OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [net/] [irda/] [irttp.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*********************************************************************
2
 *
3
 * Filename:      irttp.c
4
 * Version:       1.2
5
 * Description:   Tiny Transport Protocol (TTP) implementation
6
 * Status:        Stable
7
 * Author:        Dag Brattli <dagb@cs.uit.no>
8
 * Created at:    Sun Aug 31 20:14:31 1997
9
 * Modified at:   Wed Jan  5 11:31:27 2000
10
 * Modified by:   Dag Brattli <dagb@cs.uit.no>
11
 *
12
 *     Copyright (c) 1998-2000 Dag Brattli <dagb@cs.uit.no>,
13
 *     All Rights Reserved.
14
 *     Copyright (c) 2000-2003 Jean Tourrilhes <jt@hpl.hp.com>
15
 *
16
 *     This program is free software; you can redistribute it and/or
17
 *     modify it under the terms of the GNU General Public License as
18
 *     published by the Free Software Foundation; either version 2 of
19
 *     the License, or (at your option) any later version.
20
 *
21
 *     Neither Dag Brattli nor University of Tromsø admit liability nor
22
 *     provide warranty for any of this software. This material is
23
 *     provided "AS-IS" and at no charge.
24
 *
25
 ********************************************************************/
26
 
27
#include <linux/skbuff.h>
28
#include <linux/init.h>
29
#include <linux/fs.h>
30
#include <linux/seq_file.h>
31
 
32
#include <asm/byteorder.h>
33
#include <asm/unaligned.h>
34
 
35
#include <net/irda/irda.h>
36
#include <net/irda/irlap.h>
37
#include <net/irda/irlmp.h>
38
#include <net/irda/parameters.h>
39
#include <net/irda/irttp.h>
40
 
41
static struct irttp_cb *irttp;
42
 
43
static void __irttp_close_tsap(struct tsap_cb *self);
44
 
45
static int irttp_data_indication(void *instance, void *sap,
46
                                 struct sk_buff *skb);
47
static int irttp_udata_indication(void *instance, void *sap,
48
                                  struct sk_buff *skb);
49
static void irttp_disconnect_indication(void *instance, void *sap,
50
                                        LM_REASON reason, struct sk_buff *);
51
static void irttp_connect_indication(void *instance, void *sap,
52
                                     struct qos_info *qos, __u32 max_sdu_size,
53
                                     __u8 header_size, struct sk_buff *skb);
54
static void irttp_connect_confirm(void *instance, void *sap,
55
                                  struct qos_info *qos, __u32 max_sdu_size,
56
                                  __u8 header_size, struct sk_buff *skb);
57
static void irttp_run_tx_queue(struct tsap_cb *self);
58
static void irttp_run_rx_queue(struct tsap_cb *self);
59
 
60
static void irttp_flush_queues(struct tsap_cb *self);
61
static void irttp_fragment_skb(struct tsap_cb *self, struct sk_buff *skb);
62
static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self);
63
static void irttp_todo_expired(unsigned long data);
64
static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
65
                                    int get);
66
 
67
static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow);
68
static void irttp_status_indication(void *instance,
69
                                    LINK_STATUS link, LOCK_STATUS lock);
70
 
71
/* Information for parsing parameters in IrTTP */
72
static pi_minor_info_t pi_minor_call_table[] = {
73
        { NULL, 0 },                                             /* 0x00 */
74
        { irttp_param_max_sdu_size, PV_INTEGER | PV_BIG_ENDIAN } /* 0x01 */
75
};
76
static pi_major_info_t pi_major_call_table[] = {{ pi_minor_call_table, 2 }};
77
static pi_param_info_t param_info = { pi_major_call_table, 1, 0x0f, 4 };
78
 
79
/************************ GLOBAL PROCEDURES ************************/
80
 
81
/*
82
 * Function irttp_init (void)
83
 *
84
 *    Initialize the IrTTP layer. Called by module initialization code
85
 *
86
 */
87
int __init irttp_init(void)
88
{
89
        irttp = kzalloc(sizeof(struct irttp_cb), GFP_KERNEL);
90
        if (irttp == NULL)
91
                return -ENOMEM;
92
 
93
        irttp->magic = TTP_MAGIC;
94
 
95
        irttp->tsaps = hashbin_new(HB_LOCK);
96
        if (!irttp->tsaps) {
97
                IRDA_ERROR("%s: can't allocate IrTTP hashbin!\n",
98
                           __FUNCTION__);
99
                kfree(irttp);
100
                return -ENOMEM;
101
        }
102
 
103
        return 0;
104
}
105
 
106
/*
107
 * Function irttp_cleanup (void)
108
 *
109
 *    Called by module destruction/cleanup code
110
 *
111
 */
112
void irttp_cleanup(void)
113
{
114
        /* Check for main structure */
115
        IRDA_ASSERT(irttp->magic == TTP_MAGIC, return;);
116
 
117
        /*
118
         *  Delete hashbin and close all TSAP instances in it
119
         */
120
        hashbin_delete(irttp->tsaps, (FREE_FUNC) __irttp_close_tsap);
121
 
122
        irttp->magic = 0;
123
 
124
        /* De-allocate main structure */
125
        kfree(irttp);
126
 
127
        irttp = NULL;
128
}
129
 
130
/*************************** SUBROUTINES ***************************/
131
 
132
/*
133
 * Function irttp_start_todo_timer (self, timeout)
134
 *
135
 *    Start todo timer.
136
 *
137
 * Made it more effient and unsensitive to race conditions - Jean II
138
 */
139
static inline void irttp_start_todo_timer(struct tsap_cb *self, int timeout)
140
{
141
        /* Set new value for timer */
142
        mod_timer(&self->todo_timer, jiffies + timeout);
143
}
144
 
145
/*
146
 * Function irttp_todo_expired (data)
147
 *
148
 *    Todo timer has expired!
149
 *
150
 * One of the restriction of the timer is that it is run only on the timer
151
 * interrupt which run every 10ms. This mean that even if you set the timer
152
 * with a delay of 0, it may take up to 10ms before it's run.
153
 * So, to minimise latency and keep cache fresh, we try to avoid using
154
 * it as much as possible.
155
 * Note : we can't use tasklets, because they can't be asynchronously
156
 * killed (need user context), and we can't guarantee that here...
157
 * Jean II
158
 */
159
static void irttp_todo_expired(unsigned long data)
160
{
161
        struct tsap_cb *self = (struct tsap_cb *) data;
162
 
163
        /* Check that we still exist */
164
        if (!self || self->magic != TTP_TSAP_MAGIC)
165
                return;
166
 
167
        IRDA_DEBUG(4, "%s(instance=%p)\n", __FUNCTION__, self);
168
 
169
        /* Try to make some progress, especially on Tx side - Jean II */
170
        irttp_run_rx_queue(self);
171
        irttp_run_tx_queue(self);
172
 
173
        /* Check if time for disconnect */
174
        if (test_bit(0, &self->disconnect_pend)) {
175
                /* Check if it's possible to disconnect yet */
176
                if (skb_queue_empty(&self->tx_queue)) {
177
                        /* Make sure disconnect is not pending anymore */
178
                        clear_bit(0, &self->disconnect_pend);    /* FALSE */
179
 
180
                        /* Note : self->disconnect_skb may be NULL */
181
                        irttp_disconnect_request(self, self->disconnect_skb,
182
                                                 P_NORMAL);
183
                        self->disconnect_skb = NULL;
184
                } else {
185
                        /* Try again later */
186
                        irttp_start_todo_timer(self, HZ/10);
187
 
188
                        /* No reason to try and close now */
189
                        return;
190
                }
191
        }
192
 
193
        /* Check if it's closing time */
194
        if (self->close_pend)
195
                /* Finish cleanup */
196
                irttp_close_tsap(self);
197
}
198
 
199
/*
200
 * Function irttp_flush_queues (self)
201
 *
202
 *     Flushes (removes all frames) in transitt-buffer (tx_list)
203
 */
204
void irttp_flush_queues(struct tsap_cb *self)
205
{
206
        struct sk_buff* skb;
207
 
208
        IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
209
 
210
        IRDA_ASSERT(self != NULL, return;);
211
        IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
212
 
213
        /* Deallocate frames waiting to be sent */
214
        while ((skb = skb_dequeue(&self->tx_queue)) != NULL)
215
                dev_kfree_skb(skb);
216
 
217
        /* Deallocate received frames */
218
        while ((skb = skb_dequeue(&self->rx_queue)) != NULL)
219
                dev_kfree_skb(skb);
220
 
221
        /* Deallocate received fragments */
222
        while ((skb = skb_dequeue(&self->rx_fragments)) != NULL)
223
                dev_kfree_skb(skb);
224
}
225
 
226
/*
227
 * Function irttp_reassemble (self)
228
 *
229
 *    Makes a new (continuous) skb of all the fragments in the fragment
230
 *    queue
231
 *
232
 */
233
static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self)
234
{
235
        struct sk_buff *skb, *frag;
236
        int n = 0;  /* Fragment index */
237
 
