1 |
62 |
marcus.erl |
/*
|
2 |
|
|
* Radiotap parser
|
3 |
|
|
*
|
4 |
|
|
* Copyright 2007 Andy Green <andy@warmcat.com>
|
5 |
|
|
*/
|
6 |
|
|
|
7 |
|
|
#include <net/cfg80211.h>
|
8 |
|
|
#include <net/ieee80211_radiotap.h>
|
9 |
|
|
#include <asm/unaligned.h>
|
10 |
|
|
|
11 |
|
|
/* function prototypes and related defs are in include/net/cfg80211.h */
|
12 |
|
|
|
13 |
|
|
/**
|
14 |
|
|
* ieee80211_radiotap_iterator_init - radiotap parser iterator initialization
|
15 |
|
|
* @iterator: radiotap_iterator to initialize
|
16 |
|
|
* @radiotap_header: radiotap header to parse
|
17 |
|
|
* @max_length: total length we can parse into (eg, whole packet length)
|
18 |
|
|
*
|
19 |
|
|
* Returns: 0 or a negative error code if there is a problem.
|
20 |
|
|
*
|
21 |
|
|
* This function initializes an opaque iterator struct which can then
|
22 |
|
|
* be passed to ieee80211_radiotap_iterator_next() to visit every radiotap
|
23 |
|
|
* argument which is present in the header. It knows about extended
|
24 |
|
|
* present headers and handles them.
|
25 |
|
|
*
|
26 |
|
|
* How to use:
|
27 |
|
|
* call __ieee80211_radiotap_iterator_init() to init a semi-opaque iterator
|
28 |
|
|
* struct ieee80211_radiotap_iterator (no need to init the struct beforehand)
|
29 |
|
|
* checking for a good 0 return code. Then loop calling
|
30 |
|
|
* __ieee80211_radiotap_iterator_next()... it returns either 0,
|
31 |
|
|
* -ENOENT if there are no more args to parse, or -EINVAL if there is a problem.
|
32 |
|
|
* The iterator's @this_arg member points to the start of the argument
|
33 |
|
|
* associated with the current argument index that is present, which can be
|
34 |
|
|
* found in the iterator's @this_arg_index member. This arg index corresponds
|
35 |
|
|
* to the IEEE80211_RADIOTAP_... defines.
|
36 |
|
|
*
|
37 |
|
|
* Radiotap header length:
|
38 |
|
|
* You can find the CPU-endian total radiotap header length in
|
39 |
|
|
* iterator->max_length after executing ieee80211_radiotap_iterator_init()
|
40 |
|
|
* successfully.
|
41 |
|
|
*
|
42 |
|
|
* Alignment Gotcha:
|
43 |
|
|
* You must take care when dereferencing iterator.this_arg
|
44 |
|
|
* for multibyte types... the pointer is not aligned. Use
|
45 |
|
|
* get_unaligned((type *)iterator.this_arg) to dereference
|
46 |
|
|
* iterator.this_arg for type "type" safely on all arches.
