OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [security/] [selinux/] [avc.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * Implementation of the kernel access vector cache (AVC).
3
 *
4
 * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
5
 *           James Morris <jmorris@redhat.com>
6
 *
7
 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
8
 *     Replaced the avc_lock spinlock by RCU.
9
 *
10
 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11
 *
12
 *      This program is free software; you can redistribute it and/or modify
13
 *      it under the terms of the GNU General Public License version 2,
14
 *      as published by the Free Software Foundation.
15
 */
16
#include <linux/types.h>
17
#include <linux/stddef.h>
18
#include <linux/kernel.h>
19
#include <linux/slab.h>
20
#include <linux/fs.h>
21
#include <linux/dcache.h>
22
#include <linux/init.h>
23
#include <linux/skbuff.h>
24
#include <linux/percpu.h>
25
#include <net/sock.h>
26
#include <linux/un.h>
27
#include <net/af_unix.h>
28
#include <linux/ip.h>
29
#include <linux/audit.h>
30
#include <linux/ipv6.h>
31
#include <net/ipv6.h>
32
#include "avc.h"
33
#include "avc_ss.h"
34
 
35
static const struct av_perm_to_string av_perm_to_string[] = {
36
#define S_(c, v, s) { c, v, s },
37
#include "av_perm_to_string.h"
38
#undef S_
39
};
40
 
41
static const char *class_to_string[] = {
42
#define S_(s) s,
43
#include "class_to_string.h"
44
#undef S_
45
};
46
 
47
#define TB_(s) static const char * s [] = {
48
#define TE_(s) };
49
#define S_(s) s,
50
#include "common_perm_to_string.h"
51
#undef TB_
52
#undef TE_
53
#undef S_
54
 
55
static const struct av_inherit av_inherit[] = {
56
#define S_(c, i, b) { c, common_##i##_perm_to_string, b },
57
#include "av_inherit.h"
58
#undef S_
59
};
60
 
61
const struct selinux_class_perm selinux_class_perm = {
62
        av_perm_to_string,
63
        ARRAY_SIZE(av_perm_to_string),
64
        class_to_string,
65
        ARRAY_SIZE(class_to_string),
66
        av_inherit,
67
        ARRAY_SIZE(av_inherit)
68
};
69
 
70
#define AVC_CACHE_SLOTS                 512
71
#define AVC_DEF_CACHE_THRESHOLD         512
72
#define AVC_CACHE_RECLAIM               16
73
 
74
#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
75
#define avc_cache_stats_incr(field)                             \
76
do {                                                            \
77
        per_cpu(avc_cache_stats, get_cpu()).field++;            \
78
        put_cpu();                                              \
79
} while (0)
80
#else
81
#define avc_cache_stats_incr(field)     do {} while (0)
82
#endif
83
 
84
struct avc_entry {
85
        u32                     ssid;
86
        u32                     tsid;
87
        u16                     tclass;
88
        struct av_decision      avd;
89
        atomic_t                used;   /* used recently */
90
};
91
 
92
struct avc_node {
93
        struct avc_entry        ae;
94
        struct list_head        list;
95
        struct rcu_head         rhead;
96
};
97
 
98
struct avc_cache {
99
        struct list_head        slots[AVC_CACHE_SLOTS];
100
        spinlock_t              slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
101
        atomic_t                lru_hint;       /* LRU hint for reclaim scan */
102
        atomic_t                active_nodes;
103
        u32                     latest_notif;   /* latest revocation notification */
104
};
105
 
106
struct avc_callback_node {
107
        int (*callback) (u32 event, u32 ssid, u32 tsid,
108
                         u16 tclass, u32 perms,
109
                         u32 *out_retained);
110
        u32 events;
111
        u32 ssid;
112
        u32 tsid;
113
        u16 tclass;
114
        u32 perms;
115
        struct avc_callback_node *next;
116
};
117
 
118
/* Exported via selinufs */
119
unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
120
 
121
#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
122
DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
123
#endif
124
 
125
static struct avc_cache avc_cache;
126
static struct avc_callback_node *avc_callbacks;
127
static struct kmem_cache *avc_node_cachep;
128
 
129
static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
130
{
131
        return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
132
}
133
 
134
/**
135
 * avc_dump_av - Display an access vector in human-readable form.
136
 * @tclass: target security class
137
 * @av: access vector
138
 */
139
static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
140
{
141
        const char **common_pts = NULL;
142
        u32 common_base = 0;
143
        int i, i2, perm;
144
 