238
        IRDA_ASSERT(self != NULL, return NULL;);
239
        IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return NULL;);
240
 
241
        IRDA_DEBUG(2, "%s(), self->rx_sdu_size=%d\n", __FUNCTION__,
242
                   self->rx_sdu_size);
243
 
244
        skb = dev_alloc_skb(TTP_HEADER + self->rx_sdu_size);
245
        if (!skb)
246
                return NULL;
247
 
248
        /*
249
         * Need to reserve space for TTP header in case this skb needs to
250
         * be requeued in case delivery failes
251
         */
252
        skb_reserve(skb, TTP_HEADER);
253
        skb_put(skb, self->rx_sdu_size);
254
 
255
        /*
256
         *  Copy all fragments to a new buffer
257
         */
258
        while ((frag = skb_dequeue(&self->rx_fragments)) != NULL) {
259
                skb_copy_to_linear_data_offset(skb, n, frag->data, frag->len);
260
                n += frag->len;
261
 
262
                dev_kfree_skb(frag);
263
        }
264
 
265
        IRDA_DEBUG(2,
266
                   "%s(), frame len=%d, rx_sdu_size=%d, rx_max_sdu_size=%d\n",
267
                   __FUNCTION__, n, self->rx_sdu_size, self->rx_max_sdu_size);
268
        /* Note : irttp_run_rx_queue() calculate self->rx_sdu_size
269
         * by summing the size of all fragments, so we should always
270
         * have n == self->rx_sdu_size, except in cases where we
271
         * droped the last fragment (when self->rx_sdu_size exceed
272
         * self->rx_max_sdu_size), where n < self->rx_sdu_size.
273
         * Jean II */
274
        IRDA_ASSERT(n <= self->rx_sdu_size, n = self->rx_sdu_size;);
275
 
276
        /* Set the new length */
277
        skb_trim(skb, n);
278
 
279
        self->rx_sdu_size = 0;
280
 
281
        return skb;
282
}
283
 
284
/*
285
 * Function irttp_fragment_skb (skb)
286
 *
287
 *    Fragments a frame and queues all the fragments for transmission
288
 *
289
 */
290
static inline void irttp_fragment_skb(struct tsap_cb *self,
291
                                      struct sk_buff *skb)
292
{
293
        struct sk_buff *frag;
294
        __u8 *frame;
295
 
296
        IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
297
 
298
        IRDA_ASSERT(self != NULL, return;);
299
        IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
300
        IRDA_ASSERT(skb != NULL, return;);
301
 
302
        /*
303
         *  Split frame into a number of segments
304
         */
305
        while (skb->len > self->max_seg_size) {
306
                IRDA_DEBUG(2, "%s(), fragmenting ...\n", __FUNCTION__);
307
 
308
                /* Make new segment */
309
                frag = alloc_skb(self->max_seg_size+self->max_header_size,
310
                                 GFP_ATOMIC);
311
                if (!frag)
312
                        return;
313
 
314
                skb_reserve(frag, self->max_header_size);
315
 
316
                /* Copy data from the original skb into this fragment. */
317
                skb_copy_from_linear_data(skb, skb_put(frag, self->max_seg_size),
318
                              self->max_seg_size);
319
 
320
                /* Insert TTP header, with the more bit set */
321
                frame = skb_push(frag, TTP_HEADER);
322
                frame[0] = TTP_MORE;
323
 
324
                /* Hide the copied data from the original skb */
325
                skb_pull(skb, self->max_seg_size);
326
 
327
                /* Queue fragment */
328
                skb_queue_tail(&self->tx_queue, frag);
329
        }
330
        /* Queue what is left of the original skb */
331
        IRDA_DEBUG(2, "%s(), queuing last segment\n", __FUNCTION__);
332
 
333
        frame = skb_push(skb, TTP_HEADER);
334
        frame[0] = 0x00; /* Clear more bit */
335
 
336
        /* Queue fragment */
337
        skb_queue_tail(&self->tx_queue, skb);
338
}
339
 
340
/*
341
 * Function irttp_param_max_sdu_size (self, param)
342
 *
343
 *    Handle the MaxSduSize parameter in the connect frames, this function
344
 *    will be called both when this parameter needs to be inserted into, and
345
 *    extracted from the connect frames
346
 */
347
static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
348
                                    int get)
349
{
350
        struct tsap_cb *self;
351
 
352
        self = (struct tsap_cb *) instance;
353
 
354
        IRDA_ASSERT(self != NULL, return -1;);
355
        IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
356
 
357
        if (get)
358
                param->pv.i = self->tx_max_sdu_size;
359
        else
360
                self->tx_max_sdu_size = param->pv.i;
361
 
362
        IRDA_DEBUG(1, "%s(), MaxSduSize=%d\n", __FUNCTION__, param->pv.i);
363
 
364
        return 0;
365
}
366
 
367
/*************************** CLIENT CALLS ***************************/
368
/************************** LMP CALLBACKS **************************/
369
/* Everything is happily mixed up. Waiting for next clean up - Jean II */
370
 
371
/*
372
 * Initialization, that has to be done on new tsap
373
 * instance allocation and on duplication
374
 */
375
static void irttp_init_tsap(struct tsap_cb *tsap)
376
{
377
        spin_lock_init(&tsap->lock);
378
        init_timer(&tsap->todo_timer);
379
 
380
        skb_queue_head_init(&tsap->rx_queue);
381
        skb_queue_head_init(&tsap->tx_queue);
382
        skb_queue_head_init(&tsap->rx_fragments);
383
}
384
 
385
/*
386
 * Function irttp_open_tsap (stsap, notify)
387
 *
388
 *    Create TSAP connection endpoint,
389
 */
390
struct tsap_cb *irttp_open_tsap(__u8 stsap_sel, int credit, notify_t *notify)
391
{
392
        struct tsap_cb *self;
393
        struct lsap_cb *lsap;
394
        notify_t ttp_notify;
395
 
396
        IRDA_ASSERT(irttp->magic == TTP_MAGIC, return NULL;);
397
 
398
        /* The IrLMP spec (IrLMP 1.1 p10) says that we have the right to
399
         * use only 0x01-0x6F. Of course, we can use LSAP_ANY as well.
400
         * JeanII */
401
        if((stsap_sel != LSAP_ANY) &&
402
           ((stsap_sel < 0x01) || (stsap_sel >= 0x70))) {
403
                IRDA_DEBUG(0, "%s(), invalid tsap!\n", __FUNCTION__);
404
                return NULL;
405
        }
406
 
407
        self = kzalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
408
        if (self == NULL) {
409
                IRDA_DEBUG(0, "%s(), unable to kmalloc!\n", __FUNCTION__);
410
                return NULL;
411
        }
412
 
413
        /* Initialize internal objects */
414
        irttp_init_tsap(self);
415
 
416
        /* Initialise todo timer */
417
        self->todo_timer.data     = (unsigned long) self;
418
        self->todo_timer.function = &irttp_todo_expired;
419
 
420
        /* Initialize callbacks for IrLMP to use */
421
        irda_notify_init(&ttp_notify);
422
        ttp_notify.connect_confirm = irttp_connect_confirm;
423
        ttp_notify.connect_indication = irttp_connect_indication;
424
        ttp_notify.disconnect_indication = irttp_disconnect_indication;
425
        ttp_notify.data_indication = irttp_data_indication;
426
        ttp_notify.udata_indication = irttp_udata_indication;
427
        ttp_notify.flow_indication = irttp_flow_indication;
428
        if(notify->status_indication != NULL)
429
                ttp_notify.status_indication = irttp_status_indication;
430
        ttp_notify.instance = self;
431
        strncpy(ttp_notify.name, notify->name, NOTIFY_MAX_NAME);
432
 
433
        self->magic = TTP_TSAP_MAGIC;
434
        self->connected = FALSE;
435
 
436
        /*
437
         *  Create LSAP at IrLMP layer
438
         */
439
        lsap = irlmp_open_lsap(stsap_sel, &ttp_notify, 0);
440
        if (lsap == NULL) {
441
                IRDA_WARNING("%s: unable to allocate LSAP!!\n", __FUNCTION__);
442
                return NULL;
443
        }
444
 
445
        /*
446
         *  If user specified LSAP_ANY as source TSAP selector, then IrLMP
447
         *  will replace it with whatever source selector which is free, so
448
         *  the stsap_sel we have might not be valid anymore
449
         */
450
        self->stsap_sel = lsap->slsap_sel;
451
        IRDA_DEBUG(4, "%s(), stsap_sel=%02x\n", __FUNCTION__, self->stsap_sel);
452
 
453
        self->notify = *notify;
454
        self->lsap = lsap;
455
 
456
        hashbin_insert(irttp->tsaps, (irda_queue_t *) self, (long) self, NULL);
457
 
458
        if (credit > TTP_RX_MAX_CREDIT)
459
                self->initial_credit = TTP_RX_MAX_CREDIT;
460
        else
461
                self->initial_credit = credit;
462
 
