |
|
|
#include <net/irda/irlap.h>
|
37 |
|
|
#include <net/irda/irlmp.h>
|
38 |
|
|
#include <net/irda/parameters.h>
|
39 |
|
|
#include <net/irda/irttp.h>
|
40 |
|
|
|
41 |
|
|
static struct irttp_cb *irttp;
|
42 |
|
|
|
43 |
|
|
static void __irttp_close_tsap(struct tsap_cb *self);
|
44 |
|
|
|
45 |
|
|
static int irttp_data_indication(void *instance, void *sap,
|
46 |
|
|
struct sk_buff *skb);
|
47 |
|
|
static int irttp_udata_indication(void *instance, void *sap,
|
48 |
|
|
struct sk_buff *skb);
|
49 |
|
|
static void irttp_disconnect_indication(void *instance, void *sap,
|
50 |
|
|
LM_REASON reason, struct sk_buff *);
|
51 |
|
|
static void irttp_connect_indication(void *instance, void *sap,
|
52 |
|
|
struct qos_info *qos, __u32 max_sdu_size,
|
53 |
|
|
__u8 header_size, struct sk_buff *skb);
|
54 |
|
|
static void irttp_connect_confirm(void *instance, void *sap,
|
55 |
|
|
struct qos_info *qos, __u32 max_sdu_size,
|
56 |
|
|
__u8 header_size, struct sk_buff *skb);
|
57 |
|
|
static void irttp_run_tx_queue(struct tsap_cb *self);
|
58 |
|
|
static void irttp_run_rx_queue(struct tsap_cb *self);
|
59 |
|
|
|
60 |
|
|
static void irttp_flush_queues(struct tsap_cb *self);
|
61 |
|
|
static void irttp_fragment_skb(struct tsap_cb *self, struct sk_buff *skb);
|
62 |
|
|
static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self);
|
63 |
|
|
static void irttp_todo_expired(unsigned long data);
|
64 |
|
|
static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
|
65 |
|
|
int get);
|
66 |
|
|
|
67 |
|
|
static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow);
|
68 |
|
|
static void irttp_status_indication(void *instance,
|
69 |
|
|
LINK_STATUS link, LOCK_STATUS lock);
|
70 |
|
|
|
71 |
|
|
/* Information for parsing parameters in IrTTP */
|
72 |
|
|
static pi_minor_info_t pi_minor_call_table[] = {
|
73 |
|
|
{ NULL, 0 }, /* 0x00 */
|
74 |
|
|
{ irttp_param_max_sdu_size, PV_INTEGER | PV_BIG_ENDIAN } /* 0x01 */
|
75 |
|
|
};
|
76 |
|
|
static pi_major_info_t pi_major_call_table[] = {{ pi_minor_call_table, 2 }};
|
77 |
|
|
static pi_param_info_t param_info = { pi_major_call_table, 1, 0x0f, 4 };
|
78 |
|
|
|
79 |
|
|
/************************ GLOBAL PROCEDURES ************************/
|
80 |
|
|
|
81 |
|
|
/*
|
82 |
|
|
* Function irttp_init (void)
|
83 |
|
|
*
|
84 |
|
|
* Initialize the IrTTP layer. Called by module initialization code
|
85 |
|
|
*
|
86 |
|
|
*/
|
87 |
|
|
int __init irttp_init(void)
|
88 |
|
|
{
|
89 |
|
|
irttp = kzalloc(sizeof(struct irttp_cb), GFP_KERNEL);
|
90 |
|
|
if (irttp == NULL)
|
91 |
|
|
return -ENOMEM;
|
92 |
|
|
|
93 |
|
|
irttp->magic = TTP_MAGIC;
|
94 |
|
|
|
95 |
|
|
irttp->tsaps = hashbin_new(HB_LOCK);
|
96 |
|
|
if (!irttp->tsaps) {
|
97 |
|
|
IRDA_ERROR("%s: can't allocate IrTTP hashbin!\n",
|
98 |
|
|
__FUNCTION__);
|
99 |
|
|
kfree(irttp);
|
100 |
|
|
return -ENOMEM;
|
101 |
|
|
}
|
102 |
|
|
|
103 |
|
|
return 0;
|
104 |
|
|
}
|
105 |
|
|
|
106 |
|
|
/*
|
107 |
|
|
* Function irttp_cleanup (void)
|
108 |
|
|
*
|
109 |
|
|
* Called by module destruction/cleanup code
|
110 |
|
|
*
|
111 |
|
|
*/
|
112 |
|
|
void irttp_cleanup(void)
|
113 |
|
|
{
|
114 |
|
|
/* Check for main structure */
|
115 |
|
|
IRDA_ASSERT(irttp->magic == TTP_MAGIC, return;);
|
116 |
|
|
|
117 |
|
|
/*
|
118 |
|
|
* Delete hashbin and close all TSAP instances in it
|
119 |
|
|
*/
|
120 |
|
|
hashbin_delete(irttp->tsaps, (FREE_FUNC) __irttp_close_tsap);
|
121 |
|
|
|
122 |
|
|
irttp->magic = 0;
|
123 |
|
|
|
124 |
|
|
/* De-allocate main structure */
|
125 |
|
|
kfree(irttp);
|
126 |
|
|
|
127 |
|
|
irttp = NULL;
|
128 |
|
|
}
|
129 |
|
|
|
130 |
|
|
/*************************** SUBROUTINES ***************************/
|
131 |
|
|
|
132 |
|
|
/*
|
133 |
|
|
* Function irttp_start_todo_timer (self, timeout)
|
134 |
|
|
*
|
135 |
|
|
* Start todo timer.
|
136 |
|
|
*
|
137 |
|
|
* Made it more effient and unsensitive to race conditions - Jean II
|
138 |
|
|
*/
|
139 |
|
|
static inline void irttp_start_todo_timer(struct tsap_cb *self, int timeout)
|
140 |
|
|
{
|
141 |
|
|
/* Set new value for timer */
|
142 |
|
|
mod_timer(&self->todo_timer, jiffies + timeout);
|
143 |
|
|
}
|
144 |
|
|
|
145 |
|
|
/*
|
146 |
|
|
* Function irttp_todo_expired (data)
|
147 |
|
|
*
|
148 |
|
|
* Todo timer has expired!
|
149 |
|
|
*
|
150 |
|
|
* One of the restriction of the timer is that it is run only on the timer
|
151 |
|
|
* interrupt which run every 10ms. This mean that even if you set the timer
|
152 |
|
|
* with a delay of 0, it may take up to 10ms before it's run.
|
153 |
|
|
* So, to minimise latency and keep cache fresh, we try to avoid using
|
154 |
|
|
* it as much as possible.
|
155 |
|
|
* Note : we can't use tasklets, because they can't be asynchronously
|
156 |
|
|
* killed (need user context), and we can't guarantee that here...
|
157 |
|
|
* Jean II
|
158 |
|
|
*/
|
159 |
|
|
static void irttp_todo_expired(unsigned long data)
|
160 |
|
|
{
|
161 |
|
|
struct tsap_cb *self = (struct tsap_cb *) data;
|
162 |
|
|
|
163 |
|
|
/* Check that we still exist */
|
164 |
|
|
if (!self || self->magic != TTP_TSAP_MAGIC)
|
165 |
|
|
return;
|
166 |
|
|
|
167 |
|
|
IRDA_DEBUG(4, "%s(instance=%p)\n", __FUNCTION__, self);
|
168 |
|
|
|
169 |
|
|
/* Try to make some progress, especially on Tx side - Jean II */
|
170 |
|
|
irttp_run_rx_queue(self);
|
171 |
|
|
irttp_run_tx_queue(self);
|
172 |
|
|
|
173 |
|
|
/* Check if time for disconnect */
|
174 |
|
|
if (test_bit(0, &self->disconnect_pend)) {
|
175 |
|
|
/* Check if it's possible to disconnect yet */
|
176 |
|
|
if (skb_queue_empty(&self->tx_queue)) {
|
177 |
|
|
/* Make sure disconnect is not pending anymore */
|
178 |
|
|
clear_bit(0, &self->disconnect_pend); /* FALSE */
|
179 |
|
|
|
180 |
|
|
/* Note : self->disconnect_skb may be NULL */
|
181 |
|
|
irttp_disconnect_request(self, self->disconnect_skb,
|
182 |
|
|
P_NORMAL);
|
183 |
|
|
self->disconnect_skb = NULL;
|
184 |
|
|
} else {
|
185 |
|
|
/* Try again later */
|
186 |
|
|
irttp_start_todo_timer(self, HZ/10);
|
187 |
|
|
|
188 |
|
|
/* No reason to try and close now */
|
189 |
|
|
return;
|
190 |
|
|
}
|
191 |
|
|
}
|
192 |
|
|
|
193 |
|
|
/* Check if it's closing time */
|
194 |
|
|
if (self->close_pend)
|
195 |
|
|
/* Finish cleanup */
|
196 |
|
|
irttp_close_tsap(self);
|
197 |
|
|
}
|
198 |
|
|
|
199 |
|
|
/*
|
200 |
|
|
* Function irttp_flush_queues (self)
|
201 |
|
|
*
|
202 |
|
|
* Flushes (removes all frames) in transitt-buffer (tx_list)
|
203 |
|
|
*/
|
204 |
|
|
void irttp_flush_queues(struct tsap_cb *self)
|
205 |
|
|
{
|
206 |
|
|
struct sk_buff* skb;
|
207 |
|
|
|
208 |
|
|
IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
|
209 |
|
|
|
210 |
|
|
IRDA_ASSERT(self != NULL, return;);
|
211 |
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
|
212 |
|
|
|
213 |
|
|
/* Deallocate frames waiting to be sent */
|
214 |
|
|
while ((skb = skb_dequeue(&self->tx_queue)) != NULL)
|
215 |
|
|
dev_kfree_skb(skb);
|
216 |
|
|
|
217 |
|
|
/* Deallocate received frames */
|
218 |
|
|
while ((skb = skb_dequeue(&self->rx_queue)) != NULL)
|
219 |
|
|
dev_kfree_skb(skb);
|
220 |
|
|
|
221 |
|
|
/* Deallocate received fragments */
|
222 |
|
|
while ((skb = skb_dequeue(&self->rx_fragments)) != NULL)
|
223 |
|
|
dev_kfree_skb(skb);
|
224 |
|
|
}
|
225 |
|
|
|
226 |
|
|
/*
|
227 |
|
|
* Function irttp_reassemble (self)
|
228 |
|
|
*
|
229 |
|
|
* Makes a new (continuous) skb of all the fragments in the fragment
|
230 |
|
|
* queue
|
231 |
|
|
*
|
232 |
|
|
*/
|
233 |
|
|
static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self)
|
234 |
|
|
{
|
235 |
|
|
struct sk_buff *skb, *frag;
|
236 |
|
|
int n = 0; /* Fragment index */
|
237 |
|
|
|
238 |
|
|
IRDA_ASSERT(self != NULL, return NULL;);
|
239 |
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return NULL;);
|
240 |
|
|
|
241 |
|
|
IRDA_DEBUG(2, "%s(), self->rx_sdu_size=%d\n", __FUNCTION__,
|
242 |
|
|
self->rx_sdu_size);
|
243 |
|
|
|
244 |
|
|
skb = dev_alloc_skb(TTP_HEADER + self->rx_sdu_size);
|
245 |
|
|
if (!skb)
|
246 |
|
|
return NULL;
|
247 |
|
|
|
248 |
|
|
/*
|
249 |
|
|
* Need to reserve space for TTP header in case this skb needs to
|
250 |
|
|
* be requeued in case delivery failes
|
251 |
|
|
*/
|
252 |
|
|
skb_reserve(skb, TTP_HEADER);
|
253 |
|
|
skb_put(skb, self->rx_sdu_size);
|
254 |
|
|
|
255 |
|
|
/*
|
256 |
|
|
* Copy all fragments to a new buffer
|
257 |
|
|
*/
|
258 |
|
|
while ((frag = skb_dequeue(&self->rx_fragments)) != NULL) {
|
259 |
|
|
skb_copy_to_linear_data_offset(skb, n, frag->data, frag->len);
|
260 |
|
|
n += frag->len;
|
261 |
|
|
|
262 |
|
|
dev_kfree_skb(frag);
|
263 |
|
|
}
|
264 |
|
|
|
265 |
|
|
IRDA_DEBUG(2,
|
266 |
|
|
"%s(), frame len=%d, rx_sdu_size=%d, rx_max_sdu_size=%d\n",
|
267 |
|
|
__FUNCTION__, n, self->rx_sdu_size, self->rx_max_sdu_size);
|
268 |
|
|
/* Note : irttp_run_rx_queue() calculate self->rx_sdu_size
|
269 |
|
|
* by summing the size of all fragments, so we should always
|
270 |
|
|
* have n == self->rx_sdu_size, except in cases where we
|
271 |
|
|
* droped the last fragment (when self->rx_sdu_size exceed
|
272 |
|
|
* self->rx_max_sdu_size), where n < self->rx_sdu_size.