145
        if (av == 0) {
146
                audit_log_format(ab, " null");
147
                return;
148
        }
149
 
150
        for (i = 0; i < ARRAY_SIZE(av_inherit); i++) {
151
                if (av_inherit[i].tclass == tclass) {
152
                        common_pts = av_inherit[i].common_pts;
153
                        common_base = av_inherit[i].common_base;
154
                        break;
155
                }
156
        }
157
 
158
        audit_log_format(ab, " {");
159
        i = 0;
160
        perm = 1;
161
        while (perm < common_base) {
162
                if (perm & av) {
163
                        audit_log_format(ab, " %s", common_pts[i]);
164
                        av &= ~perm;
165
                }
166
                i++;
167
                perm <<= 1;
168
        }
169
 
170
        while (i < sizeof(av) * 8) {
171
                if (perm & av) {
172
                        for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) {
173
                                if ((av_perm_to_string[i2].tclass == tclass) &&
174
                                    (av_perm_to_string[i2].value == perm))
175
                                        break;
176
                        }
177
                        if (i2 < ARRAY_SIZE(av_perm_to_string)) {
178
                                audit_log_format(ab, " %s",
179
                                                 av_perm_to_string[i2].name);
180
                                av &= ~perm;
181
                        }
182
                }
183
                i++;
184
                perm <<= 1;
185
        }
186
 
187
        if (av)
188
                audit_log_format(ab, " 0x%x", av);
189
 
190
        audit_log_format(ab, " }");
191
}
192
 
193
/**
194
 * avc_dump_query - Display a SID pair and a class in human-readable form.
195
 * @ssid: source security identifier
196
 * @tsid: target security identifier
197
 * @tclass: target security class
198
 */
199
static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
200
{
201
        int rc;
202
        char *scontext;
203
        u32 scontext_len;
204
 
205
        rc = security_sid_to_context(ssid, &scontext, &scontext_len);
206
        if (rc)
207
                audit_log_format(ab, "ssid=%d", ssid);
208
        else {
209
                audit_log_format(ab, "scontext=%s", scontext);
210
                kfree(scontext);
211
        }
212
 
213
        rc = security_sid_to_context(tsid, &scontext, &scontext_len);
214
        if (rc)
215
                audit_log_format(ab, " tsid=%d", tsid);
216
        else {
217
                audit_log_format(ab, " tcontext=%s", scontext);
218
                kfree(scontext);
219
        }
220
 
221
        BUG_ON(tclass >= ARRAY_SIZE(class_to_string) || !class_to_string[tclass]);
222
        audit_log_format(ab, " tclass=%s", class_to_string[tclass]);
223
}
224
 
225
/**
226
 * avc_init - Initialize the AVC.
227
 *
228
 * Initialize the access vector cache.
229
 */
230
void __init avc_init(void)
231
{
232
        int i;
233
 
234
        for (i = 0; i < AVC_CACHE_SLOTS; i++) {
235
                INIT_LIST_HEAD(&avc_cache.slots[i]);
236
                spin_lock_init(&avc_cache.slots_lock[i]);
237
        }
238
        atomic_set(&avc_cache.active_nodes, 0);
239
        atomic_set(&avc_cache.lru_hint, 0);
240
 
241
        avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
242
                                             0, SLAB_PANIC, NULL);
243
 
244
        audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
245
}
246
 
247
int avc_get_hash_stats(char *page)
248
{
249
        int i, chain_len, max_chain_len, slots_used;
250
        struct avc_node *node;
251
 
252
        rcu_read_lock();
253
 
254
        slots_used = 0;
255
        max_chain_len = 0;
256
        for (i = 0; i < AVC_CACHE_SLOTS; i++) {
257
                if (!list_empty(&avc_cache.slots[i])) {
258
                        slots_used++;
259
                        chain_len = 0;
260
                        list_for_each_entry_rcu(node, &avc_cache.slots[i], list)
261
                                chain_len++;
262
                        if (chain_len > max_chain_len)
263
                                max_chain_len = chain_len;
264
                }
265
        }
266
 
267
        rcu_read_unlock();
268
 
269
        return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
270
                         "longest chain: %d\n",
271
                         atomic_read(&avc_cache.active_nodes),
272
                         slots_used, AVC_CACHE_SLOTS, max_chain_len);
273
}
274
 
275
static void avc_node_free(struct rcu_head *rhead)
276
{
277
        struct avc_node *node = container_of(rhead, struct avc_node, rhead);
278
        kmem_cache_free(avc_node_cachep, node);
279
        avc_cache_stats_incr(frees);
280
}
281
 