463
        return self;
464
}
465
EXPORT_SYMBOL(irttp_open_tsap);
466
 
467
/*
468
 * Function irttp_close (handle)
469
 *
470
 *    Remove an instance of a TSAP. This function should only deal with the
471
 *    deallocation of the TSAP, and resetting of the TSAPs values;
472
 *
473
 */
474
static void __irttp_close_tsap(struct tsap_cb *self)
475
{
476
        /* First make sure we're connected. */
477
        IRDA_ASSERT(self != NULL, return;);
478
        IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
479
 
480
        irttp_flush_queues(self);
481
 
482
        del_timer(&self->todo_timer);
483
 
484
        /* This one won't be cleaned up if we are disconnect_pend + close_pend
485
         * and we receive a disconnect_indication */
486
        if (self->disconnect_skb)
487
                dev_kfree_skb(self->disconnect_skb);
488
 
489
        self->connected = FALSE;
490
        self->magic = ~TTP_TSAP_MAGIC;
491
 
492
        kfree(self);
493
}
494
 
495
/*
496
 * Function irttp_close (self)
497
 *
498
 *    Remove TSAP from list of all TSAPs and then deallocate all resources
499
 *    associated with this TSAP
500
 *
501
 * Note : because we *free* the tsap structure, it is the responsibility
502
 * of the caller to make sure we are called only once and to deal with
503
 * possible race conditions. - Jean II
504
 */
505
int irttp_close_tsap(struct tsap_cb *self)
506
{
507
        struct tsap_cb *tsap;
508
 
509
        IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
510
 
511
        IRDA_ASSERT(self != NULL, return -1;);
512
        IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
513
 
514
        /* Make sure tsap has been disconnected */
515
        if (self->connected) {
516
                /* Check if disconnect is not pending */
517
                if (!test_bit(0, &self->disconnect_pend)) {
518
                        IRDA_WARNING("%s: TSAP still connected!\n",
519
                                     __FUNCTION__);
520
                        irttp_disconnect_request(self, NULL, P_NORMAL);
521
                }
522
                self->close_pend = TRUE;
523
                irttp_start_todo_timer(self, HZ/10);
524
 
525
                return 0; /* Will be back! */
526
        }
527
 
528
        tsap = hashbin_remove(irttp->tsaps, (long) self, NULL);
529
 
530
        IRDA_ASSERT(tsap == self, return -1;);
531
 
532
        /* Close corresponding LSAP */
533
        if (self->lsap) {
534
                irlmp_close_lsap(self->lsap);
535
                self->lsap = NULL;
536
        }
537
 
538
        __irttp_close_tsap(self);
539
 
540
        return 0;
541
}
542
EXPORT_SYMBOL(irttp_close_tsap);
543
 
544
/*
545
 * Function irttp_udata_request (self, skb)
546
 *
547
 *    Send unreliable data on this TSAP
548
 *
549
 */
550
int irttp_udata_request(struct tsap_cb *self, struct sk_buff *skb)
551
{
552
        IRDA_ASSERT(self != NULL, return -1;);
553
        IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
554
        IRDA_ASSERT(skb != NULL, return -1;);
555
 
556
        IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
557
 
558
        /* Check that nothing bad happens */
559
        if ((skb->len == 0) || (!self->connected)) {
560
                IRDA_DEBUG(1, "%s(), No data, or not connected\n",
561
                           __FUNCTION__);
562
                goto err;
563
        }
564
 
565
        if (skb->len > self->max_seg_size) {
566
                IRDA_DEBUG(1, "%s(), UData is too large for IrLAP!\n",
567
                           __FUNCTION__);
568
                goto err;
569
        }
570
 
571
        irlmp_udata_request(self->lsap, skb);
572
        self->stats.tx_packets++;
573
 
574
        return 0;
575
 
576
err:
577
        dev_kfree_skb(skb);
578
        return -1;
579
}
580
EXPORT_SYMBOL(irttp_udata_request);
581
 
582
 
583
/*
584
 * Function irttp_data_request (handle, skb)
585
 *
586
 *    Queue frame for transmission. If SAR is enabled, fragement the frame
587
 *    and queue the fragments for transmission
588
 */
589
int irttp_data_request(struct tsap_cb *self, struct sk_buff *skb)
590
{
591
        __u8 *frame;
592
        int ret;
593
 
594
        IRDA_ASSERT(self != NULL, return -1;);
595
        IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
596
        IRDA_ASSERT(skb != NULL, return -1;);
597
 
598
        IRDA_DEBUG(2, "%s() : queue len = %d\n", __FUNCTION__,
599
                   skb_queue_len(&self->tx_queue));
600
 
601
        /* Check that nothing bad happens */
602
        if ((skb->len == 0) || (!self->connected)) {
603
                IRDA_WARNING("%s: No data, or not connected\n", __FUNCTION__);
604
                ret = -ENOTCONN;
605
                goto err;
606
        }
607
 
608
        /*
609
         *  Check if SAR is disabled, and the frame is larger than what fits
610
         *  inside an IrLAP frame
611
         */
612
        if ((self->tx_max_sdu_size == 0) && (skb->len > self->max_seg_size)) {
613
                IRDA_ERROR("%s: SAR disabled, and data is too large for IrLAP!\n",
614
                           __FUNCTION__);
615
                ret = -EMSGSIZE;
616
                goto err;
617
        }
618
 
619
        /*
620
         *  Check if SAR is enabled, and the frame is larger than the
621
         *  TxMaxSduSize
622
         */
623
        if ((self->tx_max_sdu_size != 0) &&
624
            (self->tx_max_sdu_size != TTP_SAR_UNBOUND) &&
625
            (skb->len > self->tx_max_sdu_size))
626
        {
627
                IRDA_ERROR("%s: SAR enabled, but data is larger than TxMaxSduSize!\n",
628
                           __FUNCTION__);
629
                ret = -EMSGSIZE;
630
                goto err;
631
        }
632
        /*
633
         *  Check if transmit queue is full
634
         */
635
        if (skb_queue_len(&self->tx_queue) >= TTP_TX_MAX_QUEUE) {
636
                /*
637
                 *  Give it a chance to empty itself
638
                 */
639
                irttp_run_tx_queue(self);
640
 
641
                /* Drop packet. This error code should trigger the caller
642
                 * to resend the data in the client code - Jean II */
643
                ret = -ENOBUFS;
644
                goto err;
645
        }
646
 
647
        /* Queue frame, or queue frame segments */
648
        if ((self->tx_max_sdu_size == 0) || (skb->len < self->max_seg_size)) {
649
                /* Queue frame */
650
                IRDA_ASSERT(skb_headroom(skb) >= TTP_HEADER, return -1;);
651
                frame = skb_push(skb, TTP_HEADER);
652
                frame[0] = 0x00; /* Clear more bit */
653
 
654
                skb_queue_tail(&self->tx_queue, skb);
655
        } else {
656
                /*
657
                 *  Fragment the frame, this function will also queue the
658
                 *  fragments, we don't care about the fact the transmit
659
                 *  queue may be overfilled by all the segments for a little
660
                 *  while
661
                 */
662
                irttp_fragment_skb(self, skb);
663
        }
664
 
665
        /* Check if we can accept more data from client */
666
        if ((!self->tx_sdu_busy) &&
667
            (skb_queue_len(&self->tx_queue) > TTP_TX_HIGH_THRESHOLD)) {
668
                /* Tx queue filling up, so stop client. */
669
                if (self->notify.flow_indication) {
670
                        self->notify.flow_indication(self->notify.instance,
671
                                                     self, FLOW_STOP);
672
                }
673
                /* self->tx_sdu_busy is the state of the client.
674
                 * Update state after notifying client to avoid
675
                 * race condition with irttp_flow_indication().
676
                 * If the queue empty itself after our test but before
677
                 * we set the flag, we will fix ourselves below in
678
                 * irttp_run_tx_queue().
679
                 * Jean II */
680
                self->tx_sdu_busy = TRUE;
681
        }
682
 
683
        /* Try to make some progress */
684
        irttp_run_tx_queue(self);
685
 
686
        return 0;
687
 
688
err:
689
        dev_kfree_skb(skb);
690
        return ret;
691
}
692
EXPORT_SYMBOL(irttp_data_request);
693
 
694
/*
695
 * Function irttp_run_tx_queue (self)
696
 *
697
 *    Transmit packets queued for transmission (if possible)
698
 *
699
 */
700
static void irttp_run_tx_queue(struct tsap_cb *self)
701
{
702
        struct sk_buff *skb;
703
        unsigned long flags;
704
        int n;
705
 
706
        IRDA_DEBUG(2, "%s() : send_credit = %d, queue_len = %d\n",
707
                   __FUNCTION__,
708
                   self->send_credit, skb_queue_len(&self->tx_queue));
709
 
710
        /* Get exclusive access to the tx queue, otherwise don't touch it */
711
        if (irda_lock(&self->tx_queue_lock) == FALSE)
712
                return;
713
 