|
273 |
|
|
* Jean II */
|
274 |
|
|
IRDA_ASSERT(n <= self->rx_sdu_size, n = self->rx_sdu_size;);
|
275 |
|
|
|
276 |
|
|
/* Set the new length */
|
277 |
|
|
skb_trim(skb, n);
|
278 |
|
|
|
279 |
|
|
self->rx_sdu_size = 0;
|
280 |
|
|
|
281 |
|
|
return skb;
|
282 |
|
|
}
|
283 |
|
|
|
284 |
|
|
/*
|
285 |
|
|
* Function irttp_fragment_skb (skb)
|
286 |
|
|
*
|
287 |
|
|
* Fragments a frame and queues all the fragments for transmission
|
288 |
|
|
*
|
289 |
|
|
*/
|
290 |
|
|
static inline void irttp_fragment_skb(struct tsap_cb *self,
|
291 |
|
|
struct sk_buff *skb)
|
292 |
|
|
{
|
293 |
|
|
struct sk_buff *frag;
|
294 |
|
|
__u8 *frame;
|
295 |
|
|
|
296 |
|
|
IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
|
297 |
|
|
|
298 |
|
|
IRDA_ASSERT(self != NULL, return;);
|
299 |
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
|
300 |
|
|
IRDA_ASSERT(skb != NULL, return;);
|
301 |
|
|
|
302 |
|
|
/*
|
303 |
|
|
* Split frame into a number of segments
|
304 |
|
|
*/
|
305 |
|
|
while (skb->len > self->max_seg_size) {
|
306 |
|
|
IRDA_DEBUG(2, "%s(), fragmenting ...\n", __FUNCTION__);
|
307 |
|
|
|
308 |
|
|
/* Make new segment */
|
309 |
|
|
frag = alloc_skb(self->max_seg_size+self->max_header_size,
|
310 |
|
|
GFP_ATOMIC);
|
311 |
|
|
if (!frag)
|
312 |
|
|
return;
|
313 |
|
|
|
314 |
|
|
skb_reserve(frag, self->max_header_size);
|
315 |
|
|
|
316 |
|
|
/* Copy data from the original skb into this fragment. */
|
317 |
|
|
skb_copy_from_linear_data(skb, skb_put(frag, self->max_seg_size),
|
318 |
|
|
self->max_seg_size);
|
319 |
|
|
|
320 |
|
|
/* Insert TTP header, with the more bit set */
|
321 |
|
|
frame = skb_push(frag, TTP_HEADER);
|
322 |
|
|
frame[0] = TTP_MORE;
|
323 |
|
|
|
324 |
|
|
/* Hide the copied data from the original skb */
|
325 |
|
|
skb_pull(skb, self->max_seg_size);
|
326 |
|
|
|
327 |
|
|
/* Queue fragment */
|
328 |
|
|
skb_queue_tail(&self->tx_queue, frag);
|
329 |
|
|
}
|
330 |
|
|
/* Queue what is left of the original skb */
|
331 |
|
|
IRDA_DEBUG(2, "%s(), queuing last segment\n", __FUNCTION__);
|
332 |
|
|
|
333 |
|
|
frame = skb_push(skb, TTP_HEADER);
|
334 |
|
|
frame[0] = 0x00; /* Clear more bit */
|
335 |
|
|
|
336 |
|
|
/* Queue fragment */
|
337 |
|
|
skb_queue_tail(&self->tx_queue, skb);
|
338 |
|
|
}
|
339 |
|
|
|
340 |
|
|
/*
|
341 |
|
|
* Function irttp_param_max_sdu_size (self, param)
|
342 |
|
|
*
|
343 |
|
|
* Handle the MaxSduSize parameter in the connect frames, this function
|
344 |
|
|
* will be called both when this parameter needs to be inserted into, and
|
345 |
|
|
* extracted from the connect frames
|
346 |
|
|
*/
|
347 |
|
|
static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
|
348 |
|
|
int get)
|
349 |
|
|
{
|
350 |
|
|
struct tsap_cb *self;
|
351 |
|
|
|
352 |
|
|
self = (struct tsap_cb *) instance;
|
353 |
|
|
|
354 |
|
|
IRDA_ASSERT(self != NULL, return -1;);
|
355 |
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
|
356 |
|
|
|
357 |
|
|
if (get)
|
358 |
|
|
param->pv.i = self->tx_max_sdu_size;
|
359 |
|
|
else
|
360 |
|
|
self->tx_max_sdu_size = param->pv.i;
|
361 |
|
|
|
362 |
|
|
IRDA_DEBUG(1, "%s(), MaxSduSize=%d\n", __FUNCTION__, param->pv.i);
|
363 |
|
|
|
364 |
|
|
return 0;
|
365 |
|
|
}
|
366 |
|
|
|
367 |
|
|
/*************************** CLIENT CALLS ***************************/
|
368 |
|
|
/************************** LMP CALLBACKS **************************/
|
369 |
|
|
/* Everything is happily mixed up. Waiting for next clean up - Jean II */
|
370 |
|
|
|
371 |
|
|
/*
|
372 |
|
|
* Initialization, that has to be done on new tsap
|
373 |
|
|
* instance allocation and on duplication
|
374 |
|
|
*/
|
375 |
|
|
static void irttp_init_tsap(struct tsap_cb *tsap)
|
376 |
|
|
{
|
377 |
|
|
spin_lock_init(&tsap->lock);
|
378 |
|
|
init_timer(&tsap->todo_timer);
|
379 |
|
|
|
380 |
|
|
skb_queue_head_init(&tsap->rx_queue);
|
381 |
|
|
skb_queue_head_init(&tsap->tx_queue);
|
382 |
|
|
skb_queue_head_init(&tsap->rx_fragments);
|
383 |
|
|
}
|
384 |
|
|
|
385 |
|
|
/*
|
386 |
|
|
* Function irttp_open_tsap (stsap, notify)
|
387 |
|
|
*
|
388 |
|
|
* Create TSAP connection endpoint,
|
389 |
|
|
*/
|
390 |
|
|
struct tsap_cb *irttp_open_tsap(__u8 stsap_sel, int credit, notify_t *notify)
|
391 |
|
|
{
|
392 |
|
|
struct tsap_cb *self;
|
393 |
|
|
struct lsap_cb *lsap;
|
394 |
|
|
notify_t ttp_notify;
|
395 |
|
|
|
396 |
|
|
IRDA_ASSERT(irttp->magic == TTP_MAGIC, return NULL;);
|
397 |
|
|
|
398 |
|
|
/* The IrLMP spec (IrLMP 1.1 p10) says that we have the right to
|
399 |
|
|
* use only 0x01-0x6F. Of course, we can use LSAP_ANY as well.
|
400 |
|
|
* JeanII */
|
401 |
|
|
if((stsap_sel != LSAP_ANY) &&
|
402 |
|
|
((stsap_sel < 0x01) || (stsap_sel >= 0x70))) {
|
403 |
|
|
IRDA_DEBUG(0, "%s(), invalid tsap!\n", __FUNCTION__);
|
404 |
|
|
return NULL;
|
405 |
|
|
}
|
406 |
|
|
|
407 |
|
|
self = kzalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
|
408 |
|
|
if (self == NULL) {
|
409 |
|
|
IRDA_DEBUG(0, "%s(), unable to kmalloc!\n", __FUNCTION__);
|
410 |
|
|
return NULL;
|
411 |
|
|
}
|
412 |
|
|
|
413 |
|
|
/* Initialize internal objects */
|
414 |
|
|
irttp_init_tsap(self);
|
415 |
|
|
|
416 |
|
|
/* Initialise todo timer */
|
417 |
|
|
self->todo_timer.data = (unsigned long) self;
|
418 |
|
|
self->todo_timer.function = &irttp_todo_expired;
|
419 |
|
|
|
420 |
|
|
/* Initialize callbacks for IrLMP to use */
|
421 |
|
|
irda_notify_init(&ttp_notify);
|
422 |
|
|
ttp_notify.connect_confirm = irttp_connect_confirm;
|
423 |
|
|
ttp_notify.connect_indication = irttp_connect_indication;
|
424 |
|
|
ttp_notify.disconnect_indication = irttp_disconnect_indication;
|
425 |
|
|
ttp_notify.data_indication = irttp_data_indication;
|
426 |
|
|
ttp_notify.udata_indication = irttp_udata_indication;
|
427 |
|
|
ttp_notify.flow_indication = irttp_flow_indication;
|
428 |
|
|
if(notify->status_indication != NULL)
|
429 |
|
|
ttp_notify.status_indication = irttp_status_indication;
|
430 |
|
|
ttp_notify.instance = self;
|
431 |
|
|
strncpy(ttp_notify.name, notify->name, NOTIFY_MAX_NAME);
|
432 |
|
|
|
433 |
|
|
self->magic = TTP_TSAP_MAGIC;
|
434 |
|
|
self->connected = FALSE;
|
435 |
|
|
|
436 |
|
|
/*
|
437 |
|
|
* Create LSAP at IrLMP layer
|
438 |
|
|
*/
|
439 |
|
|
lsap = irlmp_open_lsap(stsap_sel, &ttp_notify, 0);
|
440 |
|
|
if (lsap == NULL) {
|
441 |
|
|
IRDA_WARNING("%s: unable to allocate LSAP!!\n", __FUNCTION__);
|
442 |
|
|
return NULL;
|
443 |
|
|
}
|
444 |
|
|
|
445 |
|
|
/*
|
446 |
|
|
* If user specified LSAP_ANY as source TSAP selector, then IrLMP
|
447 |
|
|
* will replace it with whatever source selector which is free, so
|
448 |
|
|
* the stsap_sel we have might not be valid anymore
|
449 |
|
|
*/
|
450 |
|
|
self->stsap_sel = lsap->slsap_sel;
|
451 |
|
|
IRDA_DEBUG(4, "%s(), stsap_sel=%02x\n", __FUNCTION__, self->stsap_sel);
|
452 |
|
|
|
453 |
|
|
self->notify = *notify;
|
454 |
|
|
self->lsap = lsap;
|
455 |
|
|
|
456 |
|
|
hashbin_insert(irttp->tsaps, (irda_queue_t *) self, (long) self, NULL);
|
457 |
|
|
|
458 |
|
|
if (credit > TTP_RX_MAX_CREDIT)
|
459 |
|
|
self->initial_credit = TTP_RX_MAX_CREDIT;
|
460 |
|
|
else
|
461 |
|
|
self->initial_credit = credit;
|
462 |
|
|
|
463 |
|
|
return self;
|
464 |
|
|
}
|
465 |
|
|
EXPORT_SYMBOL(irttp_open_tsap);
|
466 |
|
|
|
467 |
|
|
/*
|
468 |
|
|
* Function irttp_close (handle)
|
469 |
|
|
*
|
470 |
|
|
* Remove an instance of a TSAP. This function should only deal with the
|
471 |
|
|
* deallocation of the TSAP, and resetting of the TSAPs values;
|
472 |
|
|
*
|
473 |
|
|
*/
|
474 |
|
|
static void __irttp_close_tsap(struct tsap_cb *self)
|
475 |
|
|
{
|
476 |
|
|
/* First make sure we're connected. */
|
477 |
|
|
IRDA_ASSERT(self != NULL, return;);
|
478 |
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
|
479 |
|
|
|
480 |
|
|
irttp_flush_queues(self);
|
481 |
|
|
|
482 |
|
|
del_timer(&self->todo_timer);
|
483 |
|
|
|
484 |
|
|
/* This one won't be cleaned up if we are disconnect_pend + close_pend
|
485 |
|
|
* and we receive a disconnect_indication */
|
486 |
|
|
if (self->disconnect_skb)
|
487 |
|
|
dev_kfree_skb(self->disconnect_skb);
|
488 |
|
|
|
489 |
|
|
self->connected = FALSE;
|
490 |
|
|
self->magic = ~TTP_TSAP_MAGIC;
|
491 |
|
|
|
492 |
|
|
kfree(self);
|
493 |
|
|
}
|
494 |
|
|
|
495 |
|
|
/*
|
496 |
|
|
* Function irttp_close (self)
|
497 |
|
|
*
|
498 |
|
|
* Remove TSAP from list of all TSAPs and then deallocate all resources
|
499 |
|
|
* associated with this TSAP
|
500 |
|
|
*
|
501 |
|
|
* Note : because we *free* the tsap structure, it is the responsibility
|
502 |
|
|
* of the caller to make sure we are called only once and to deal with
|
503 |
|
|