|
47 |
|
|
*
|
48 |
|
|
* Example code:
|
49 |
|
|
* See Documentation/networking/radiotap-headers.txt
|
50 |
|
|
*/
|
51 |
|
|
|
52 |
|
|
int ieee80211_radiotap_iterator_init(
|
53 |
|
|
struct ieee80211_radiotap_iterator *iterator,
|
54 |
|
|
struct ieee80211_radiotap_header *radiotap_header,
|
55 |
|
|
int max_length)
|
56 |
|
|
{
|
57 |
|
|
/* Linux only supports version 0 radiotap format */
|
58 |
|
|
if (radiotap_header->it_version)
|
59 |
|
|
return -EINVAL;
|
60 |
|
|
|
61 |
|
|
/* sanity check for allowed length and radiotap length field */
|
62 |
|
|
if (max_length < le16_to_cpu(get_unaligned(&radiotap_header->it_len)))
|
63 |
|
|
return -EINVAL;
|
64 |
|
|
|
65 |
|
|
iterator->rtheader = radiotap_header;
|
66 |
|
|
iterator->max_length = le16_to_cpu(get_unaligned(
|
67 |
|
|
&radiotap_header->it_len));
|
68 |
|
|
iterator->arg_index = 0;
|
69 |
|
|
iterator->bitmap_shifter = le32_to_cpu(get_unaligned(
|
70 |
|
|
&radiotap_header->it_present));
|
71 |
|
|
iterator->arg = (u8 *)radiotap_header + sizeof(*radiotap_header);
|
72 |
|
|
iterator->this_arg = NULL;
|
73 |
|
|
|
74 |
|
|
/* find payload start allowing for extended bitmap(s) */
|
75 |
|
|
|
76 |
|
|
if (unlikely(iterator->bitmap_shifter & (1<<IEEE80211_RADIOTAP_EXT))) {
|
77 |
|
|
while (le32_to_cpu(get_unaligned((__le32 *)iterator->arg)) &
|
78 |
|
|
(1<<IEEE80211_RADIOTAP_EXT)) {
|
79 |
|
|
iterator->arg += sizeof(u32);
|
80 |
|
|
|
81 |
|
|
/*
|
82 |
|
|
* check for insanity where the present bitmaps
|
83 |
|
|
* keep claiming to extend up to or even beyond the
|
84 |
|
|
* stated radiotap header length
|
85 |
|
|
*/
|
86 |
|
|
|
87 |
|
|
if (((ulong)iterator->arg -
|
88 |
|
|
(ulong)iterator->rtheader) > iterator->max_length)
|
89 |
|
|
return -EINVAL;
|
90 |
|
|
}
|
91 |
|
|
|
92 |
|
|
iterator->arg += sizeof(u32);
|
93 |
|
|
|
94 |
|
|
/*
|
95 |
|
|
* no need to check again for blowing past stated radiotap
|
96 |
|
|
* header length, because ieee80211_radiotap_iterator_next
|
97 |
|
|
* checks it before it is dereferenced
|
98 |
|
|
*/
|
99 |
|
|
}
|
100 |
|
|
|
101 |
|
|
/* we are all initialized happily */
|
102 |
|
|
|
103 |
|
|
return 0;
|
104 |
|
|
}
|
105 |
|
|
EXPORT_SYMBOL(ieee80211_radiotap_iterator_init);
|
106 |
|
|
|
107 |
|
|
|
108 |
|
|
/**
|
109 |
|
|
* ieee80211_radiotap_iterator_next - return next radiotap parser iterator arg
|
110 |
|
|
* @iterator: radiotap_iterator to move to next arg (if any)
|
111 |
|
|
*
|
112 |
|
|
* Returns: 0 if there is an argument to handle,
|
113 |
|
|
* -ENOENT if there are no more args or -EINVAL
|
114 |
|
|
* if there is something else wrong.
|
115 |
|
|
*
|
116 |
|
|
* This function provides the next radiotap arg index (IEEE80211_RADIOTAP_*)
|
117 |
|
|
* in @this_arg_index and sets @this_arg to point to the
|
118 |
|
|
* payload for the field. It takes care of alignment handling and extended
|
119 |
|
|
* present fields. @this_arg can be changed by the caller (eg,
|
120 |
|
|
* incremented to move inside a compound argument like
|
121 |
|
|
* IEEE80211_RADIOTAP_CHANNEL). The args pointed to are in
|
122 |
|
|
* little-endian format whatever the endianess of your CPU.
|
123 |
|
|
*
|
124 |
|
|
* Alignment Gotcha:
|
125 |
|
|
* You must take care when dereferencing iterator.this_arg
|
126 |
|
|
* for multibyte types... the pointer is not aligned. Use
|
127 |
|
|
* get_unaligned((type *)iterator.this_arg) to dereference
|
128 |
|
|
* iterator.this_arg for type "type" safely on all arches.