714
        /* Try to send out frames as long as we have credits
715
         * and as long as LAP is not full. If LAP is full, it will
716
         * poll us through irttp_flow_indication() - Jean II */
717
        while ((self->send_credit > 0) &&
718
               (!irlmp_lap_tx_queue_full(self->lsap)) &&
719
               (skb = skb_dequeue(&self->tx_queue)))
720
        {
721
                /*
722
                 *  Since we can transmit and receive frames concurrently,
723
                 *  the code below is a critical region and we must assure that
724
                 *  nobody messes with the credits while we update them.
725
                 */
726
                spin_lock_irqsave(&self->lock, flags);
727
 
728
                n = self->avail_credit;
729
                self->avail_credit = 0;
730
 
731
                /* Only room for 127 credits in frame */
732
                if (n > 127) {
733
                        self->avail_credit = n-127;
734
                        n = 127;
735
                }
736
                self->remote_credit += n;
737
                self->send_credit--;
738
 
739
                spin_unlock_irqrestore(&self->lock, flags);
740
 
741
                /*
742
                 *  More bit must be set by the data_request() or fragment()
743
                 *  functions
744
                 */
745
                skb->data[0] |= (n & 0x7f);
746
 
747
                /* Detach from socket.
748
                 * The current skb has a reference to the socket that sent
749
                 * it (skb->sk). When we pass it to IrLMP, the skb will be
750
                 * stored in in IrLAP (self->wx_list). When we are within
751
                 * IrLAP, we lose the notion of socket, so we should not
752
                 * have a reference to a socket. So, we drop it here.
753
                 *
754
                 * Why does it matter ?
755
                 * When the skb is freed (kfree_skb), if it is associated
756
                 * with a socket, it release buffer space on the socket
757
                 * (through sock_wfree() and sock_def_write_space()).
758
                 * If the socket no longer exist, we may crash. Hard.
759
                 * When we close a socket, we make sure that associated packets
760
                 * in IrTTP are freed. However, we have no way to cancel
761
                 * the packet that we have passed to IrLAP. So, if a packet
762
                 * remains in IrLAP (retry on the link or else) after we
763
                 * close the socket, we are dead !
764
                 * Jean II */
765
                if (skb->sk != NULL) {
766
                        /* IrSOCK application, IrOBEX, ... */
767
                        skb_orphan(skb);
768
                }
769
                        /* IrCOMM over IrTTP, IrLAN, ... */
770
 
771
                /* Pass the skb to IrLMP - done */
772
                irlmp_data_request(self->lsap, skb);
773
                self->stats.tx_packets++;
774
        }
775
 
776
        /* Check if we can accept more frames from client.
777
         * We don't want to wait until the todo timer to do that, and we
778
         * can't use tasklets (grr...), so we are obliged to give control
779
         * to client. That's ok, this test will be true not too often
780
         * (max once per LAP window) and we are called from places
781
         * where we can spend a bit of time doing stuff. - Jean II */
782
        if ((self->tx_sdu_busy) &&
783
            (skb_queue_len(&self->tx_queue) < TTP_TX_LOW_THRESHOLD) &&
784
            (!self->close_pend))
785
        {
786
                if (self->notify.flow_indication)
787
                        self->notify.flow_indication(self->notify.instance,
788
                                                     self, FLOW_START);
789
 
790
                /* self->tx_sdu_busy is the state of the client.
791
                 * We don't really have a race here, but it's always safer
792
                 * to update our state after the client - Jean II */
793
                self->tx_sdu_busy = FALSE;
794
        }
795
 
796
        /* Reset lock */
797
        self->tx_queue_lock = 0;
798
}
799
 
800
/*
801
 * Function irttp_give_credit (self)
802
 *
803
 *    Send a dataless flowdata TTP-PDU and give available credit to peer
804
 *    TSAP
805
 */
806
static inline void irttp_give_credit(struct tsap_cb *self)
807
{
808
        struct sk_buff *tx_skb = NULL;
809
        unsigned long flags;
810
        int n;
811
 
812
        IRDA_ASSERT(self != NULL, return;);
813
        IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
814
 
815
        IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n",
816
                   __FUNCTION__,
817
                   self->send_credit, self->avail_credit, self->remote_credit);
818
 
819
        /* Give credit to peer */
820
        tx_skb = alloc_skb(TTP_MAX_HEADER, GFP_ATOMIC);
821
        if (!tx_skb)
822
                return;
823
 
824
        /* Reserve space for LMP, and LAP header */
825
        skb_reserve(tx_skb, LMP_MAX_HEADER);
826
 
827
        /*
828
         *  Since we can transmit and receive frames concurrently,
829
         *  the code below is a critical region and we must assure that
830
         *  nobody messes with the credits while we update them.
831
         */
832
        spin_lock_irqsave(&self->lock, flags);
833
 
834
        n = self->avail_credit;
835
        self->avail_credit = 0;
836
 
837
        /* Only space for 127 credits in frame */
838
        if (n > 127) {
839
                self->avail_credit = n - 127;
840
                n = 127;
841
        }
842
        self->remote_credit += n;
843
 
844
        spin_unlock_irqrestore(&self->lock, flags);
845
 
846
        skb_put(tx_skb, 1);
847
        tx_skb->data[0] = (__u8) (n & 0x7f);
848
 
849
        irlmp_data_request(self->lsap, tx_skb);
850
        self->stats.tx_packets++;
851
}
852
 
853
/*
854
 * Function irttp_udata_indication (instance, sap, skb)
855
 *
856
 *    Received some unit-data (unreliable)
857
 *
858
 */
859
static int irttp_udata_indication(void *instance, void *sap,
860
                                  struct sk_buff *skb)
861
{
862
        struct tsap_cb *self;
863
        int err;
864
 
865
        IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
866
 
867
        self = (struct tsap_cb *) instance;
868
 
869
        IRDA_ASSERT(self != NULL, return -1;);
870
        IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
871
        IRDA_ASSERT(skb != NULL, return -1;);
872
 
873
        self->stats.rx_packets++;
874
 
875
        /* Just pass data to layer above */
876
        if (self->notify.udata_indication) {
877
                err = self->notify.udata_indication(self->notify.instance,
878
                                                    self,skb);
879
                /* Same comment as in irttp_do_data_indication() */
880
                if (!err)
881
                        return 0;
882
        }
883
        /* Either no handler, or handler returns an error */
884
        dev_kfree_skb(skb);
885
 
886
        return 0;
887
}
888
 
889
/*
890
 * Function irttp_data_indication (instance, sap, skb)
891
 *
892
 *    Receive segment from IrLMP.
893
 *
894
 */
895
static int irttp_data_indication(void *instance, void *sap,
896
                                 struct sk_buff *skb)
897
{
898
        struct tsap_cb *self;
899
        unsigned long flags;
900
        int n;
901
 
902
        self = (struct tsap_cb *) instance;
903
 
904
        n = skb->data[0] & 0x7f;     /* Extract the credits */
905
 
906
        self->stats.rx_packets++;
907
 
908
        /*  Deal with inbound credit
909
         *  Since we can transmit and receive frames concurrently,
910
         *  the code below is a critical region and we must assure that
911
         *  nobody messes with the credits while we update them.
912
         */
913
        spin_lock_irqsave(&self->lock, flags);
914
        self->send_credit += n;
915
        if (skb->len > 1)
916
                self->remote_credit--;
917
        spin_unlock_irqrestore(&self->lock, flags);
918
 
919
        /*
920
         *  Data or dataless packet? Dataless frames contains only the
921
         *  TTP_HEADER.
922
         */
923
        if (skb->len > 1) {
924
                /*
925
                 *  We don't remove the TTP header, since we must preserve the
926
                 *  more bit, so the defragment routing knows what to do
927
                 */
928
                skb_queue_tail(&self->rx_queue, skb);
929
        } else {
930
                /* Dataless flowdata TTP-PDU */
931
                dev_kfree_skb(skb);
932
        }
933
 
934
 
935
        /* Push data to the higher layer.
936
         * We do it synchronously because running the todo timer for each
937
         * receive packet would be too much overhead and latency.
938
         * By passing control to the higher layer, we run the risk that
939
         * it may take time or grab a lock. Most often, the higher layer
940
         * will only put packet in a queue.
941
         * Anyway, packets are only dripping through the IrDA, so we can
942
         * have time before the next packet.
943
         * Further, we are run from NET_BH, so the worse that can happen is
944
         * us missing the optimal time to send back the PF bit in LAP.
945
         * Jean II */
946
        irttp_run_rx_queue(self);
947
 
948
        /* We now give credits to peer in irttp_run_rx_queue().
949
         * We need to send credit *NOW*, otherwise we are going
950
         * to miss the next Tx window. The todo timer may take
951
         * a while before it's run... - Jean II */
952
 
953
        /*
954
         * If the peer device has given us some credits and we didn't have
955
         * anyone from before, then we need to shedule the tx queue.
956
         * We need to do that because our Tx have stopped (so we may not
957
         * get any LAP flow indication) and the user may be stopped as
958
         * well. - Jean II
959
         */
960
        if (self->send_credit == n) {
961
                /* Restart pushing stuff to LAP */
962
                irttp_run_tx_queue(self);
963
                /* Note : we don't want to schedule the todo timer
964
                 * because it has horrible latency. No tasklets
965
                 * because the tasklet API is broken. - Jean II */
966
        }
967
 