* possible race conditions. - Jean II
|
504 |
|
|
*/
|
505 |
|
|
int irttp_close_tsap(struct tsap_cb *self)
|
506 |
|
|
{
|
507 |
|
|
struct tsap_cb *tsap;
|
508 |
|
|
|
509 |
|
|
IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
|
510 |
|
|
|
511 |
|
|
IRDA_ASSERT(self != NULL, return -1;);
|
512 |
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
|
513 |
|
|
|
514 |
|
|
/* Make sure tsap has been disconnected */
|
515 |
|
|
if (self->connected) {
|
516 |
|
|
/* Check if disconnect is not pending */
|
517 |
|
|
if (!test_bit(0, &self->disconnect_pend)) {
|
518 |
|
|
IRDA_WARNING("%s: TSAP still connected!\n",
|
519 |
|
|
__FUNCTION__);
|
520 |
|
|
irttp_disconnect_request(self, NULL, P_NORMAL);
|
521 |
|
|
}
|
522 |
|
|
self->close_pend = TRUE;
|
523 |
|
|
irttp_start_todo_timer(self, HZ/10);
|
524 |
|
|
|
525 |
|
|
return 0; /* Will be back! */
|
526 |
|
|
}
|
527 |
|
|
|
528 |
|
|
tsap = hashbin_remove(irttp->tsaps, (long) self, NULL);
|
529 |
|
|
|
530 |
|
|
IRDA_ASSERT(tsap == self, return -1;);
|
531 |
|
|
|
532 |
|
|
/* Close corresponding LSAP */
|
533 |
|
|
if (self->lsap) {
|
534 |
|
|
irlmp_close_lsap(self->lsap);
|
535 |
|
|
self->lsap = NULL;
|
536 |
|
|
}
|
537 |
|
|
|
538 |
|
|
__irttp_close_tsap(self);
|
539 |
|
|
|
540 |
|
|
return 0;
|
541 |
|
|
}
|
542 |
|
|
EXPORT_SYMBOL(irttp_close_tsap);
|
543 |
|
|
|
544 |
|
|
/*
|
545 |
|
|
* Function irttp_udata_request (self, skb)
|
546 |
|
|
*
|
547 |
|
|
* Send unreliable data on this TSAP
|
548 |
|
|
*
|
549 |
|
|
*/
|
550 |
|
|
int irttp_udata_request(struct tsap_cb *self, struct sk_buff *skb)
|
551 |
|
|
{
|
552 |
|
|
IRDA_ASSERT(self != NULL, return -1;);
|
553 |
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
|
554 |
|
|
IRDA_ASSERT(skb != NULL, return -1;);
|
555 |
|
|
|
556 |
|
|
IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
|
557 |
|
|
|
558 |
|
|
/* Check that nothing bad happens */
|
559 |
|
|
if ((skb->len == 0) || (!self->connected)) {
|
560 |
|
|
IRDA_DEBUG(1, "%s(), No data, or not connected\n",
|
561 |
|
|
__FUNCTION__);
|
562 |
|
|
goto err;
|
563 |
|
|
}
|
564 |
|
|
|
565 |
|
|
if (skb->len > self->max_seg_size) {
|
566 |
|
|
IRDA_DEBUG(1, "%s(), UData is too large for IrLAP!\n",
|
567 |
|
|
__FUNCTION__);
|
568 |
|
|
goto err;
|
569 |
|
|
}
|
570 |
|
|
|
571 |
|
|
irlmp_udata_request(self->lsap, skb);
|
572 |
|
|
self->stats.tx_packets++;
|
573 |
|
|
|
574 |
|
|
return 0;
|
575 |
|
|
|
576 |
|
|
err:
|
577 |
|
|
dev_kfree_skb(skb);
|
578 |
|
|
return -1;
|
579 |
|
|
}
|
580 |
|
|
EXPORT_SYMBOL(irttp_udata_request);
|
581 |
|
|
|
582 |
|
|
|
583 |
|
|
/*
|
584 |
|
|
* Function irttp_data_request (handle, skb)
|
585 |
|
|
*
|
586 |
|
|
* Queue frame for transmission. If SAR is enabled, fragement the frame
|
587 |
|
|
* and queue the fragments for transmission
|
588 |
|
|
*/
|
589 |
|
|
int irttp_data_request(struct tsap_cb *self, struct sk_buff *skb)
|
590 |
|
|
{
|
591 |
|
|
__u8 *frame;
|
592 |
|
|
int ret;
|
593 |
|
|
|
594 |
|
|
IRDA_ASSERT(self != NULL, return -1;);
|
595 |
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
|
596 |
|
|
IRDA_ASSERT(skb != NULL, return -1;);
|
597 |
|
|
|
598 |
|
|
IRDA_DEBUG(2, "%s() : queue len = %d\n", __FUNCTION__,
|
599 |
|
|
skb_queue_len(&self->tx_queue));
|
600 |
|
|
|
601 |
|
|
/* Check that nothing bad happens */
|
602 |
|
|
if ((skb->len == 0) || (!self->connected)) {
|
603 |
|
|
IRDA_WARNING("%s: No data, or not connected\n", __FUNCTION__);
|
604 |
|
|
ret = -ENOTCONN;
|
605 |
|
|
goto err;
|
606 |
|
|
}
|
607 |
|
|
|
608 |
|
|
/*
|
609 |
|
|
* Check if SAR is disabled, and the frame is larger than what fits
|
610 |
|
|
* inside an IrLAP frame
|
611 |
|
|
*/
|
612 |
|
|
if ((self->tx_max_sdu_size == 0) && (skb->len > self->max_seg_size)) {
|
613 |
|
|
IRDA_ERROR("%s: SAR disabled, and data is too large for IrLAP!\n",
|
614 |
|
|
__FUNCTION__);
|
615 |
|
|
ret = -EMSGSIZE;
|
616 |
|
|
goto err;
|
617 |
|
|
}
|
618 |
|
|
|
619 |
|
|
/*
|
620 |
|
|
* Check if SAR is enabled, and the frame is larger than the
|
621 |
|
|
* TxMaxSduSize
|
622 |
|
|
*/
|
623 |
|
|
if ((self->tx_max_sdu_size != 0) &&
|
624 |
|
|
(self->tx_max_sdu_size != TTP_SAR_UNBOUND) &&
|
625 |
|
|
(skb->len > self->tx_max_sdu_size))
|
626 |
|
|
{
|
627 |
|
|
IRDA_ERROR("%s: SAR enabled, but data is larger than TxMaxSduSize!\n",
|
628 |
|
|
__FUNCTION__);
|
629 |
|
|
ret = -EMSGSIZE;
|
630 |
|
|
goto err;
|
631 |
|
|
}
|
632 |
|
|
/*
|
633 |
|
|
* Check if transmit queue is full
|
634 |
|
|
*/
|
635 |
|
|
if (skb_queue_len(&self->tx_queue) >= TTP_TX_MAX_QUEUE) {
|
636 |
|
|
/*
|
637 |
|
|
* Give it a chance to empty itself
|
638 |
|
|
*/
|
639 |
|
|
irttp_run_tx_queue(self);
|
640 |
|
|
|
641 |
|
|
/* Drop packet. This error code should trigger the caller
|
642 |
|
|
* to resend the data in the client code - Jean II */
|
643 |
|
|
ret = -ENOBUFS;
|
644 |
|
|
goto err;
|
645 |
|
|
}
|
646 |
|
|
|
647 |
|
|
/* Queue frame, or queue frame segments */
|
648 |
|
|
if ((self->tx_max_sdu_size == 0) || (skb->len < self->max_seg_size)) {
|
649 |
|
|
/* Queue frame */
|
650 |
|
|
IRDA_ASSERT(skb_headroom(skb) >= TTP_HEADER, return -1;);
|
651 |
|
|
frame = skb_push(skb, TTP_HEADER);
|
652 |
|
|
frame[0] = 0x00; /* Clear more bit */
|
653 |
|
|
|
654 |
|
|
skb_queue_tail(&self->tx_queue, skb);
|
655 |
|
|
} else {
|
656 |
|
|
/*
|
657 |
|
|
* Fragment the frame, this function will also queue the
|
658 |
|
|
* fragments, we don't care about the fact the transmit
|
659 |
|
|
* queue may be overfilled by all the segments for a little
|
660 |
|
|
* while
|
661 |
|
|
*/
|
662 |
|
|
irttp_fragment_skb(self, skb);
|
663 |
|
|
}
|
664 |
|
|
|
665 |
|
|
/* Check if we can accept more data from client */
|
666 |
|
|
if ((!self->tx_sdu_busy) &&
|
667 |
|
|
(skb_queue_len(&self->tx_queue) > TTP_TX_HIGH_THRESHOLD)) {
|
668 |
|
|
/* Tx queue filling up, so stop client. */
|
669 |
|
|
if (self->notify.flow_indication) {
|
670 |
|
|
self->notify.flow_indication(self->notify.instance,
|
671 |
|
|
self, FLOW_STOP);
|
672 |
|
|
}
|
673 |
|
|
/* self->tx_sdu_busy is the state of the client.
|
674 |
|
|
* Update state after notifying client to avoid
|
675 |
|
|
* race condition with irttp_flow_indication().
|
676 |
|
|
* If the queue empty itself after our test but before
|
677 |
|
|
* we set the flag, we will fix ourselves below in
|
678 |
|
|
* irttp_run_tx_queue().
|
679 |
|
|
* Jean II */
|
680 |
|
|
self->tx_sdu_busy = TRUE;
|
681 |
|
|
}
|
682 |
|
|
|
683 |
|
|
/* Try to make some progress */
|
684 |
|
|
irttp_run_tx_queue(self);
|
685 |
|
|
|
686 |
|
|
return 0;
|
687 |
|
|
|
688 |
|
|
err:
|
689 |
|
|
dev_kfree_skb(skb);
|
690 |
|
|
return ret;
|
691 |
|
|
}
|
692 |
|
|
EXPORT_SYMBOL(irttp_data_request);
|
693 |
|
|
|
694 |
|
|
/*
|
695 |
|
|
* Function irttp_run_tx_queue (self)
|
696 |
|
|
*
|
697 |
|
|
* Transmit packets queued for transmission (if possible)
|
698 |
|
|
*
|
699 |
|
|
*/
|
700 |
|
|
static void irttp_run_tx_queue(struct tsap_cb *self)
|
701 |
|
|
{
|
702 |
|
|
struct sk_buff *skb;
|
703 |
|
|
unsigned long flags;
|
704 |
|
|
int n;
|
705 |
|
|
|
706 |
|
|
IRDA_DEBUG(2, "%s() : send_credit = %d, queue_len = %d\n",
|
707 |
|
|
__FUNCTION__,
|
708 |
|
|
self->send_credit, skb_queue_len(&self->tx_queue));
|
709 |
|
|
|
710 |
|
|
/* Get exclusive access to the tx queue, otherwise don't touch it */
|
711 |
|
|
if (irda_lock(&self->tx_queue_lock) == FALSE)
|
712 |
|
|
return;
|
713 |
|
|
|
714 |
|
|
/* Try to send out frames as long as we have credits
|
715 |
|
|
* and as long as LAP is not full. If LAP is full, it will
|
716 |
|
|
* poll us through irttp_flow_indication() - Jean II */
|
717 |
|
|
while ((self->send_credit > 0) &&
|
718 |
|
|
(!irlmp_lap_tx_queue_full(self->lsap)) &&
|
719 |
|
|
(skb = skb_dequeue(&self->tx_queue)))
|
720 |
|
|
{
|
721 |
|
|
/*
|
722 |
|
|
* Since we can transmit and receive frames concurrently,
|
723 |
|
|
* the code below is a critical region and we must assure that
|
724 |
|
|
* nobody messes with the credits while we update them.
|
725 |
|
|
*/
|
726 |
|
|
spin_lock_irqsave(&self->lock, flags);
|
727 |
|
|
|
728 |
|
|
n = self->avail_credit;
|
729 |
|
|
self->avail_credit = 0;
|
730 |
|
|
|
731 |
|
|
/* Only room for 127 credits in frame */
|
732 |
|
|
if (n > 127) {
|
733 |
|
|
self->avail_credit = n-127;
|
734 |
|
|
n = 127;
|
735 |
|
|
}
|
736 |
|
|
self->remote_credit += n;
|
737 |
|
|
self->send_credit--;
|
738 |
|
|
|
739 |
|
|
spin_unlock_irqrestore(&self->lock, flags);
|
740 |
|
|
|
741 |
|
|
/*
|
742 |
|
|
* More bit must be set by the data_request() or fragment()
|
743 |
|
|
* functions
|
744 |
|
|
*/
|
745 |
|
|
skb->data[0] |= (n & 0x7f);
|
746 |
|
|
|
747 |
|
|
/* Detach from socket.