|
129 |
|
|
*/
|
130 |
|
|
|
131 |
|
|
int ieee80211_radiotap_iterator_next(
|
132 |
|
|
struct ieee80211_radiotap_iterator *iterator)
|
133 |
|
|
{
|
134 |
|
|
|
135 |
|
|
/*
|
136 |
|
|
* small length lookup table for all radiotap types we heard of
|
137 |
|
|
* starting from b0 in the bitmap, so we can walk the payload
|
138 |
|
|
* area of the radiotap header
|
139 |
|
|
*
|
140 |
|
|
* There is a requirement to pad args, so that args
|
141 |
|
|
* of a given length must begin at a boundary of that length
|
142 |
|
|
* -- but note that compound args are allowed (eg, 2 x u16
|
143 |
|
|
* for IEEE80211_RADIOTAP_CHANNEL) so total arg length is not
|
144 |
|
|
* a reliable indicator of alignment requirement.
|
145 |
|
|
*
|
146 |
|
|
* upper nybble: content alignment for arg
|
147 |
|
|
* lower nybble: content length for arg
|
148 |
|
|
*/
|
149 |
|
|
|
150 |
|
|
static const u8 rt_sizes[] = {
|
151 |
|
|
[IEEE80211_RADIOTAP_TSFT] = 0x88,
|
152 |
|
|
[IEEE80211_RADIOTAP_FLAGS] = 0x11,
|
153 |
|
|
[IEEE80211_RADIOTAP_RATE] = 0x11,
|
154 |
|
|
[IEEE80211_RADIOTAP_CHANNEL] = 0x24,
|
155 |
|
|
[IEEE80211_RADIOTAP_FHSS] = 0x22,
|
156 |
|
|
[IEEE80211_RADIOTAP_DBM_ANTSIGNAL] = 0x11,
|
157 |
|
|
[IEEE80211_RADIOTAP_DBM_ANTNOISE] = 0x11,
|
158 |
|
|
[IEEE80211_RADIOTAP_LOCK_QUALITY] = 0x22,
|
159 |
|
|
[IEEE80211_RADIOTAP_TX_ATTENUATION] = 0x22,
|
160 |
|
|
[IEEE80211_RADIOTAP_DB_TX_ATTENUATION] = 0x22,
|
161 |
|
|
[IEEE80211_RADIOTAP_DBM_TX_POWER] = 0x11,
|
162 |
|
|
[IEEE80211_RADIOTAP_ANTENNA] = 0x11,
|
163 |
|
|
[IEEE80211_RADIOTAP_DB_ANTSIGNAL] = 0x11,
|
164 |
|
|
[IEEE80211_RADIOTAP_DB_ANTNOISE] = 0x11,
|
165 |
|
|
[IEEE80211_RADIOTAP_RX_FLAGS] = 0x22,
|
166 |
|
|
[IEEE80211_RADIOTAP_TX_FLAGS] = 0x22,
|
167 |
|
|
[IEEE80211_RADIOTAP_RTS_RETRIES] = 0x11,
|
168 |
|
|
[IEEE80211_RADIOTAP_DATA_RETRIES] = 0x11,
|
169 |
|
|
/*
|
170 |
|
|
* add more here as they are defined in
|
171 |
|
|
* include/net/ieee80211_radiotap.h
|
172 |
|
|
*/
|
173 |
|
|
};
|
174 |
|
|
|
175 |
|
|
/*
|
176 |
|
|
* for every radiotap entry we can at
|
177 |
|
|
* least skip (by knowing the length)...