968
        return 0;
969
}
970
 
971
/*
972
 * Function irttp_status_indication (self, reason)
973
 *
974
 *    Status_indication, just pass to the higher layer...
975
 *
976
 */
977
static void irttp_status_indication(void *instance,
978
                                    LINK_STATUS link, LOCK_STATUS lock)
979
{
980
        struct tsap_cb *self;
981
 
982
        IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
983
 
984
        self = (struct tsap_cb *) instance;
985
 
986
        IRDA_ASSERT(self != NULL, return;);
987
        IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
988
 
989
        /* Check if client has already closed the TSAP and gone away */
990
        if (self->close_pend)
991
                return;
992
 
993
        /*
994
         *  Inform service user if he has requested it
995
         */
996
        if (self->notify.status_indication != NULL)
997
                self->notify.status_indication(self->notify.instance,
998
                                               link, lock);
999
        else
1000
                IRDA_DEBUG(2, "%s(), no handler\n", __FUNCTION__);
1001
}
1002
 
1003
/*
1004
 * Function irttp_flow_indication (self, reason)
1005
 *
1006
 *    Flow_indication : IrLAP tells us to send more data.
1007
 *
1008
 */
1009
static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
1010
{
1011
        struct tsap_cb *self;
1012
 
1013
        self = (struct tsap_cb *) instance;
1014
 
1015
        IRDA_ASSERT(self != NULL, return;);
1016
        IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1017
 
1018
        IRDA_DEBUG(4, "%s(instance=%p)\n", __FUNCTION__, self);
1019
 
1020
        /* We are "polled" directly from LAP, and the LAP want to fill
1021
         * its Tx window. We want to do our best to send it data, so that
1022
         * we maximise the window. On the other hand, we want to limit the
1023
         * amount of work here so that LAP doesn't hang forever waiting
1024
         * for packets. - Jean II */
1025
 
1026
        /* Try to send some packets. Currently, LAP calls us every time
1027
         * there is one free slot, so we will send only one packet.
1028
         * This allow the scheduler to do its round robin - Jean II */
1029
        irttp_run_tx_queue(self);
1030
 
1031
        /* Note regarding the interraction with higher layer.
1032
         * irttp_run_tx_queue() may call the client when its queue
1033
         * start to empty, via notify.flow_indication(). Initially.
1034
         * I wanted this to happen in a tasklet, to avoid client
1035
         * grabbing the CPU, but we can't use tasklets safely. And timer
1036
         * is definitely too slow.
1037
         * This will happen only once per LAP window, and usually at
1038
         * the third packet (unless window is smaller). LAP is still
1039
         * doing mtt and sending first packet so it's sort of OK
1040
         * to do that. Jean II */
1041
 
1042
        /* If we need to send disconnect. try to do it now */
1043
        if(self->disconnect_pend)
1044
                irttp_start_todo_timer(self, 0);
1045
}
1046
 
1047
/*
1048
 * Function irttp_flow_request (self, command)
1049
 *
1050
 *    This function could be used by the upper layers to tell IrTTP to stop
1051
 *    delivering frames if the receive queues are starting to get full, or
1052
 *    to tell IrTTP to start delivering frames again.
1053
 */
1054
void irttp_flow_request(struct tsap_cb *self, LOCAL_FLOW flow)
1055
{
1056
        IRDA_DEBUG(1, "%s()\n", __FUNCTION__);
1057
 
1058
        IRDA_ASSERT(self != NULL, return;);
1059
        IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1060
 
1061
        switch (flow) {
1062
        case FLOW_STOP:
1063
                IRDA_DEBUG(1, "%s(), flow stop\n", __FUNCTION__);
1064
                self->rx_sdu_busy = TRUE;
1065
                break;
1066
        case FLOW_START:
1067
                IRDA_DEBUG(1, "%s(), flow start\n", __FUNCTION__);
1068
                self->rx_sdu_busy = FALSE;
1069
 
1070
                /* Client say he can accept more data, try to free our
1071
                 * queues ASAP - Jean II */
1072
                irttp_run_rx_queue(self);
1073
 
1074
                break;
1075
        default:
1076
                IRDA_DEBUG(1, "%s(), Unknown flow command!\n", __FUNCTION__);
1077
        }
1078
}
1079
EXPORT_SYMBOL(irttp_flow_request);
1080
 
1081
/*
1082
 * Function irttp_connect_request (self, dtsap_sel, daddr, qos)
1083
 *
1084
 *    Try to connect to remote destination TSAP selector
1085
 *
1086
 */
1087
int irttp_connect_request(struct tsap_cb *self, __u8 dtsap_sel,
1088
                          __u32 saddr, __u32 daddr,
1089
                          struct qos_info *qos, __u32 max_sdu_size,
1090
                          struct sk_buff *userdata)
1091
{
1092
        struct sk_buff *tx_skb;
1093
        __u8 *frame;
1094
        __u8 n;
1095
 
1096
        IRDA_DEBUG(4, "%s(), max_sdu_size=%d\n", __FUNCTION__, max_sdu_size);
1097
 
1098
        IRDA_ASSERT(self != NULL, return -EBADR;);
1099
        IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -EBADR;);
1100
 
1101
        if (self->connected) {
1102
                if(userdata)
1103
                        dev_kfree_skb(userdata);
1104
                return -EISCONN;
1105
        }
1106
 
1107
        /* Any userdata supplied? */
1108
        if (userdata == NULL) {
1109
                tx_skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
1110
                                   GFP_ATOMIC);
1111
                if (!tx_skb)
1112
                        return -ENOMEM;
1113
 
1114
                /* Reserve space for MUX_CONTROL and LAP header */
1115
                skb_reserve(tx_skb, TTP_MAX_HEADER + TTP_SAR_HEADER);
1116
        } else {
1117
                tx_skb = userdata;
1118
                /*
1119
                 *  Check that the client has reserved enough space for
1120
                 *  headers
1121
                 */
1122
                IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
1123
                        { dev_kfree_skb(userdata); return -1; } );
1124
        }
1125
 
1126
        /* Initialize connection parameters */
1127
        self->connected = FALSE;
1128
        self->avail_credit = 0;
1129
        self->rx_max_sdu_size = max_sdu_size;
1130
        self->rx_sdu_size = 0;
1131
        self->rx_sdu_busy = FALSE;
1132
        self->dtsap_sel = dtsap_sel;
1133
 
1134
        n = self->initial_credit;
1135
 
1136
        self->remote_credit = 0;
1137
        self->send_credit = 0;
1138
 
1139
        /*
1140
         *  Give away max 127 credits for now
1141
         */
1142
        if (n > 127) {
1143
                self->avail_credit=n-127;
1144
                n = 127;
1145
        }
1146
 
1147
        self->remote_credit = n;
1148
 
1149
        /* SAR enabled? */
1150
        if (max_sdu_size > 0) {
1151
                IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
1152
                        { dev_kfree_skb(tx_skb); return -1; } );
1153
 
1154
                /* Insert SAR parameters */
1155
                frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
1156
 
1157
                frame[0] = TTP_PARAMETERS | n;
1158
                frame[1] = 0x04; /* Length */
1159
                frame[2] = 0x01; /* MaxSduSize */
1160
                frame[3] = 0x02; /* Value length */
1161
 
1162
                put_unaligned(cpu_to_be16((__u16) max_sdu_size),
1163
                              (__be16 *)(frame+4));
1164
        } else {
1165
                /* Insert plain TTP header */
1166
                frame = skb_push(tx_skb, TTP_HEADER);
1167
 
1168
                /* Insert initial credit in frame */
1169
                frame[0] = n & 0x7f;
1170
        }
1171
 
1172
        /* Connect with IrLMP. No QoS parameters for now */
1173
        return irlmp_connect_request(self->lsap, dtsap_sel, saddr, daddr, qos,
1174
                                     tx_skb);
1175
}
1176
EXPORT_SYMBOL(irttp_connect_request);
1177
 
1178
/*
1179
 * Function irttp_connect_confirm (handle, qos, skb)
1180
 *
1181
 *    Sevice user confirms TSAP connection with peer.
1182
 *
1183
 */
1184
static void irttp_connect_confirm(void *instance, void *sap,
1185
                                  struct qos_info *qos, __u32 max_seg_size,
1186
                                  __u8 max_header_size, struct sk_buff *skb)
1187
{
1188
        struct tsap_cb *self;
1189
        int parameters;
1190
        int ret;
1191
        __u8 plen;
1192
        __u8 n;
1193
 
1194
        IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
1195
 
1196
        self = (struct tsap_cb *) instance;
1197
 
1198
        IRDA_ASSERT(self != NULL, return;);
1199
        IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1200
        IRDA_ASSERT(skb != NULL, return;);
1201
 
1202
        self->max_seg_size = max_seg_size - TTP_HEADER;
1203
        self->max_header_size = max_header_size + TTP_HEADER;
1204
 
1205
        /*
1206
         *  Check if we have got some QoS parameters back! This should be the
1207
         *  negotiated QoS for the link.
1208
         */
1209
        if (qos) {
1210
                IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %02x\n",
1211
                       qos->baud_rate.bits);
1212
                IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %d bps.\n",
1213
                       qos->baud_rate.value);
1214
        }
1215
 