|
748 |
|
|
* The current skb has a reference to the socket that sent
|
749 |
|
|
* it (skb->sk). When we pass it to IrLMP, the skb will be
|
750 |
|
|
* stored in in IrLAP (self->wx_list). When we are within
|
751 |
|
|
* IrLAP, we lose the notion of socket, so we should not
|
752 |
|
|
* have a reference to a socket. So, we drop it here.
|
753 |
|
|
*
|
754 |
|
|
* Why does it matter ?
|
755 |
|
|
* When the skb is freed (kfree_skb), if it is associated
|
756 |
|
|
* with a socket, it release buffer space on the socket
|
757 |
|
|
* (through sock_wfree() and sock_def_write_space()).
|
758 |
|
|
* If the socket no longer exist, we may crash. Hard.
|
759 |
|
|
* When we close a socket, we make sure that associated packets
|
760 |
|
|
* in IrTTP are freed. However, we have no way to cancel
|
761 |
|
|
* the packet that we have passed to IrLAP. So, if a packet
|
762 |
|
|
* remains in IrLAP (retry on the link or else) after we
|
763 |
|
|
* close the socket, we are dead !
|
764 |
|
|
* Jean II */
|
765 |
|
|
if (skb->sk != NULL) {
|
766 |
|
|
/* IrSOCK application, IrOBEX, ... */
|
767 |
|
|
skb_orphan(skb);
|
768 |
|
|
}
|
769 |
|
|
/* IrCOMM over IrTTP, IrLAN, ... */
|
770 |
|
|
|
771 |
|
|
/* Pass the skb to IrLMP - done */
|
772 |
|
|
irlmp_data_request(self->lsap, skb);
|
773 |
|
|
self->stats.tx_packets++;
|
774 |
|
|
}
|
775 |
|
|
|
776 |
|
|
/* Check if we can accept more frames from client.
|
777 |
|
|
* We don't want to wait until the todo timer to do that, and we
|
778 |
|
|
* can't use tasklets (grr...), so we are obliged to give control
|
779 |
|
|
* to client. That's ok, this test will be true not too often
|
780 |
|
|
* (max once per LAP window) and we are called from places
|
781 |
|
|
* where we can spend a bit of time doing stuff. - Jean II */
|
782 |
|
|
if ((self->tx_sdu_busy) &&
|
783 |
|
|
(skb_queue_len(&self->tx_queue) < TTP_TX_LOW_THRESHOLD) &&
|
784 |
|
|
(!self->close_pend))
|
785 |
|
|
{
|
786 |
|
|
if (self->notify.flow_indication)
|
787 |
|
|
self->notify.flow_indication(self->notify.instance,
|
788 |
|
|
self, FLOW_START);
|
789 |
|
|
|
790 |
|
|
/* self->tx_sdu_busy is the state of the client.
|
791 |
|
|
* We don't really have a race here, but it's always safer
|
792 |
|
|
* to update our state after the client - Jean II */
|
793 |
|
|
self->tx_sdu_busy = FALSE;
|
794 |
|
|
}
|
795 |
|
|
|
796 |
|
|
/* Reset lock */
|
797 |
|
|
self->tx_queue_lock = 0;
|
798 |
|
|
}
|
799 |
|
|
|
800 |
|
|
/*
|
801 |
|
|
* Function irttp_give_credit (self)
|
802 |
|
|
*
|
803 |
|
|
* Send a dataless flowdata TTP-PDU and give available credit to peer
|
804 |
|
|
* TSAP
|
805 |
|
|
*/
|
806 |
|
|
static inline void irttp_give_credit(struct tsap_cb *self)
|
807 |
|
|
{
|
808 |
|
|
struct sk_buff *tx_skb = NULL;
|
809 |
|
|
unsigned long flags;
|
810 |
|
|
int n;
|
811 |
|
|
|
812 |
|
|
IRDA_ASSERT(self != NULL, return;);
|
813 |
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
|
814 |
|
|
|
815 |
|
|
IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n",
|
816 |
|
|
__FUNCTION__,
|
817 |
|
|
self->send_credit, self->avail_credit, self->remote_credit);
|
818 |
|
|
|
819 |
|
|
/* Give credit to peer */
|
820 |
|
|
tx_skb = alloc_skb(TTP_MAX_HEADER, GFP_ATOMIC);
|
821 |
|
|
if (!tx_skb)
|
822 |
|
|
return;
|
823 |
|
|
|
824 |
|
|
/* Reserve space for LMP, and LAP header */
|
825 |
|
|
skb_reserve(tx_skb, LMP_MAX_HEADER);
|
826 |
|
|
|
827 |
|
|
/*
|
828 |
|
|
* Since we can transmit and receive frames concurrently,
|
829 |
|
|
* the code below is a critical region and we must assure that
|
830 |
|
|
* nobody messes with the credits while we update them.
|
831 |
|
|
*/
|
832 |
|
|
spin_lock_irqsave(&self->lock, flags);
|
833 |
|
|
|
834 |
|
|
n = self->avail_credit;
|
835 |
|
|
self->avail_credit = 0;
|
836 |
|
|
|
837 |
|
|
/* Only space for 127 credits in frame */
|
838 |
|
|
if (n > 127) {
|
839 |
|
|
self->avail_credit = n - 127;
|
840 |
|
|
n = 127;
|
841 |
|
|
}
|
842 |
|
|
self->remote_credit += n;
|
843 |
|
|
|
844 |
|
|
spin_unlock_irqrestore(&self->lock, flags);
|
845 |
|
|
|
846 |
|
|
skb_put(tx_skb, 1);
|
847 |
|
|
tx_skb->data[0] = (__u8) (n & 0x7f);
|
848 |
|
|
|
849 |
|
|
irlmp_data_request(self->lsap, tx_skb);
|
850 |
|
|
self->stats.tx_packets++;
|
851 |
|
|
}
|
852 |
|
|
|
853 |
|
|
/*
|
854 |
|
|
* Function irttp_udata_indication (instance, sap, skb)
|
855 |
|
|
*
|
856 |
|
|
* Received some unit-data (unreliable)
|
857 |
|
|
*
|
858 |
|
|
*/
|
859 |
|
|
static int irttp_udata_indication(void *instance, void *sap,
|
860 |
|
|
struct sk_buff *skb)
|
861 |
|
|
{
|
862 |
|
|
struct tsap_cb *self;
|
863 |
|
|
int err;
|
864 |
|
|
|
865 |
|
|
IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
|
866 |
|
|
|
867 |
|
|
self = (struct tsap_cb *) instance;
|
868 |
|
|
|
869 |
|
|
IRDA_ASSERT(self != NULL, return -1;);
|
870 |
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
|
871 |
|
|
IRDA_ASSERT(skb != NULL, return -1;);
|
872 |
|
|
|
873 |
|
|
self->stats.rx_packets++;
|
874 |
|
|
|
875 |
|
|
/* Just pass data to layer above */
|
876 |
|
|
if (self->notify.udata_indication) {
|
877 |
|
|
err = self->notify.udata_indication(self->notify.instance,
|
878 |
|
|
self,skb);
|
879 |
|
|
/* Same comment as in irttp_do_data_indication() */
|
880 |
|
|
if (!err)
|
881 |
|
|
return 0;
|
882 |
|
|
}
|
883 |
|
|
/* Either no handler, or handler returns an error */
|
884 |
|
|
dev_kfree_skb(skb);
|
885 |
|
|
|
886 |
|
|
return 0;
|
887 |
|
|
}
|
888 |
|
|
|
889 |
|
|
/*
|
890 |
|
|
* Function irttp_data_indication (instance, sap, skb)
|
891 |
|
|
*
|
892 |
|
|
* Receive segment from IrLMP.
|
893 |
|
|
*
|
894 |
|
|
*/
|
895 |
|
|
static int irttp_data_indication(void *instance, void *sap,
|
896 |
|
|
struct sk_buff *skb)
|
897 |
|
|
{
|
898 |
|
|
struct tsap_cb *self;
|
899 |
|
|
unsigned long flags;
|
900 |
|
|
int n;
|
901 |
|
|
|
902 |
|
|
self = (struct tsap_cb *) instance;
|
903 |
|
|
|
904 |
|
|
n = skb->data[0] & 0x7f; /* Extract the credits */
|
905 |
|
|
|
906 |
|
|
self->stats.rx_packets++;
|
907 |
|
|
|
908 |
|
|
/* Deal with inbound credit
|
909 |
|
|
* Since we can transmit and receive frames concurrently,
|
910 |
|
|
* the code below is a critical region and we must assure that
|
911 |
|
|
* nobody messes with the credits while we update them.
|
912 |
|
|
*/
|
913 |
|
|
spin_lock_irqsave(&self->lock, flags);
|
914 |
|
|
self->send_credit += n;
|
915 |
|
|
if (skb->len > 1)
|
916 |
|
|
self->remote_credit--;
|
917 |
|
|
spin_unlock_irqrestore(&self->lock, flags);
|
918 |
|
|
|
919 |
|
|
/*
|
920 |
|
|
* Data or dataless packet? Dataless frames contains only the
|
921 |
|
|
* TTP_HEADER.
|
922 |
|
|
*/
|
923 |
|
|
if (skb->len > 1) {
|
924 |
|
|
/*
|
925 |
|
|
* We don't remove the TTP header, since we must preserve the
|
926 |
|
|
* more bit, so the defragment routing knows what to do
|
927 |
|
|
*/
|
928 |
|
|
skb_queue_tail(&self->rx_queue, skb);
|
929 |
|
|
} else {
|
930 |
|
|
/* Dataless flowdata TTP-PDU */
|
931 |
|
|
dev_kfree_skb(skb);
|
932 |
|
|
}
|
933 |
|
|
|
934 |
|
|
|
935 |
|
|
/* Push data to the higher layer.
|
936 |
|
|
* We do it synchronously because running the todo timer for each
|
937 |
|
|
* receive packet would be too much overhead and latency.
|
938 |
|
|
* By passing control to the higher layer, we run the risk that
|
939 |
|
|
* it may take time or grab a lock. Most often, the higher layer
|
940 |
|
|
* will only put packet in a queue.
|
941 |
|
|
* Anyway, packets are only dripping through the IrDA, so we can
|
942 |
|
|
* have time before the next packet.
|
943 |
|
|
* Further, we are run from NET_BH, so the worse that can happen is
|
944 |
|
|
* us missing the optimal time to send back the PF bit in LAP.
|
945 |
|
|
* Jean II */
|
946 |
|
|
irttp_run_rx_queue(self);
|
947 |
|
|
|
948 |
|
|
/* We now give credits to peer in irttp_run_rx_queue().
|
949 |
|
|
* We need to send credit *NOW*, otherwise we are going
|
950 |
|
|
* to miss the next Tx window. The todo timer may take
|
951 |
|
|
* a while before it's run... - Jean II */
|
952 |
|
|
|
953 |
|
|
/*
|
954 |
|
|
* If the peer device has given us some credits and we didn't have
|
955 |
|
|
* anyone from before, then we need to shedule the tx queue.
|
956 |
|
|
* We need to do that because our Tx have stopped (so we may not
|
957 |
|
|
* get any LAP flow indication) and the user may be stopped as
|
958 |
|
|
* well. - Jean II
|
959 |
|
|
*/
|
960 |
|
|
if (self->send_credit == n) {
|
961 |
|
|
/* Restart pushing stuff to LAP */
|
962 |
|
|
irttp_run_tx_queue(self);
|
963 |
|
|
/* Note : we don't want to schedule the todo timer
|
964 |
|
|
* because it has horrible latency. No tasklets
|
965 |
|
|
* because the tasklet API is broken. - Jean II */
|
966 |
|
|
}
|
967 |
|
|
|
968 |
|
|
return 0;
|
969 |
|
|
}
|
970 |
|
|
|
971 |
|
|
/*
|
972 |
|
|
* Function irttp_status_indication (self, reason)
|
973 |
|
|
*
|
974 |
|
|
* Status_indication, just pass to the higher layer...