|
178 |
|
|
*/
|
179 |
|
|
|
180 |
|
|
while (iterator->arg_index < sizeof(rt_sizes)) {
|
181 |
|
|
int hit = 0;
|
182 |
|
|
int pad;
|
183 |
|
|
|
184 |
|
|
if (!(iterator->bitmap_shifter & 1))
|
185 |
|
|
goto next_entry; /* arg not present */
|
186 |
|
|
|
187 |
|
|
/*
|
188 |
|
|
* arg is present, account for alignment padding
|
189 |
|
|
* 8-bit args can be at any alignment
|
190 |
|
|
* 16-bit args must start on 16-bit boundary
|
191 |
|
|
* 32-bit args must start on 32-bit boundary
|
192 |
|
|
* 64-bit args must start on 64-bit boundary
|
193 |
|
|
*
|
194 |
|
|
* note that total arg size can differ from alignment of
|
195 |
|
|
* elements inside arg, so we use upper nybble of length
|
196 |
|
|
* table to base alignment on
|
197 |
|
|
*
|
198 |
|
|
* also note: these alignments are ** relative to the
|
199 |
|
|
* start of the radiotap header **. There is no guarantee
|
200 |
|
|
* that the radiotap header itself is aligned on any
|
201 |
|
|
* kind of boundary.
|
202 |
|
|
*
|
203 |
|
|
* the above is why get_unaligned() is used to dereference
|
204 |
|
|
* multibyte elements from the radiotap area
|
205 |
|
|
*/
|
206 |
|
|
|
207 |
|
|
pad = (((ulong)iterator->arg) -
|
208 |
|
|
((ulong)iterator->rtheader)) &
|
209 |
|
|
((rt_sizes[iterator->arg_index] >> 4) - 1);
|
210 |
|
|
|
211 |
|
|
if (pad)
|
212 |
|
|
iterator->arg +=
|
213 |
|
|
(rt_sizes[iterator->arg_index] >> 4) - pad;
|
214 |
|
|
|
215 |
|
|
/*
|
216 |
|
|
* this is what we will return to user, but we need to
|
217 |
|
|
* move on first so next call has something fresh to test
|
218 |
|
|
*/
|
219 |
|
|
iterator->this_arg_index = iterator->arg_index;
|
220 |
|
|
iterator->this_arg = iterator->arg;
|
221 |
|
|
hit = 1;
|
222 |
|
|
|
223 |
|
|
/* internally move on the size of this arg */
|
224 |
|
|
iterator->arg += rt_sizes[iterator->arg_index] & 0x0f;
|
225 |
|
|
|
226 |
|
|
/*
|
227 |
|
|
* check for insanity where we are given a bitmap that
|
228 |
|
|
* claims to have more arg content than the length of the
|
229 |
|
|
* radiotap section. We will normally end up equalling this
|
230 |
|
|
* max_length on the last arg, never exceeding it.
|
231 |
|
|
*/
|
232 |
|
|
|
233 |
|
|
if (((ulong)iterator->arg - (ulong)iterator->rtheader) >
|
234 |
|
|
iterator->max_length)
|
235 |
|
|
return -EINVAL;
|
236 |
|
|
|
237 |
|
|
next_entry:
|
238 |
|
|
iterator->arg_index++;
|
239 |
|
|
if (unlikely((iterator->arg_index & 31) == 0)) {
|
240 |
|
|
/* completed current u32 bitmap */
|
241 |
|
|
if (iterator->bitmap_shifter & 1) {
|
242 |
|
|
/* b31 was set, there is more */
|
243 |
|
|
/* move to next u32 bitmap */
|
244 |
|
|
iterator->bitmap_shifter = le32_to_cpu(
|
245 |
|
|
get_unaligned(iterator->next_bitmap));
|
246 |
|
|
iterator->next_bitmap++;
|
247 |
|
|
} else
|
248 |
|
|
/* no more bitmaps: end */
|
249 |
|
|
iterator->arg_index = sizeof(rt_sizes);
|
250 |
|
|
} else /* just try the next bit */
|
251 |
|
|
iterator->bitmap_shifter >>= 1;
|
252 |
|
|
|
253 |
|
|
/* if we found a valid arg earlier, return it now */
|
254 |
|
|
if (hit)
|
255 |
|
|
return 0;
|
256 |
|
|
}
|
257 |
|
|
|
258 |
|
|
/* we don't know how to handle any more args, we're done */
|
259 |
|
|
return -ENOENT;
|
260 |
|
|
}
|
261 |
|
|
EXPORT_SYMBOL(ieee80211_radiotap_iterator_next);
|