1216
        n = skb->data[0] & 0x7f;
1217
 
1218
        IRDA_DEBUG(4, "%s(), Initial send_credit=%d\n", __FUNCTION__, n);
1219
 
1220
        self->send_credit = n;
1221
        self->tx_max_sdu_size = 0;
1222
        self->connected = TRUE;
1223
 
1224
        parameters = skb->data[0] & 0x80;
1225
 
1226
        IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
1227
        skb_pull(skb, TTP_HEADER);
1228
 
1229
        if (parameters) {
1230
                plen = skb->data[0];
1231
 
1232
                ret = irda_param_extract_all(self, skb->data+1,
1233
                                             IRDA_MIN(skb->len-1, plen),
1234
                                             &param_info);
1235
 
1236
                /* Any errors in the parameter list? */
1237
                if (ret < 0) {
1238
                        IRDA_WARNING("%s: error extracting parameters\n",
1239
                                     __FUNCTION__);
1240
                        dev_kfree_skb(skb);
1241
 
1242
                        /* Do not accept this connection attempt */
1243
                        return;
1244
                }
1245
                /* Remove parameters */
1246
                skb_pull(skb, IRDA_MIN(skb->len, plen+1));
1247
        }
1248
 
1249
        IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n", __FUNCTION__,
1250
              self->send_credit, self->avail_credit, self->remote_credit);
1251
 
1252
        IRDA_DEBUG(2, "%s(), MaxSduSize=%d\n", __FUNCTION__,
1253
                   self->tx_max_sdu_size);
1254
 
1255
        if (self->notify.connect_confirm) {
1256
                self->notify.connect_confirm(self->notify.instance, self, qos,
1257
                                             self->tx_max_sdu_size,
1258
                                             self->max_header_size, skb);
1259
        } else
1260
                dev_kfree_skb(skb);
1261
}
1262
 
1263
/*
1264
 * Function irttp_connect_indication (handle, skb)
1265
 *
1266
 *    Some other device is connecting to this TSAP
1267
 *
1268
 */
1269
void irttp_connect_indication(void *instance, void *sap, struct qos_info *qos,
1270
                              __u32 max_seg_size, __u8 max_header_size,
1271
                              struct sk_buff *skb)
1272
{
1273
        struct tsap_cb *self;
1274
        struct lsap_cb *lsap;
1275
        int parameters;
1276
        int ret;
1277
        __u8 plen;
1278
        __u8 n;
1279
 
1280
        self = (struct tsap_cb *) instance;
1281
 
1282
        IRDA_ASSERT(self != NULL, return;);
1283
        IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1284
        IRDA_ASSERT(skb != NULL, return;);
1285
 
1286
        lsap = (struct lsap_cb *) sap;
1287
 
1288
        self->max_seg_size = max_seg_size - TTP_HEADER;
1289
        self->max_header_size = max_header_size+TTP_HEADER;
1290
 
1291
        IRDA_DEBUG(4, "%s(), TSAP sel=%02x\n", __FUNCTION__, self->stsap_sel);
1292
 
1293
        /* Need to update dtsap_sel if its equal to LSAP_ANY */
1294
        self->dtsap_sel = lsap->dlsap_sel;
1295
 
1296
        n = skb->data[0] & 0x7f;
1297
 
1298
        self->send_credit = n;
1299
        self->tx_max_sdu_size = 0;
1300
 
1301
        parameters = skb->data[0] & 0x80;
1302
 
1303
        IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
1304
        skb_pull(skb, TTP_HEADER);
1305
 
1306
        if (parameters) {
1307
                plen = skb->data[0];
1308
 
1309
                ret = irda_param_extract_all(self, skb->data+1,
1310
                                             IRDA_MIN(skb->len-1, plen),
1311
                                             &param_info);
1312
 
1313
                /* Any errors in the parameter list? */
1314
                if (ret < 0) {
1315
                        IRDA_WARNING("%s: error extracting parameters\n",
1316
                                     __FUNCTION__);
1317
                        dev_kfree_skb(skb);
1318
 
1319
                        /* Do not accept this connection attempt */
1320
                        return;
1321
                }
1322
 
1323
                /* Remove parameters */
1324
                skb_pull(skb, IRDA_MIN(skb->len, plen+1));
1325
        }
1326
 
1327
        if (self->notify.connect_indication) {
1328
                self->notify.connect_indication(self->notify.instance, self,
1329
                                                qos, self->tx_max_sdu_size,
1330
                                                self->max_header_size, skb);
1331
        } else
1332
                dev_kfree_skb(skb);
1333
}
1334
 
1335
/*
1336
 * Function irttp_connect_response (handle, userdata)
1337
 *
1338
 *    Service user is accepting the connection, just pass it down to
1339
 *    IrLMP!
1340
 *
1341
 */
1342
int irttp_connect_response(struct tsap_cb *self, __u32 max_sdu_size,
1343
                           struct sk_buff *userdata)
1344
{
1345
        struct sk_buff *tx_skb;
1346
        __u8 *frame;
1347
        int ret;
1348
        __u8 n;
1349
 
1350
        IRDA_ASSERT(self != NULL, return -1;);
1351
        IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
1352
 
1353
        IRDA_DEBUG(4, "%s(), Source TSAP selector=%02x\n", __FUNCTION__,
1354
                   self->stsap_sel);
1355
 
1356
        /* Any userdata supplied? */
1357
        if (userdata == NULL) {
1358
                tx_skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
1359
                                   GFP_ATOMIC);
1360
                if (!tx_skb)
1361
                        return -ENOMEM;
1362
 
1363
                /* Reserve space for MUX_CONTROL and LAP header */
1364
                skb_reserve(tx_skb, TTP_MAX_HEADER + TTP_SAR_HEADER);
1365
        } else {
1366
                tx_skb = userdata;
1367
                /*
1368
                 *  Check that the client has reserved enough space for
1369
                 *  headers
1370
                 */
1371
                IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
1372
                        { dev_kfree_skb(userdata); return -1; } );
1373
        }
1374
 
1375
        self->avail_credit = 0;
1376
        self->remote_credit = 0;
1377
        self->rx_max_sdu_size = max_sdu_size;
1378
        self->rx_sdu_size = 0;
1379
        self->rx_sdu_busy = FALSE;
1380
 
1381
        n = self->initial_credit;
1382
 
1383
        /* Frame has only space for max 127 credits (7 bits) */
1384
        if (n > 127) {
1385
                self->avail_credit = n - 127;
1386
                n = 127;
1387
        }
1388
 
1389
        self->remote_credit = n;
1390
        self->connected = TRUE;
1391
 
1392
        /* SAR enabled? */
1393
        if (max_sdu_size > 0) {
1394
                IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
1395
                        { dev_kfree_skb(tx_skb); return -1; } );
1396
 
1397
                /* Insert TTP header with SAR parameters */
1398
                frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
1399
 
1400
                frame[0] = TTP_PARAMETERS | n;
1401
                frame[1] = 0x04; /* Length */
1402
 
1403
                /* irda_param_insert(self, IRTTP_MAX_SDU_SIZE, frame+1,  */
1404
/*                                TTP_SAR_HEADER, &param_info) */
1405
 
1406
                frame[2] = 0x01; /* MaxSduSize */
1407
                frame[3] = 0x02; /* Value length */
1408
 
1409
                put_unaligned(cpu_to_be16((__u16) max_sdu_size),
1410
                              (__be16 *)(frame+4));
1411
        } else {
1412
                /* Insert TTP header */
1413
                frame = skb_push(tx_skb, TTP_HEADER);
1414
 
1415
                frame[0] = n & 0x7f;
1416
        }
1417
 
1418
        ret = irlmp_connect_response(self->lsap, tx_skb);
1419
 
1420
        return ret;
1421
}
1422
EXPORT_SYMBOL(irttp_connect_response);
1423
 
1424
/*
1425
 * Function irttp_dup (self, instance)
1426
 *
1427
 *    Duplicate TSAP, can be used by servers to confirm a connection on a
1428
 *    new TSAP so it can keep listening on the old one.
1429
 */
1430
struct tsap_cb *irttp_dup(struct tsap_cb *orig, void *instance)
1431
{
1432
        struct tsap_cb *new;
1433
        unsigned long flags;
1434
 
1435
        IRDA_DEBUG(1, "%s()\n", __FUNCTION__);
1436
 
1437
        /* Protect our access to the old tsap instance */
1438
        spin_lock_irqsave(&irttp->tsaps->hb_spinlock, flags);
1439
 
1440
        /* Find the old instance */
1441
        if (!hashbin_find(irttp->tsaps, (long) orig, NULL)) {
1442
                IRDA_DEBUG(0, "%s(), unable to find TSAP\n", __FUNCTION__);
1443
                spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1444
                return NULL;
1445
        }
1446
 