|
975 |
|
|
*
|
976 |
|
|
*/
|
977 |
|
|
static void irttp_status_indication(void *instance,
|
978 |
|
|
LINK_STATUS link, LOCK_STATUS lock)
|
979 |
|
|
{
|
980 |
|
|
struct tsap_cb *self;
|
981 |
|
|
|
982 |
|
|
IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
|
983 |
|
|
|
984 |
|
|
self = (struct tsap_cb *) instance;
|
985 |
|
|
|
986 |
|
|
IRDA_ASSERT(self != NULL, return;);
|
987 |
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
|
988 |
|
|
|
989 |
|
|
/* Check if client has already closed the TSAP and gone away */
|
990 |
|
|
if (self->close_pend)
|
991 |
|
|
return;
|
992 |
|
|
|
993 |
|
|
/*
|
994 |
|
|
* Inform service user if he has requested it
|
995 |
|
|
*/
|
996 |
|
|
if (self->notify.status_indication != NULL)
|
997 |
|
|
self->notify.status_indication(self->notify.instance,
|
998 |
|
|
link, lock);
|
999 |
|
|
else
|
1000 |
|
|
IRDA_DEBUG(2, "%s(), no handler\n", __FUNCTION__);
|
1001 |
|
|
}
|
1002 |
|
|
|
1003 |
|
|
/*
|
1004 |
|
|
* Function irttp_flow_indication (self, reason)
|
1005 |
|
|
*
|
1006 |
|
|
* Flow_indication : IrLAP tells us to send more data.
|
1007 |
|
|
*
|
1008 |
|
|
*/
|
1009 |
|
|
static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
|
1010 |
|
|
{
|
1011 |
|
|
struct tsap_cb *self;
|
1012 |
|
|
|
1013 |
|
|
self = (struct tsap_cb *) instance;
|
1014 |
|
|
|
1015 |
|
|
IRDA_ASSERT(self != NULL, return;);
|
1016 |
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
|
1017 |
|
|
|
1018 |
|
|
IRDA_DEBUG(4, "%s(instance=%p)\n", __FUNCTION__, self);
|
1019 |
|
|
|
1020 |
|
|
/* We are "polled" directly from LAP, and the LAP want to fill
|
1021 |
|
|
* its Tx window. We want to do our best to send it data, so that
|
1022 |
|
|
* we maximise the window. On the other hand, we want to limit the
|
1023 |
|
|
* amount of work here so that LAP doesn't hang forever waiting
|
1024 |
|
|
* for packets. - Jean II */
|
1025 |
|
|
|
1026 |
|
|
/* Try to send some packets. Currently, LAP calls us every time
|
1027 |
|
|
* there is one free slot, so we will send only one packet.
|
1028 |
|
|
* This allow the scheduler to do its round robin - Jean II */
|
1029 |
|
|
irttp_run_tx_queue(self);
|
1030 |
|
|
|
1031 |
|
|
/* Note regarding the interraction with higher layer.
|
1032 |
|
|
* irttp_run_tx_queue() may call the client when its queue
|
1033 |
|
|
* start to empty, via notify.flow_indication(). Initially.
|
1034 |
|
|
* I wanted this to happen in a tasklet, to avoid client
|
1035 |
|
|
* grabbing the CPU, but we can't use tasklets safely. And timer
|
1036 |
|
|
* is definitely too slow.
|
1037 |
|
|
* This will happen only once per LAP window, and usually at
|
1038 |
|
|
* the third packet (unless window is smaller). LAP is still
|
1039 |
|
|
* doing mtt and sending first packet so it's sort of OK
|
1040 |
|
|
* to do that. Jean II */
|
1041 |
|
|
|
1042 |
|
|
/* If we need to send disconnect. try to do it now */
|
1043 |
|
|
if(self->disconnect_pend)
|
1044 |
|
|
irttp_start_todo_timer(self, 0);
|
1045 |
|
|
}
|
1046 |
|
|
|
1047 |
|
|
/*
|
1048 |
|
|
* Function irttp_flow_request (self, command)
|
1049 |
|
|
*
|
1050 |
|
|
* This function could be used by the upper layers to tell IrTTP to stop
|
1051 |
|
|
* delivering frames if the receive queues are starting to get full, or
|
1052 |
|
|
* to tell IrTTP to start delivering frames again.
|
1053 |
|
|
*/
|
1054 |
|
|
void irttp_flow_request(struct tsap_cb *self, LOCAL_FLOW flow)
|
1055 |
|
|
{
|
1056 |
|
|
IRDA_DEBUG(1, "%s()\n", __FUNCTION__);
|
1057 |
|
|
|
1058 |
|
|
IRDA_ASSERT(self != NULL, return;);
|
1059 |
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
|
1060 |
|
|
|
1061 |
|
|
switch (flow) {
|
1062 |
|
|
case FLOW_STOP:
|
1063 |
|
|
IRDA_DEBUG(1, "%s(), flow stop\n", __FUNCTION__);
|
1064 |
|
|
self->rx_sdu_busy = TRUE;
|
1065 |
|
|
break;
|
1066 |
|
|
case FLOW_START:
|
1067 |
|
|
IRDA_DEBUG(1, "%s(), flow start\n", __FUNCTION__);
|
1068 |
|
|
self->rx_sdu_busy = FALSE;
|
1069 |
|
|
|
1070 |
|
|
/* Client say he can accept more data, try to free our
|
1071 |
|
|
* queues ASAP - Jean II */
|
1072 |
|
|
irttp_run_rx_queue(self);
|
1073 |
|
|
|
1074 |
|
|
break;
|
1075 |
|
|
default:
|
1076 |
|
|
IRDA_DEBUG(1, "%s(), Unknown flow command!\n", __FUNCTION__);
|
1077 |
|
|
}
|
1078 |
|
|
}
|
1079 |
|
|
EXPORT_SYMBOL(irttp_flow_request);
|
1080 |
|
|
|
1081 |
|
|
/*
|
1082 |
|
|
* Function irttp_connect_request (self, dtsap_sel, daddr, qos)
|
1083 |
|
|
*
|
1084 |
|
|
* Try to connect to remote destination TSAP selector
|
1085 |
|
|
*
|
1086 |
|
|
*/
|
1087 |
|
|
int irttp_connect_request(struct tsap_cb *self, __u8 dtsap_sel,
|
1088 |
|
|
__u32 saddr, __u32 daddr,
|
1089 |
|
|
struct qos_info *qos, __u32 max_sdu_size,
|
1090 |
|
|
struct sk_buff *userdata)
|
1091 |
|
|
{
|
1092 |
|
|
struct sk_buff *tx_skb;
|
1093 |
|
|
__u8 *frame;
|
1094 |
|
|
__u8 n;
|
1095 |
|
|
|
1096 |
|
|
IRDA_DEBUG(4, "%s(), max_sdu_size=%d\n", __FUNCTION__, max_sdu_size);
|
1097 |
|
|
|
1098 |
|
|
IRDA_ASSERT(self != NULL, return -EBADR;);
|
1099 |
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -EBADR;);
|
1100 |
|
|
|
1101 |
|
|
if (self->connected) {
|
1102 |
|
|
if(userdata)
|
1103 |
|
|
dev_kfree_skb(userdata);
|
1104 |
|
|
return -EISCONN;
|
1105 |
|
|
}
|
1106 |
|
|
|
1107 |
|
|
/* Any userdata supplied? */
|
1108 |
|
|
if (userdata == NULL) {
|
1109 |
|
|
tx_skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
|
1110 |
|
|
GFP_ATOMIC);
|
1111 |
|
|
if (!tx_skb)
|
1112 |
|
|
return -ENOMEM;
|
1113 |
|
|
|
1114 |
|
|
/* Reserve space for MUX_CONTROL and LAP header */
|
1115 |
|
|
skb_reserve(tx_skb, TTP_MAX_HEADER + TTP_SAR_HEADER);
|
1116 |
|
|
} else {
|
1117 |
|
|
tx_skb = userdata;
|
1118 |
|
|
/*
|
1119 |
|
|
* Check that the client has reserved enough space for
|
1120 |
|
|
* headers
|
1121 |
|
|
*/
|
1122 |
|
|
IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
|
1123 |
|
|
{ dev_kfree_skb(userdata); return -1; } );
|
1124 |
|
|
}
|
1125 |
|
|
|
1126 |
|
|
/* Initialize connection parameters */
|
1127 |
|
|
self->connected = FALSE;
|
1128 |
|
|
self->avail_credit = 0;
|
1129 |
|
|
self->rx_max_sdu_size = max_sdu_size;
|
1130 |
|
|
self->rx_sdu_size = 0;
|
1131 |
|
|
self->rx_sdu_busy = FALSE;
|
1132 |
|
|
self->dtsap_sel = dtsap_sel;
|
1133 |
|
|
|
1134 |
|
|
n = self->initial_credit;
|
1135 |
|
|
|
1136 |
|
|
self->remote_credit = 0;
|
1137 |
|
|
self->send_credit = 0;
|
1138 |
|
|
|
1139 |
|
|
/*
|
1140 |
|
|
* Give away max 127 credits for now
|
1141 |
|
|
*/
|
1142 |
|
|
if (n > 127) {
|
1143 |
|
|
self->avail_credit=n-127;
|
1144 |
|
|
n = 127;
|
1145 |
|
|
}
|
1146 |
|
|
|
1147 |
|
|
self->remote_credit = n;
|
1148 |
|
|
|
1149 |
|
|
/* SAR enabled? */
|
1150 |
|
|
if (max_sdu_size > 0) {
|
1151 |
|
|
IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
|
1152 |
|
|
{ dev_kfree_skb(tx_skb); return -1; } );
|
1153 |
|
|
|
1154 |
|
|
/* Insert SAR parameters */
|
1155 |
|
|
frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
|
1156 |
|
|
|
1157 |
|
|
frame[0] = TTP_PARAMETERS | n;
|
1158 |
|
|
frame[1] = 0x04; /* Length */
|
1159 |
|
|
frame[2] = 0x01; /* MaxSduSize */
|
1160 |
|
|
frame[3] = 0x02; /* Value length */
|
1161 |
|
|
|
1162 |
|
|
put_unaligned(cpu_to_be16((__u16) max_sdu_size),
|
1163 |
|
|
(__be16 *)(frame+4));
|
1164 |
|
|
} else {
|
1165 |
|
|
/* Insert plain TTP header */
|
1166 |
|
|
frame = skb_push(tx_skb, TTP_HEADER);
|
1167 |
|
|
|
1168 |
|
|
/* Insert initial credit in frame */
|
1169 |
|
|
frame[0] = n & 0x7f;
|
1170 |
|
|
}
|
1171 |
|
|
|
1172 |
|
|
/* Connect with IrLMP. No QoS parameters for now */
|
1173 |
|
|
return irlmp_connect_request(self->lsap, dtsap_sel, saddr, daddr, qos,
|
1174 |
|
|
tx_skb);
|
1175 |
|
|
}
|
1176 |
|
|
EXPORT_SYMBOL(irttp_connect_request);
|
1177 |
|
|
|
1178 |
|
|
/*
|
1179 |
|
|
* Function irttp_connect_confirm (handle, qos, skb)
|
1180 |
|
|
*
|
1181 |
|
|
* Sevice user confirms TSAP connection with peer.
|
1182 |
|
|
*
|
1183 |
|
|
*/
|
1184 |
|
|
static void irttp_connect_confirm(void *instance, void *sap,
|
1185 |
|
|
struct qos_info *qos, __u32 max_seg_size,
|
1186 |
|
|
__u8 max_header_size, struct sk_buff *skb)
|
1187 |
|
|
{
|
1188 |
|
|
struct tsap_cb *self;
|
1189 |
|
|
int parameters;
|
1190 |
|
|
int ret;
|
1191 |
|
|
__u8 plen;
|
1192 |
|
|
__u8 n;
|
1193 |
|
|
|
1194 |
|
|
IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
|
1195 |
|
|
|
1196 |
|
|
self = (struct tsap_cb *) instance;
|
1197 |
|
|
|
1198 |
|
|
IRDA_ASSERT(self != NULL, return;);
|
1199 |
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
|
1200 |
|
|
IRDA_ASSERT(skb != NULL, return;);
|
1201 |
|
|
|
1202 |
|
|
self->max_seg_size = max_seg_size - TTP_HEADER;
|
1203 |
|
|
self->max_header_size = max_header_size + TTP_HEADER;
|
1204 |
|
|
|
1205 |
|
|
/*
|
1206 |
|
|
* Check if we have got some QoS parameters back! This should be the
|
1207 |
|
|
* negotiated QoS for the link.