1447
        /* Allocate a new instance */
1448
        new = kmalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
1449
        if (!new) {
1450
                IRDA_DEBUG(0, "%s(), unable to kmalloc\n", __FUNCTION__);
1451
                spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1452
                return NULL;
1453
        }
1454
        /* Dup */
1455
        memcpy(new, orig, sizeof(struct tsap_cb));
1456
 
1457
        /* We don't need the old instance any more */
1458
        spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1459
 
1460
        /* Try to dup the LSAP (may fail if we were too slow) */
1461
        new->lsap = irlmp_dup(orig->lsap, new);
1462
        if (!new->lsap) {
1463
                IRDA_DEBUG(0, "%s(), dup failed!\n", __FUNCTION__);
1464
                kfree(new);
1465
                return NULL;
1466
        }
1467
 
1468
        /* Not everything should be copied */
1469
        new->notify.instance = instance;
1470
 
1471
        /* Initialize internal objects */
1472
        irttp_init_tsap(new);
1473
 
1474
        /* This is locked */
1475
        hashbin_insert(irttp->tsaps, (irda_queue_t *) new, (long) new, NULL);
1476
 
1477
        return new;
1478
}
1479
EXPORT_SYMBOL(irttp_dup);
1480
 
1481
/*
1482
 * Function irttp_disconnect_request (self)
1483
 *
1484
 *    Close this connection please! If priority is high, the queued data
1485
 *    segments, if any, will be deallocated first
1486
 *
1487
 */
1488
int irttp_disconnect_request(struct tsap_cb *self, struct sk_buff *userdata,
1489
                             int priority)
1490
{
1491
        int ret;
1492
 
1493
        IRDA_ASSERT(self != NULL, return -1;);
1494
        IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
1495
 
1496
        /* Already disconnected? */
1497
        if (!self->connected) {
1498
                IRDA_DEBUG(4, "%s(), already disconnected!\n", __FUNCTION__);
1499
                if (userdata)
1500
                        dev_kfree_skb(userdata);
1501
                return -1;
1502
        }
1503
 
1504
        /* Disconnect already pending ?
1505
         * We need to use an atomic operation to prevent reentry. This
1506
         * function may be called from various context, like user, timer
1507
         * for following a disconnect_indication() (i.e. net_bh).
1508
         * Jean II */
1509
        if(test_and_set_bit(0, &self->disconnect_pend)) {
1510
                IRDA_DEBUG(0, "%s(), disconnect already pending\n",
1511
                           __FUNCTION__);
1512
                if (userdata)
1513
                        dev_kfree_skb(userdata);
1514
 
1515
                /* Try to make some progress */
1516
                irttp_run_tx_queue(self);
1517
                return -1;
1518
        }
1519
 
1520
        /*
1521
         *  Check if there is still data segments in the transmit queue
1522
         */
1523
        if (!skb_queue_empty(&self->tx_queue)) {
1524
                if (priority == P_HIGH) {
1525
                        /*
1526
                         *  No need to send the queued data, if we are
1527
                         *  disconnecting right now since the data will
1528
                         *  not have any usable connection to be sent on
1529
                         */
1530
                        IRDA_DEBUG(1, "%s(): High priority!!()\n", __FUNCTION__);
1531
                        irttp_flush_queues(self);
1532
                } else if (priority == P_NORMAL) {
1533
                        /*
1534
                         *  Must delay disconnect until after all data segments
1535
                         *  have been sent and the tx_queue is empty
1536
                         */
1537
                        /* We'll reuse this one later for the disconnect */
1538
                        self->disconnect_skb = userdata;  /* May be NULL */
1539
 
1540
                        irttp_run_tx_queue(self);
1541
 
1542
                        irttp_start_todo_timer(self, HZ/10);
1543
                        return -1;
1544
                }
1545
        }
1546
        /* Note : we don't need to check if self->rx_queue is full and the
1547
         * state of self->rx_sdu_busy because the disconnect response will
1548
         * be sent at the LMP level (so even if the peer has its Tx queue
1549
         * full of data). - Jean II */
1550
 
1551
        IRDA_DEBUG(1, "%s(), Disconnecting ...\n", __FUNCTION__);
1552
        self->connected = FALSE;
1553
 
1554
        if (!userdata) {
1555
                struct sk_buff *tx_skb;
1556
                tx_skb = alloc_skb(LMP_MAX_HEADER, GFP_ATOMIC);
1557
                if (!tx_skb)
1558
                        return -ENOMEM;
1559
 
1560
                /*
1561
                 *  Reserve space for MUX and LAP header
1562
                 */
1563
                skb_reserve(tx_skb, LMP_MAX_HEADER);
1564
 
1565
                userdata = tx_skb;
1566
        }
1567
        ret = irlmp_disconnect_request(self->lsap, userdata);
1568
 
1569
        /* The disconnect is no longer pending */
1570
        clear_bit(0, &self->disconnect_pend);    /* FALSE */
1571
 
1572
        return ret;
1573
}
1574
EXPORT_SYMBOL(irttp_disconnect_request);
1575
 
1576
/*
1577
 * Function irttp_disconnect_indication (self, reason)
1578
 *
1579
 *    Disconnect indication, TSAP disconnected by peer?
1580
 *
1581
 */
1582
void irttp_disconnect_indication(void *instance, void *sap, LM_REASON reason,
1583
                                 struct sk_buff *skb)
1584
{
1585
        struct tsap_cb *self;
1586
 
1587
        IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
1588
 
1589
        self = (struct tsap_cb *) instance;
1590
 
1591
        IRDA_ASSERT(self != NULL, return;);
1592
        IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1593
 
1594
        /* Prevent higher layer to send more data */
1595
        self->connected = FALSE;
1596
 
1597
        /* Check if client has already tried to close the TSAP */
1598
        if (self->close_pend) {
1599
                /* In this case, the higher layer is probably gone. Don't
1600
                 * bother it and clean up the remains - Jean II */
1601
                if (skb)
1602
                        dev_kfree_skb(skb);
1603
                irttp_close_tsap(self);
1604
                return;
1605
        }
1606
 
1607
        /* If we are here, we assume that is the higher layer is still
1608
         * waiting for the disconnect notification and able to process it,
1609
         * even if he tried to disconnect. Otherwise, it would have already
1610
         * attempted to close the tsap and self->close_pend would be TRUE.
1611
         * Jean II */
1612
 
1613
        /* No need to notify the client if has already tried to disconnect */
1614
        if(self->notify.disconnect_indication)
1615
                self->notify.disconnect_indication(self->notify.instance, self,
1616
                                                   reason, skb);
1617
        else
1618
                if (skb)
1619
                        dev_kfree_skb(skb);
1620
}
1621
 
1622
/*
1623
 * Function irttp_do_data_indication (self, skb)
1624
 *
1625
 *    Try to deliver reassembled skb to layer above, and requeue it if that
1626
 *    for some reason should fail. We mark rx sdu as busy to apply back
1627
 *    pressure is necessary.
1628
 */
1629
static void irttp_do_data_indication(struct tsap_cb *self, struct sk_buff *skb)
1630
{
1631
        int err;
1632
 
1633
        /* Check if client has already closed the TSAP and gone away */
1634
        if (self->close_pend) {
1635
                dev_kfree_skb(skb);
1636
                return;
1637
        }
1638
 
1639
        err = self->notify.data_indication(self->notify.instance, self, skb);
1640
 
1641
        /* Usually the layer above will notify that it's input queue is
1642
         * starting to get filled by using the flow request, but this may
1643
         * be difficult, so it can instead just refuse to eat it and just
1644
         * give an error back
1645
         */
1646
        if (err) {
1647
                IRDA_DEBUG(0, "%s() requeueing skb!\n", __FUNCTION__);
1648
 
1649
                /* Make sure we take a break */
1650
                self->rx_sdu_busy = TRUE;
1651
 
1652
                /* Need to push the header in again */
1653
                skb_push(skb, TTP_HEADER);
1654
                skb->data[0] = 0x00; /* Make sure MORE bit is cleared */
1655
 
1656
                /* Put skb back on queue */
1657
                skb_queue_head(&self->rx_queue, skb);
1658
        }
1659
}
1660
 
1661
/*
1662
 * Function irttp_run_rx_queue (self)
1663
 *
1664
 *     Check if we have any frames to be transmitted, or if we have any
1665
 *     available credit to give away.
1666
 */
1667
void irttp_run_rx_queue(struct tsap_cb *self)
1668
{
1669
        struct sk_buff *skb;
1670
        int more = 0;
1671
 
1672
        IRDA_DEBUG(2, "%s() send=%d,avail=%d,remote=%d\n", __FUNCTION__,
1673
                   self->send_credit, self->avail_credit, self->remote_credit);
1674
 
1675
        /* Get exclusive access to the rx queue, otherwise don't touch it */
1676
        if (irda_lock(&self->rx_queue_lock) == FALSE)
1677
                return;
1678
 
1679
        /*
1680
         *  Reassemble all frames in receive queue and deliver them
1681
         */
1682
        while (!self->rx_sdu_busy && (skb = skb_dequeue(&self->rx_queue))) {
1683
                /* This bit will tell us if it's the last fragment or not */
1684
                more = skb->data[0] & 0x80;
1685
 