|
1208 |
|
|
*/
|
1209 |
|
|
if (qos) {
|
1210 |
|
|
IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %02x\n",
|
1211 |
|
|
qos->baud_rate.bits);
|
1212 |
|
|
IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %d bps.\n",
|
1213 |
|
|
qos->baud_rate.value);
|
1214 |
|
|
}
|
1215 |
|
|
|
1216 |
|
|
n = skb->data[0] & 0x7f;
|
1217 |
|
|
|
1218 |
|
|
IRDA_DEBUG(4, "%s(), Initial send_credit=%d\n", __FUNCTION__, n);
|
1219 |
|
|
|
1220 |
|
|
self->send_credit = n;
|
1221 |
|
|
self->tx_max_sdu_size = 0;
|
1222 |
|
|
self->connected = TRUE;
|
1223 |
|
|
|
1224 |
|
|
parameters = skb->data[0] & 0x80;
|
1225 |
|
|
|
1226 |
|
|
IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
|
1227 |
|
|
skb_pull(skb, TTP_HEADER);
|
1228 |
|
|
|
1229 |
|
|
if (parameters) {
|
1230 |
|
|
plen = skb->data[0];
|
1231 |
|
|
|
1232 |
|
|
ret = irda_param_extract_all(self, skb->data+1,
|
1233 |
|
|
IRDA_MIN(skb->len-1, plen),
|
1234 |
|
|
¶m_info);
|
1235 |
|
|
|
1236 |
|
|
/* Any errors in the parameter list? */
|
1237 |
|
|
if (ret < 0) {
|
1238 |
|
|
IRDA_WARNING("%s: error extracting parameters\n",
|
1239 |
|
|
__FUNCTION__);
|
1240 |
|
|
dev_kfree_skb(skb);
|
1241 |
|
|
|
1242 |
|
|
/* Do not accept this connection attempt */
|
1243 |
|
|
return;
|
1244 |
|
|
}
|
1245 |
|
|
/* Remove parameters */
|
1246 |
|
|
skb_pull(skb, IRDA_MIN(skb->len, plen+1));
|
1247 |
|
|
}
|
1248 |
|
|
|
1249 |
|
|
IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n", __FUNCTION__,
|
1250 |
|
|
self->send_credit, self->avail_credit, self->remote_credit);
|
1251 |
|
|
|
1252 |
|
|
IRDA_DEBUG(2, "%s(), MaxSduSize=%d\n", __FUNCTION__,
|
1253 |
|
|
self->tx_max_sdu_size);
|
1254 |
|
|
|
1255 |
|
|
if (self->notify.connect_confirm) {
|
1256 |
|
|
self->notify.connect_confirm(self->notify.instance, self, qos,
|
1257 |
|
|
self->tx_max_sdu_size,
|
1258 |
|
|
self->max_header_size, skb);
|
1259 |
|
|
} else
|
1260 |
|
|
dev_kfree_skb(skb);
|
1261 |
|
|
}
|
1262 |
|
|
|
1263 |
|
|
/*
|
1264 |
|
|
* Function irttp_connect_indication (handle, skb)
|
1265 |
|
|
*
|
1266 |
|
|
* Some other device is connecting to this TSAP
|
1267 |
|
|
*
|
1268 |
|
|
*/
|
1269 |
|
|
void irttp_connect_indication(void *instance, void *sap, struct qos_info *qos,
|
1270 |
|
|
__u32 max_seg_size, __u8 max_header_size,
|
1271 |
|
|
struct sk_buff *skb)
|
1272 |
|
|
{
|
1273 |
|
|
struct tsap_cb *self;
|
1274 |
|
|
struct lsap_cb *lsap;
|
1275 |
|
|
int parameters;
|
1276 |
|
|
int ret;
|
1277 |
|
|
__u8 plen;
|
1278 |
|
|
__u8 n;
|
1279 |
|
|
|
1280 |
|
|
self = (struct tsap_cb *) instance;
|
1281 |
|
|
|
1282 |
|
|
IRDA_ASSERT(self != NULL, return;);
|
1283 |
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
|
1284 |
|
|
IRDA_ASSERT(skb != NULL, return;);
|
1285 |
|
|
|
1286 |
|
|
lsap = (struct lsap_cb *) sap;
|
1287 |
|
|
|
1288 |
|
|
self->max_seg_size = max_seg_size - TTP_HEADER;
|
1289 |
|
|
self->max_header_size = max_header_size+TTP_HEADER;
|
1290 |
|
|
|
1291 |
|
|
IRDA_DEBUG(4, "%s(), TSAP sel=%02x\n", __FUNCTION__, self->stsap_sel);
|
1292 |
|
|
|
1293 |
|
|
/* Need to update dtsap_sel if its equal to LSAP_ANY */
|
1294 |
|
|
self->dtsap_sel = lsap->dlsap_sel;
|
1295 |
|
|
|
1296 |
|
|
n = skb->data[0] & 0x7f;
|
1297 |
|
|
|
1298 |
|
|
self->send_credit = n;
|
1299 |
|
|
self->tx_max_sdu_size = 0;
|
1300 |
|
|
|
1301 |
|
|
parameters = skb->data[0] & 0x80;
|
1302 |
|
|
|
1303 |
|
|
IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
|
1304 |
|
|
skb_pull(skb, TTP_HEADER);
|
1305 |
|
|
|
1306 |
|
|
if (parameters) {
|
1307 |
|
|
plen = skb->data[0];
|
1308 |
|
|
|
1309 |
|
|
ret = irda_param_extract_all(self, skb->data+1,
|
1310 |
|
|
IRDA_MIN(skb->len-1, plen),
|
1311 |
|
|
¶m_info);
|
1312 |
|
|
|
1313 |
|
|
/* Any errors in the parameter list? */
|
1314 |
|
|
if (ret < 0) {
|
1315 |
|
|
IRDA_WARNING("%s: error extracting parameters\n",
|
1316 |
|
|
__FUNCTION__);
|
1317 |
|
|
dev_kfree_skb(skb);
|
1318 |
|
|
|
1319 |
|
|
/* Do not accept this connection attempt */
|
1320 |
|
|
return;
|
1321 |
|
|
}
|
1322 |
|
|
|
1323 |
|
|
/* Remove parameters */
|
1324 |
|
|
skb_pull(skb, IRDA_MIN(skb->len, plen+1));
|
1325 |
|
|
}
|
1326 |
|
|
|
1327 |
|
|
if (self->notify.connect_indication) {
|
1328 |
|
|
self->notify.connect_indication(self->notify.instance, self,
|
1329 |
|
|
qos, self->tx_max_sdu_size,
|
1330 |
|
|
self->max_header_size, skb);
|
1331 |
|
|
} else
|
1332 |
|
|
dev_kfree_skb(skb);
|
1333 |
|
|
}
|
1334 |
|
|
|
1335 |
|
|
/*
|
1336 |
|
|
* Function irttp_connect_response (handle, userdata)
|
1337 |
|
|
*
|
1338 |
|
|
* Service user is accepting the connection, just pass it down to
|
1339 |
|
|
* IrLMP!
|
1340 |
|
|
*
|
1341 |
|
|
*/
|
1342 |
|
|
int irttp_connect_response(struct tsap_cb *self, __u32 max_sdu_size,
|
1343 |
|
|
struct sk_buff *userdata)
|
1344 |
|
|
{
|
1345 |
|
|
struct sk_buff *tx_skb;
|
1346 |
|
|
__u8 *frame;
|
1347 |
|
|
int ret;
|
1348 |
|
|
__u8 n;
|
1349 |
|
|
|
1350 |
|
|
IRDA_ASSERT(self != NULL, return -1;);
|
1351 |
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
|
1352 |
|
|
|
1353 |
|
|
IRDA_DEBUG(4, "%s(), Source TSAP selector=%02x\n", __FUNCTION__,
|
1354 |
|
|
self->stsap_sel);
|
1355 |
|
|
|
1356 |
|
|
/* Any userdata supplied? */
|
1357 |
|
|
if (userdata == NULL) {
|
1358 |
|
|
tx_skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
|
1359 |
|
|
GFP_ATOMIC);
|
1360 |
|
|
if (!tx_skb)
|
1361 |
|
|
return -ENOMEM;
|
1362 |
|
|
|
1363 |
|
|
/* Reserve space for MUX_CONTROL and LAP header */
|
1364 |
|
|
skb_reserve(tx_skb, TTP_MAX_HEADER + TTP_SAR_HEADER);
|
1365 |
|
|
} else {
|
1366 |
|
|
tx_skb = userdata;
|
1367 |
|
|
/*
|
1368 |
|
|
* Check that the client has reserved enough space for
|
1369 |
|
|
* headers
|
1370 |
|
|
*/
|
1371 |
|
|
IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
|
1372 |
|
|
{ dev_kfree_skb(userdata); return -1; } );
|
1373 |
|
|
}
|
1374 |
|
|
|
1375 |
|
|
self->avail_credit = 0;
|
1376 |
|
|
self->remote_credit = 0;
|
1377 |
|
|
self->rx_max_sdu_size = max_sdu_size;
|
1378 |
|
|
self->rx_sdu_size = 0;
|
1379 |
|
|
self->rx_sdu_busy = FALSE;
|
1380 |
|
|
|
1381 |
|
|
n = self->initial_credit;
|
1382 |
|
|
|
1383 |
|
|
/* Frame has only space for max 127 credits (7 bits) */
|
1384 |
|
|
if (n > 127) {
|
1385 |
|
|
self->avail_credit = n - 127;
|
1386 |
|
|
n = 127;
|
1387 |
|
|
}
|
1388 |
|
|
|
1389 |
|
|
self->remote_credit = n;
|
1390 |
|
|
self->connected = TRUE;
|
1391 |
|
|
|
1392 |
|
|
/* SAR enabled? */
|
1393 |
|
|
if (max_sdu_size > 0) {
|
1394 |
|
|
IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
|
1395 |
|
|
{ dev_kfree_skb(tx_skb); return -1; } );
|
1396 |
|
|
|
1397 |
|
|
/* Insert TTP header with SAR parameters */
|
1398 |
|
|
frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
|
1399 |
|
|
|
1400 |
|
|
frame[0] = TTP_PARAMETERS | n;
|
1401 |
|
|
frame[1] = 0x04; /* Length */
|
1402 |
|
|
|
1403 |
|
|
/* irda_param_insert(self, IRTTP_MAX_SDU_SIZE, frame+1, */
|
1404 |
|
|
/* TTP_SAR_HEADER, ¶m_info) */
|
1405 |
|
|
|
1406 |
|
|
frame[2] = 0x01; /* MaxSduSize */
|
1407 |
|
|
frame[3] = 0x02; /* Value length */
|
1408 |
|
|
|
1409 |
|
|
put_unaligned(cpu_to_be16((__u16) max_sdu_size),
|
1410 |
|
|
(__be16 *)(frame+4));
|
1411 |
|
|
} else {
|
1412 |
|
|
/* Insert TTP header */
|
1413 |
|
|
frame = skb_push(tx_skb, TTP_HEADER);
|
1414 |
|
|
|
1415 |
|
|
frame[0] = n & 0x7f;
|
1416 |
|
|
}
|
1417 |
|
|
|
1418 |
|
|
ret = irlmp_connect_response(self->lsap, tx_skb);
|
1419 |
|
|
|
1420 |
|
|
return ret;
|
1421 |
|
|
}
|
1422 |
|
|
EXPORT_SYMBOL(irttp_connect_response);
|
1423 |
|
|
|
1424 |
|
|
/*
|
1425 |
|
|
* Function irttp_dup (self, instance)
|
1426 |
|
|
*
|
1427 |
|
|
* Duplicate TSAP, can be used by servers to confirm a connection on a
|
1428 |
|
|
* new TSAP so it can keep listening on the old one.