1686
                /* Remove TTP header */
1687
                skb_pull(skb, TTP_HEADER);
1688
 
1689
                /* Add the length of the remaining data */
1690
                self->rx_sdu_size += skb->len;
1691
 
1692
                /*
1693
                 * If SAR is disabled, or user has requested no reassembly
1694
                 * of received fragments then we just deliver them
1695
                 * immediately. This can be requested by clients that
1696
                 * implements byte streams without any message boundaries
1697
                 */
1698
                if (self->rx_max_sdu_size == TTP_SAR_DISABLE) {
1699
                        irttp_do_data_indication(self, skb);
1700
                        self->rx_sdu_size = 0;
1701
 
1702
                        continue;
1703
                }
1704
 
1705
                /* Check if this is a fragment, and not the last fragment */
1706
                if (more) {
1707
                        /*
1708
                         *  Queue the fragment if we still are within the
1709
                         *  limits of the maximum size of the rx_sdu
1710
                         */
1711
                        if (self->rx_sdu_size <= self->rx_max_sdu_size) {
1712
                                IRDA_DEBUG(4, "%s(), queueing frag\n",
1713
                                           __FUNCTION__);
1714
                                skb_queue_tail(&self->rx_fragments, skb);
1715
                        } else {
1716
                                /* Free the part of the SDU that is too big */
1717
                                dev_kfree_skb(skb);
1718
                        }
1719
                        continue;
1720
                }
1721
                /*
1722
                 *  This is the last fragment, so time to reassemble!
1723
                 */
1724
                if ((self->rx_sdu_size <= self->rx_max_sdu_size) ||
1725
                    (self->rx_max_sdu_size == TTP_SAR_UNBOUND))
1726
                {
1727
                        /*
1728
                         * A little optimizing. Only queue the fragment if
1729
                         * there are other fragments. Since if this is the
1730
                         * last and only fragment, there is no need to
1731
                         * reassemble :-)
1732
                         */
1733
                        if (!skb_queue_empty(&self->rx_fragments)) {
1734
                                skb_queue_tail(&self->rx_fragments,
1735
                                               skb);
1736
 
1737
                                skb = irttp_reassemble_skb(self);
1738
                        }
1739
 
1740
                        /* Now we can deliver the reassembled skb */
1741
                        irttp_do_data_indication(self, skb);
1742
                } else {
1743
                        IRDA_DEBUG(1, "%s(), Truncated frame\n", __FUNCTION__);
1744
 
1745
                        /* Free the part of the SDU that is too big */
1746
                        dev_kfree_skb(skb);
1747
 
1748
                        /* Deliver only the valid but truncated part of SDU */
1749
                        skb = irttp_reassemble_skb(self);
1750
 
1751
                        irttp_do_data_indication(self, skb);
1752
                }
1753
                self->rx_sdu_size = 0;
1754
        }
1755
 
1756
        /*
1757
         * It's not trivial to keep track of how many credits are available
1758
         * by incrementing at each packet, because delivery may fail
1759
         * (irttp_do_data_indication() may requeue the frame) and because
1760
         * we need to take care of fragmentation.
1761
         * We want the other side to send up to initial_credit packets.
1762
         * We have some frames in our queues, and we have already allowed it
1763
         * to send remote_credit.
1764
         * No need to spinlock, write is atomic and self correcting...
1765
         * Jean II
1766
         */
1767
        self->avail_credit = (self->initial_credit -
1768
                              (self->remote_credit +
1769
                               skb_queue_len(&self->rx_queue) +
1770
                               skb_queue_len(&self->rx_fragments)));
1771
 
1772
        /* Do we have too much credits to send to peer ? */
1773
        if ((self->remote_credit <= TTP_RX_MIN_CREDIT) &&
1774
            (self->avail_credit > 0)) {
1775
                /* Send explicit credit frame */
1776
                irttp_give_credit(self);
1777
                /* Note : do *NOT* check if tx_queue is non-empty, that
1778
                 * will produce deadlocks. I repeat : send a credit frame
1779
                 * even if we have something to send in our Tx queue.
1780
                 * If we have credits, it means that our Tx queue is blocked.
1781
                 *
1782
                 * Let's suppose the peer can't keep up with our Tx. He will
1783
                 * flow control us by not sending us any credits, and we
1784
                 * will stop Tx and start accumulating credits here.
1785
                 * Up to the point where the peer will stop its Tx queue,
1786
                 * for lack of credits.
1787
                 * Let's assume the peer application is single threaded.
1788
                 * It will block on Tx and never consume any Rx buffer.
1789
                 * Deadlock. Guaranteed. - Jean II
1790
                 */
1791
        }
1792
 
1793
        /* Reset lock */
1794
        self->rx_queue_lock = 0;
1795
}
1796
 
1797
#ifdef CONFIG_PROC_FS
1798
struct irttp_iter_state {
1799
        int id;
1800
};
1801
 
1802
static void *irttp_seq_start(struct seq_file *seq, loff_t *pos)
1803
{
1804
        struct irttp_iter_state *iter = seq->private;
1805
        struct tsap_cb *self;
1806
 
1807
        /* Protect our access to the tsap list */
1808
        spin_lock_irq(&irttp->tsaps->hb_spinlock);
1809
        iter->id = 0;
1810
 
1811
        for (self = (struct tsap_cb *) hashbin_get_first(irttp->tsaps);
1812
             self != NULL;
1813
             self = (struct tsap_cb *) hashbin_get_next(irttp->tsaps)) {
1814
                if (iter->id == *pos)
1815
                        break;
1816
                ++iter->id;
1817
        }
1818
 
1819
        return self;
1820
}
1821
 
1822
static void *irttp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1823
{
1824
        struct irttp_iter_state *iter = seq->private;
1825
 
1826
        ++*pos;
1827
        ++iter->id;
1828
        return (void *) hashbin_get_next(irttp->tsaps);
1829
}
1830
 
1831
static void irttp_seq_stop(struct seq_file *seq, void *v)
1832
{
1833
        spin_unlock_irq(&irttp->tsaps->hb_spinlock);
1834
}
1835
 
1836
static int irttp_seq_show(struct seq_file *seq, void *v)
1837
{
1838
        const struct irttp_iter_state *iter = seq->private;
1839
        const struct tsap_cb *self = v;
1840
 
1841
        seq_printf(seq, "TSAP %d, ", iter->id);
1842
        seq_printf(seq, "stsap_sel: %02x, ",
1843
                   self->stsap_sel);
1844
        seq_printf(seq, "dtsap_sel: %02x\n",
1845
                   self->dtsap_sel);
1846
        seq_printf(seq, "  connected: %s, ",
1847
                   self->connected? "TRUE":"FALSE");
1848
        seq_printf(seq, "avail credit: %d, ",
1849
                   self->avail_credit);
1850
        seq_printf(seq, "remote credit: %d, ",
1851
                   self->remote_credit);
1852
        seq_printf(seq, "send credit: %d\n",
1853
                   self->send_credit);
1854
        seq_printf(seq, "  tx packets: %ld, ",
1855
                   self->stats.tx_packets);
1856
        seq_printf(seq, "rx packets: %ld, ",
1857
                   self->stats.rx_packets);
1858
        seq_printf(seq, "tx_queue len: %d ",
1859
                   skb_queue_len(&self->tx_queue));
1860
        seq_printf(seq, "rx_queue len: %d\n",
1861
                   skb_queue_len(&self->rx_queue));
1862
        seq_printf(seq, "  tx_sdu_busy: %s, ",
1863
                   self->tx_sdu_busy? "TRUE":"FALSE");
1864
        seq_printf(seq, "rx_sdu_busy: %s\n",
1865
                   self->rx_sdu_busy? "TRUE":"FALSE");
1866
        seq_printf(seq, "  max_seg_size: %d, ",
1867
                   self->max_seg_size);
1868
        seq_printf(seq, "tx_max_sdu_size: %d, ",
1869
                   self->tx_max_sdu_size);
1870
        seq_printf(seq, "rx_max_sdu_size: %d\n",
1871
                   self->rx_max_sdu_size);
1872
 
1873
        seq_printf(seq, "  Used by (%s)\n\n",
1874
                   self->notify.name);
1875
        return 0;
1876
}
1877
 
1878
static const struct seq_operations irttp_seq_ops = {
1879
        .start  = irttp_seq_start,
1880
        .next   = irttp_seq_next,
1881
        .stop   = irttp_seq_stop,
1882
        .show   = irttp_seq_show,
1883
};
1884
 
1885
static int irttp_seq_open(struct inode *inode, struct file *file)
1886
{
1887
        return seq_open_private(file, &irttp_seq_ops,
1888
                        sizeof(struct irttp_iter_state));
1889
}
1890
 
1891
const struct file_operations irttp_seq_fops = {
1892
        .owner          = THIS_MODULE,
1893
        .open           = irttp_seq_open,
1894
        .read           = seq_read,
1895
        .llseek         = seq_lseek,
1896
        .release        = seq_release_private,
1897
};
1898
 
1899
#endif /* PROC_FS */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.