|
1429 |
|
|
*/
|
1430 |
|
|
struct tsap_cb *irttp_dup(struct tsap_cb *orig, void *instance)
|
1431 |
|
|
{
|
1432 |
|
|
struct tsap_cb *new;
|
1433 |
|
|
unsigned long flags;
|
1434 |
|
|
|
1435 |
|
|
IRDA_DEBUG(1, "%s()\n", __FUNCTION__);
|
1436 |
|
|
|
1437 |
|
|
/* Protect our access to the old tsap instance */
|
1438 |
|
|
spin_lock_irqsave(&irttp->tsaps->hb_spinlock, flags);
|
1439 |
|
|
|
1440 |
|
|
/* Find the old instance */
|
1441 |
|
|
if (!hashbin_find(irttp->tsaps, (long) orig, NULL)) {
|
1442 |
|
|
IRDA_DEBUG(0, "%s(), unable to find TSAP\n", __FUNCTION__);
|
1443 |
|
|
spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
|
1444 |
|
|
return NULL;
|
1445 |
|
|
}
|
1446 |
|
|
|
1447 |
|
|
/* Allocate a new instance */
|
1448 |
|
|
new = kmalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
|
1449 |
|
|
if (!new) {
|
1450 |
|
|
IRDA_DEBUG(0, "%s(), unable to kmalloc\n", __FUNCTION__);
|
1451 |
|
|
spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
|
1452 |
|
|
return NULL;
|
1453 |
|
|
}
|
1454 |
|
|
/* Dup */
|
1455 |
|
|
memcpy(new, orig, sizeof(struct tsap_cb));
|
1456 |
|
|
|
1457 |
|
|
/* We don't need the old instance any more */
|
1458 |
|
|
spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
|
1459 |
|
|
|
1460 |
|
|
/* Try to dup the LSAP (may fail if we were too slow) */
|
1461 |
|
|
new->lsap = irlmp_dup(orig->lsap, new);
|
1462 |
|
|
if (!new->lsap) {
|
1463 |
|
|
IRDA_DEBUG(0, "%s(), dup failed!\n", __FUNCTION__);
|
1464 |
|
|
kfree(new);
|
1465 |
|
|
return NULL;
|
1466 |
|
|
}
|
1467 |
|
|
|
1468 |
|
|
/* Not everything should be copied */
|
1469 |
|
|
new->notify.instance = instance;
|
1470 |
|
|
|
1471 |
|
|
/* Initialize internal objects */
|
1472 |
|
|
irttp_init_tsap(new);
|
1473 |
|
|
|
1474 |
|
|
/* This is locked */
|
1475 |
|
|
hashbin_insert(irttp->tsaps, (irda_queue_t *) new, (long) new, NULL);
|
1476 |
|
|
|
1477 |
|
|
return new;
|
1478 |
|
|
}
|
1479 |
|
|
EXPORT_SYMBOL(irttp_dup);
|
1480 |
|
|
|
1481 |
|
|
/*
|
1482 |
|
|
* Function irttp_disconnect_request (self)
|
1483 |
|
|
*
|
1484 |
|
|
* Close this connection please! If priority is high, the queued data
|
1485 |
|
|
* segments, if any, will be deallocated first
|
1486 |
|
|
*
|
1487 |
|
|
*/
|
1488 |
|
|
int irttp_disconnect_request(struct tsap_cb *self, struct sk_buff *userdata,
|
1489 |
|
|
int priority)
|
1490 |
|
|
{
|
1491 |
|
|
int ret;
|
1492 |
|
|
|
1493 |
|
|
IRDA_ASSERT(self != NULL, return -1;);
|
1494 |
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
|
1495 |
|
|
|
1496 |
|
|
/* Already disconnected? */
|
1497 |
|
|
if (!self->connected) {
|
1498 |
|
|
IRDA_DEBUG(4, "%s(), already disconnected!\n", __FUNCTION__);
|
1499 |
|
|
if (userdata)
|
1500 |
|
|
dev_kfree_skb(userdata);
|
1501 |
|
|
return -1;
|
1502 |
|
|
}
|
1503 |
|
|
|
1504 |
|
|
/* Disconnect already pending ?
|
1505 |
|
|
* We need to use an atomic operation to prevent reentry. This
|
1506 |
|
|
* function may be called from various context, like user, timer
|
1507 |
|
|
* for following a disconnect_indication() (i.e. net_bh).
|
1508 |
|
|
* Jean II */
|
1509 |
|
|
if(test_and_set_bit(0, &self->disconnect_pend)) {
|
1510 |
|
|
IRDA_DEBUG(0, "%s(), disconnect already pending\n",
|
1511 |
|
|
__FUNCTION__);
|
1512 |
|
|
if (userdata)
|
1513 |
|
|
dev_kfree_skb(userdata);
|
1514 |
|
|
|
1515 |
|
|
/* Try to make some progress */
|
1516 |
|
|
irttp_run_tx_queue(self);
|
1517 |
|
|
return -1;
|
1518 |
|
|
}
|
1519 |
|
|
|
1520 |
|
|
/*
|
1521 |
|
|
* Check if there is still data segments in the transmit queue
|
1522 |
|
|
*/
|
1523 |
|
|
if (!skb_queue_empty(&self->tx_queue)) {
|
1524 |
|
|
if (priority == P_HIGH) {
|
1525 |
|
|
/*
|
1526 |
|
|
* No need to send the queued data, if we are
|
1527 |
|
|
* disconnecting right now since the data will
|
1528 |
|
|
* not have any usable connection to be sent on
|
1529 |
|
|
*/
|
1530 |
|
|
IRDA_DEBUG(1, "%s(): High priority!!()\n", __FUNCTION__);
|
1531 |
|
|
irttp_flush_queues(self);
|
1532 |
|
|
} else if (priority == P_NORMAL) {
|
1533 |
|
|
/*
|
1534 |
|
|
* Must delay disconnect until after all data segments
|
1535 |
|
|
* have been sent and the tx_queue is empty
|
1536 |
|
|
*/
|
1537 |
|
|
/* We'll reuse this one later for the disconnect */
|
1538 |
|
|
self->disconnect_skb = userdata; /* May be NULL */
|
1539 |
|
|
|
1540 |
|
|
irttp_run_tx_queue(self);
|
1541 |
|
|
|
1542 |
|
|
irttp_start_todo_timer(self, HZ/10);
|
1543 |
|
|
return -1;
|
1544 |
|
|
}
|
1545 |
|
|
}
|
1546 |
|
|
/* Note : we don't need to check if self->rx_queue is full and the
|
1547 |
|
|
* state of self->rx_sdu_busy because the disconnect response will
|
1548 |
|
|
* be sent at the LMP level (so even if the peer has its Tx queue
|
1549 |
|
|
* full of data). - Jean II */
|
1550 |
|
|
|
1551 |
|
|
IRDA_DEBUG(1, "%s(), Disconnecting ...\n", __FUNCTION__);
|
1552 |
|
|
self->connected = FALSE;
|
1553 |
|
|
|
1554 |
|
|
if (!userdata) {
|
1555 |
|
|
struct sk_buff *tx_skb;
|
1556 |
|
|
tx_skb = alloc_skb(LMP_MAX_HEADER, GFP_ATOMIC);
|
1557 |
|
|
if (!tx_skb)
|
1558 |
|
|
return -ENOMEM;
|
1559 |
|
|
|
1560 |
|
|
/*
|
1561 |
|
|
* Reserve space for MUX and LAP header
|
1562 |
|
|
*/
|
1563 |
|
|
skb_reserve(tx_skb, LMP_MAX_HEADER);
|
1564 |
|
|
|
1565 |
|
|
userdata = tx_skb;
|
1566 |
|
|
}
|
1567 |
|
|
ret = irlmp_disconnect_request(self->lsap, userdata);
|
1568 |
|
|
|
1569 |
|
|
/* The disconnect is no longer pending */
|
1570 |
|
|
clear_bit(0, &self->disconnect_pend); /* FALSE */
|
1571 |
|
|
|
1572 |
|
|
return ret;
|
1573 |
|
|
}
|
1574 |
|
|
EXPORT_SYMBOL(irttp_disconnect_request);
|
1575 |
|
|
|
1576 |
|
|
/*
|
1577 |
|
|
* Function irttp_disconnect_indication (self, reason)
|
1578 |
|
|
*
|
1579 |
|
|
* Disconnect indication, TSAP disconnected by peer?
|
1580 |
|
|
*
|
1581 |
|
|
*/
|
1582 |
|
|
void irttp_disconnect_indication(void *instance, void *sap, LM_REASON reason,
|
1583 |
|
|
struct sk_buff *skb)
|
1584 |
|
|
{
|
1585 |
|
|
struct tsap_cb *self;
|
1586 |
|
|
|
1587 |
|
|
IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
|
1588 |
|
|
|
1589 |
|
|
self = (struct tsap_cb *) instance;
|
1590 |
|
|
|
1591 |
|
|
IRDA_ASSERT(self != NULL, return;);
|
1592 |
|
|
IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
|
1593 |
|
|
|
1594 |
|
|
/* Prevent higher layer to send more data */
|
1595 |
|
|
self->connected = FALSE;
|
1596 |
|
|
|
1597 |
|
|
/* Check if client has already tried to close the TSAP */
|
1598 |
|
|
if (self->close_pend) {
|
1599 |
|
|
/* In this case, the higher layer is probably gone. Don't
|
1600 |
|
|
* bother it and clean up the remains - Jean II */
|
1601 |
|
|
if (skb)
|
1602 |
|
|
dev_kfree_skb(skb);
|
1603 |
|
|
irttp_close_tsap(self);
|
1604 |
|
|
return;
|
1605 |
|
|
}
|
1606 |
|
|
|
1607 |
|
|
/* If we are here, we assume that is the higher layer is still
|
1608 |
|
|
* waiting for the disconnect notification and able to process it,
|
1609 |
|
|
* even if he tried to disconnect. Otherwise, it would have already
|
1610 |
|
|
* attempted to close the tsap and self->close_pend would be TRUE.
|
1611 |
|
|
* Jean II */
|
1612 |
|
|
|
1613 |
|
|
/* No need to notify the client if has already tried to disconnect */
|
1614 |
|
|
if(self->notify.disconnect_indication)
|
1615 |
|
|
self->notify.disconnect_indication(self->notify.instance, self,
|
1616 |
|
|
reason, skb);
|
1617 |
|
|
else
|
1618 |
|
|
if (skb)
|
1619 |
|
|
dev_kfree_skb(skb);
|
1620 |
|
|
}
|
1621 |
|
|
|
1622 |
|
|
/*
|
1623 |
|
|
* Function irttp_do_data_indication (self, skb)
|
1624 |
|
|
*
|
1625 |
|
|
* Try to deliver reassembled skb to layer above, and requeue it if that
|
1626 |
|
|
* for some reason should fail. We mark rx sdu as busy to apply back
|
1627 |
|
|
* pressure is necessary.
|
1628 |
|
|
*/
|
1629 |
|
|
static void irttp_do_data_indication(struct tsap_cb *self, struct sk_buff *skb)
|
1630 |
|
|
{
|
1631 |
|
|
int err;
|
1632 |
|
|
|
1633 |
|
|
/* Check if client has already closed the TSAP and gone away */
|
1634 |
|
|
if (self->close_pend) {
|
1635 |
|
|
dev_kfree_skb(skb);
|
1636 |
|
|
return;
|
1637 |
|
|
}
|
1638 |
|
|
|
1639 |
|
|
err = self->notify.data_indication(self->notify.instance, self, skb);
|
1640 |
|
|
|
1641 |
|
|
/* Usually the layer above will notify that it's input queue is
|
1642 |
|
|
* starting to get filled by using the flow request, but this may
|
1643 |
|
|
* be difficult, so it can instead just refuse to eat it and just
|
1644 |
|
|
* give an error back
|
1645 |
|
|
*/
|
1646 |
|
|
if (err) {
|
1647 |
|
|
IRDA_DEBUG(0, "%s() requeueing skb!\n", __FUNCTION__);
|
1648 |
|
|
|
1649 |
|
|
/* Make sure we take a break */
|
1650 |
|
|
self->rx_sdu_busy = TRUE;
|
1651 |
|
|
|
1652 |
|
|
/* Need to push the header in again */
|
1653 |
|
|
skb_push(skb, TTP_HEADER);
|
1654 |
|
|
skb->data[0] = 0x00; /* Make sure MORE bit is cleared */
|
1655 |
|
|
|
1656 |
|
|
/* Put skb back on queue */
|
1657 |
|
|
skb_queue_head(&self->rx_queue, skb);
|
1658 |
|
|
}
|
1659 |
|
|
}
|
1660 |
|
|
|
1661 |
|
|
/*
|
1662 |
|
|
* Function irttp_run_rx_queue (self)
|
1663 |
|
|
*
|
1664 |
|
|
* Check if we have any frames to be transmitted, or if we have any
|
1665 |
|
|
* available credit to give away.
|
1666 |
|
|
*/
|
1667 |
|
|
void irttp_run_rx_queue(struct tsap_cb *self)
|
1668 |
|
|
{
|
1669 |
|
|
struct sk_buff *skb;
|
1670 |
|
|
int more = 0;
|
1671 |
|
|
|
1672 |
|
|
IRDA_DEBUG(2, "%s() send=%d,avail=%d,remote=%d\n", __FUNCTION__,
|
1673 |
|
|
self->send_credit, self->avail_credit, self->remote_credit);
|
1674 |
|
|
|
1675 |
|
|
/* Get exclusive access to the rx queue, otherwise don't touch it */
|
1676 |
|
|
if (irda_lock(&self->rx_queue_lock) == FALSE)
|
1677 |
|
|
return;
|
1678 |
|
|
|
1679 |
|
|
/*
|
1680 |
|
|
* Reassemble all frames in receive queue and deliver them
|
1681 |
|
|
*/
|
1682 |
|
|
while (!self->rx_sdu_busy && (skb = skb_dequeue(&self->rx_queue))) {
|
1683 |
|
|
/* This bit will tell us if it's the last fragment or not */
|
1684 |
|
|
more = skb->data[0] & 0x80;
|
1685 |
|
|
|
1686 |
|
|
/* Remove TTP header */
|
1687 |
|
|
skb_pull(skb, TTP_HEADER);
|
1688 |
|
|
|
1689 |
|
|
/* Add the length of the remaining data */
|
1690 |
|
|
self->rx_sdu_size += skb->len;
|
1691 |
|
|
|
1692 |
|
|
/*
|
1693 |
|
|
* If SAR is disabled, or user has requested no reassembly
|
1694 |
|
|
* of received fragments then we just deliver them
|
1695 |
|
|
* immediately. This can be requested by clients that
|
1696 |
|
|
* implements byte streams without any message boundaries
|
1697 |
|
|
*/
|
1698 |
|
|
if (self->rx_max_sdu_size == TTP_SAR_DISABLE) {
|
1699 |
|
|
irttp_do_data_indication(self, skb);
|
1700 |
|
|
self->rx_sdu_size = 0;
|
1701 |
|
|
|
1702 |
|
|
continue;
|
1703 |
|
|
}
|
1704 |
|
|
|
1705 |
|
|
/* Check if this is a fragment, and not the last fragment */
|
1706 |
|
|
if (more) {
|
1707 |
|
|
/*
|
1708 |
|
|
* Queue the fragment if we still are within the
|
1709 |
|
|
* limits of the maximum size of the rx_sdu
|
1710 |
|
|
*/
|
1711 |
|
|
if (self->rx_sdu_size <= self->rx_max_sdu_size) {
|
1712 |
|
|
IRDA_DEBUG(4, "%s(), queueing frag\n",
|
1713 |
|
|
__FUNCTION__);
|
1714 |
|
|
skb_queue_tail(&self->rx_fragments, skb);
|
1715 |
|
|
} else {
|
1716 |
|
|
/* Free the part of the SDU that is too big */
|
1717 |
|
|
dev_kfree_skb(skb);
|
1718 |
|
|
}
|
1719 |
|
|
continue;
|
1720 |
|
|
}
|
1721 |
|
|
/*
|
1722 |
|
|
* This is the last fragment, so time to reassemble!
|
1723 |
|
|
*/
|
1724 |
|
|
if ((self->rx_sdu_size <= self->rx_max_sdu_size) ||
|
1725 |
|
|
(self->rx_max_sdu_size == TTP_SAR_UNBOUND))
|
1726 |
|
|
{
|
1727 |
|
|
/*
|
1728 |
|
|
* A little optimizing. Only queue the fragment if
|
1729 |
|
|
* there are other fragments. Since if this is the
|
1730 |
|
|
* last and only fragment, there is no need to
|
1731 |
|
|
* reassemble :-)
|
1732 |
|
|
*/
|
1733 |
|
|
if (!skb_queue_empty(&self->rx_fragments)) {
|
1734 |
|
|
skb_queue_tail(&self->rx_fragments,
|
1735 |
|
|
skb);
|
1736 |
|
|
|
1737 |
|
|
skb = irttp_reassemble_skb(self);
|
1738 |
|
|
}
|
1739 |
|
|
|
1740 |
|
|
/* Now we can deliver the reassembled skb */
|
1741 |
|
|
irttp_do_data_indication(self, skb);
|
1742 |
|
|
} else {
|
1743 |
|
|
IRDA_DEBUG(1, "%s(), Truncated frame\n", __FUNCTION__);
|
1744 |
|
|
|
1745 |
|
|
/* Free the part of the SDU that is too big */
|
1746 |
|
|
dev_kfree_skb(skb);
|
1747 |
|
|
|
1748 |
|
|
/* Deliver only the valid but truncated part of SDU */
|
1749 |
|
|
skb = irttp_reassemble_skb(self);
|
1750 |
|
|
|
1751 |
|
|
irttp_do_data_indication(self, skb);
|
1752 |
|
|
}
|
1753 |
|
|
self->rx_sdu_size = 0;
|
1754 |
|
|
}
|
1755 |
|
|
|
1756 |
|
|
/*
|
1757 |
|
|
* It's not trivial to keep track of how many credits are available
|
1758 |
|
|
* by incrementing at each packet, because delivery may fail
|
1759 |
|
|
* (irttp_do_data_indication() may requeue the frame) and because
|
1760 |
|
|
* we need to take care of fragmentation.
|
1761 |
|
|
* We want the other side to send up to initial_credit packets.
|
1762 |
|
|
* We have some frames in our queues, and we have already allowed it
|
1763 |
|
|
* to send remote_credit.
|
1764 |
|
|
* No need to spinlock, write is atomic and self correcting...
|
1765 |
|
|
* Jean II
|
1766 |
|
|
*/
|
1767 |
|
|
self->avail_credit = (self->initial_credit -
|
1768 |
|
|
(self->remote_credit +
|
1769 |
|
|
skb_queue_len(&self->rx_queue) +
|
1770 |
|
|
skb_queue_len(&self->rx_fragments)));
|
1771 |
|
|
|
1772 |
|
|
/* Do we have too much credits to send to peer ? */
|
1773 |
|
|
if ((self->remote_credit <= TTP_RX_MIN_CREDIT) &&
|
1774 |
|
|
(self->avail_credit > 0)) {
|
1775 |
|
|
/* Send explicit credit frame */
|
1776 |
|
|
irttp_give_credit(self);
|
1777 |
|
|
/* Note : do *NOT* check if tx_queue is non-empty, that
|
1778 |
|
|
* will produce deadlocks. I repeat : send a credit frame
|
1779 |
|
|
* even if we have something to send in our Tx queue.
|
1780 |
|
|
* If we have credits, it means that our Tx queue is blocked.
|
1781 |
|
|
*
|
1782 |
|
|
* Let's suppose the peer can't keep up with our Tx. He will
|
1783 |
|
|
* flow control us by not sending us any credits, and we
|
1784 |
|
|
* will stop Tx and start accumulating credits here.
|
1785 |
|
|
* Up to the point where the peer will stop its Tx queue,
|
1786 |
|
|
* for lack of credits.
|
1787 |
|
|
* Let's assume the peer application is single threaded.
|
1788 |
|
|
* It will block on Tx and never consume any Rx buffer.
|
1789 |
|
|
* Deadlock. Guaranteed. - Jean II
|
1790 |
|
|
*/
|
1791 |
|
|
}
|
1792 |
|
|
|
1793 |
|
|
/* Reset lock */
|
1794 |
|
|
self->rx_queue_lock = 0;
|
1795 |
|
|
}
|
1796 |
|
|
|
1797 |
|
|
#ifdef CONFIG_PROC_FS
|
1798 |
|
|
struct irttp_iter_state {
|
1799 |
|
|
int id;
|
1800 |
|
|
};
|
1801 |
|
|
|
1802 |
|
|
static void *irttp_seq_start(struct seq_file *seq, loff_t *pos)
|
1803 |
|
|
{
|
1804 |
|
|
struct irttp_iter_state *iter = seq->private;
|
1805 |
|
|
struct tsap_cb *self;
|
1806 |
|
|
|
1807 |
|
|
/* Protect our access to the tsap list */
|
1808 |
|
|
spin_lock_irq(&irttp->tsaps->hb_spinlock);
|
1809 |
|
|
iter->id = 0;
|
1810 |
|
|
|
1811 |
|
|
for (self = (struct tsap_cb *) hashbin_get_first(irttp->tsaps);
|
1812 |
|
|
self != NULL;
|
1813 |
|
|
self = (struct tsap_cb *) hashbin_get_next(irttp->tsaps)) {
|
1814 |
|
|
if (iter->id == *pos)
|
1815 |
|
|
break;
|
1816 |
|
|
++iter->id;
|
1817 |
|
|
}
|
1818 |
|
|
|
1819 |
|
|
return self;
|
1820 |
|
|
}
|
1821 |
|
|
|
1822 |
|
|
static void *irttp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
|
1823 |
|
|
{
|
1824 |
|
|
struct irttp_iter_state *iter = seq->private;
|
1825 |
|
|
|
1826 |
|
|
++*pos;
|
1827 |
|
|
++iter->id;
|
1828 |
|
|
return (void *) hashbin_get_next(irttp->tsaps);
|
1829 |
|
|
}
|
1830 |
|
|
|
1831 |
|
|
static void irttp_seq_stop(struct seq_file *seq, void *v)
|
1832 |
|
|
{
|
1833 |
|
|
spin_unlock_irq(&irttp->tsaps->hb_spinlock);
|
1834 |
|
|
}
|
1835 |
|
|
|
1836 |
|
|
static int irttp_seq_show(struct seq_file *seq, void *v)
|
1837 |
|
|
{
|
1838 |
|
|
const struct irttp_iter_state *iter = seq->private;
|
1839 |
|
|
const struct tsap_cb *self = v;
|
1840 |
|
|
|
1841 |
|
|
seq_printf(seq, "TSAP %d, ", iter->id);
|
1842 |
|
|
seq_printf(seq, "stsap_sel: %02x, ",
|
1843 |
|
|
self->stsap_sel);
|
1844 |
|
|
seq_printf(seq, "dtsap_sel: %02x\n",
|
1845 |
|
|
self->dtsap_sel);
|
1846 |
|
|
seq_printf(seq, " connected: %s, ",
|
1847 |
|
|
self->connected? "TRUE":"FALSE");
|
1848 |
|
|
seq_printf(seq, "avail credit: %d, ",
|
1849 |
|
|
self->avail_credit);
|
1850 |
|
|
seq_printf(seq, "remote credit: %d, ",
|
1851 |
|
|
self->remote_credit);
|
1852 |
|
|
seq_printf(seq, "send credit: %d\n",
|
1853 |
|
|
self->send_credit);
|
1854 |
|
|
seq_printf(seq, " tx packets: %ld, ",
|
1855 |
|
|
self->stats.tx_packets);
|
1856 |
|
|
seq_printf(seq, "rx packets: %ld, ",
|
1857 |
|
|
self->stats.rx_packets);
|
1858 |
|
|
seq_printf(seq, "tx_queue len: %d ",
|
1859 |
|
|
skb_queue_len(&self->tx_queue));
|
1860 |
|
|
seq_printf(seq, "rx_queue len: %d\n",
|
1861 |
|
|
skb_queue_len(&self->rx_queue));
|
1862 |
|
|
seq_printf(seq, " tx_sdu_busy: %s, ",
|
1863 |
|
|
self->tx_sdu_busy? "TRUE":"FALSE");
|
1864 |
|
|
seq_printf(seq, "rx_sdu_busy: %s\n",
|
1865 |
|
|
self->rx_sdu_busy? "TRUE":"FALSE");
|
1866 |
|
|
seq_printf(seq, " max_seg_size: %d, ",
|
1867 |
|
|
self->max_seg_size);
|
1868 |
|
|
seq_printf(seq, "tx_max_sdu_size: %d, ",
|
1869 |
|
|
self->tx_max_sdu_size);
|
1870 |
|
|
seq_printf(seq, "rx_max_sdu_size: %d\n",
|
1871 |
|
|
self->rx_max_sdu_size);
|
1872 |
|
|
|
1873 |
|
|
seq_printf(seq, " Used by (%s)\n\n",
|
1874 |
|
|
self->notify.name);
|
1875 |
|
|
return 0;
|
1876 |
|
|
}
|
1877 |
|
|
|
1878 |
|
|
static const struct seq_operations irttp_seq_ops = {
|
1879 |
|
|
.start = irttp_seq_start,
|
1880 |
|
|
.next = irttp_seq_next,
|
1881 |
|
|
.stop = irttp_seq_stop,
|
1882 |
|
|
.show = irttp_seq_show,
|
1883 |
|
|
};
|
1884 |
|
|
|
1885 |
|
|
static int irttp_seq_open(struct inode *inode, struct file *file)
|
1886 |
|
|
{
|
1887 |
|
|
return seq_open_private(file, &irttp_seq_ops,
|
1888 |
|
|
sizeof(struct irttp_iter_state));
|
1889 |
|
|
}
|
1890 |
|
|
|
1891 |
|
|
const struct file_operations irttp_seq_fops = {
|
1892 |
|
|
.owner = THIS_MODULE,
|
1893 |
|
|
.open = irttp_seq_open,
|
1894 |
|
|
.read = seq_read,
|
1895 |
|
|
.llseek = seq_lseek,
|
1896 |
|
|
.release = seq_release_private,
|
1897 |
|
|
};
|
1898 |
|
|
|
1899 |
|
|
#endif /* PROC_FS */
|