282
static void avc_node_delete(struct avc_node *node)
283
{
284
        list_del_rcu(&node->list);
285
        call_rcu(&node->rhead, avc_node_free);
286
        atomic_dec(&avc_cache.active_nodes);
287
}
288
 
289
static void avc_node_kill(struct avc_node *node)
290
{
291
        kmem_cache_free(avc_node_cachep, node);
292
        avc_cache_stats_incr(frees);
293
        atomic_dec(&avc_cache.active_nodes);
294
}
295
 
296
static void avc_node_replace(struct avc_node *new, struct avc_node *old)
297
{
298
        list_replace_rcu(&old->list, &new->list);
299
        call_rcu(&old->rhead, avc_node_free);
300
        atomic_dec(&avc_cache.active_nodes);
301
}
302
 
303
static inline int avc_reclaim_node(void)
304
{
305
        struct avc_node *node;
306
        int hvalue, try, ecx;
307
        unsigned long flags;
308
 
309
        for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++ ) {
310
                hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
311
 
312
                if (!spin_trylock_irqsave(&avc_cache.slots_lock[hvalue], flags))
313
                        continue;
314
 
315
                list_for_each_entry(node, &avc_cache.slots[hvalue], list) {
316
                        if (atomic_dec_and_test(&node->ae.used)) {
317
                                /* Recently Unused */
318
                                avc_node_delete(node);
319
                                avc_cache_stats_incr(reclaims);
320
                                ecx++;
321
                                if (ecx >= AVC_CACHE_RECLAIM) {
322
                                        spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
323
                                        goto out;
324
                                }
325
                        }
326
                }
327
                spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
328
        }
329
out:
330
        return ecx;
331
}
332
 
333
static struct avc_node *avc_alloc_node(void)
334
{
335
        struct avc_node *node;
336
 
337
        node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
338
        if (!node)
339
                goto out;
340
 
341
        INIT_RCU_HEAD(&node->rhead);
342
        INIT_LIST_HEAD(&node->list);
343
        atomic_set(&node->ae.used, 1);
344
        avc_cache_stats_incr(allocations);
345
 
346
        if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
347
                avc_reclaim_node();
348
 
349
out:
350
        return node;
351
}
352
 
353
static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
354
{
355
        node->ae.ssid = ssid;
356
        node->ae.tsid = tsid;
357
        node->ae.tclass = tclass;
358
        memcpy(&node->ae.avd, &ae->avd, sizeof(node->ae.avd));
359
}
360
 
361
static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
362
{
363
        struct avc_node *node, *ret = NULL;
364
        int hvalue;
365
 
366
        hvalue = avc_hash(ssid, tsid, tclass);
367
        list_for_each_entry_rcu(node, &avc_cache.slots[hvalue], list) {
368
                if (ssid == node->ae.ssid &&
369
                    tclass == node->ae.tclass &&
370
                    tsid == node->ae.tsid) {
371
                        ret = node;
372
                        break;
373
                }
374
        }
375
 
376
        if (ret == NULL) {
377
                /* cache miss */
378
                goto out;
379
        }
380
 
381
        /* cache hit */
382
        if (atomic_read(&ret->ae.used) != 1)
383
                atomic_set(&ret->ae.used, 1);
384
out:
385
        return ret;
386
}
387
 
388
/**
389
 * avc_lookup - Look up an AVC entry.
390
 * @ssid: source security identifier
391
 * @tsid: target security identifier
392
 * @tclass: target security class
393
 * @requested: requested permissions, interpreted based on @tclass
394
 *
395
 * Look up an AVC entry that is valid for the
396
 * @requested permissions between the SID pair
397
 * (@ssid, @tsid), interpreting the permissions
398
 * based on @tclass.  If a valid AVC entry exists,
399
 * then this function return the avc_node.
400
 * Otherwise, this function returns NULL.
401
 */
402
static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass, u32 requested)
403
{
404
        struct avc_node *node;
405
 
406
        avc_cache_stats_incr(lookups);
407
        node = avc_search_node(ssid, tsid, tclass);
408
 
409
        if (node && ((node->ae.avd.decided & requested) == requested)) {
410
                avc_cache_stats_incr(hits);
411
                goto out;
412
        }
413
 
414
        node = NULL;
415
        avc_cache_stats_incr(misses);
416
out:
417
        return node;
418
}
419
 
420
static int avc_latest_notif_update(int seqno, int is_insert)
421
{
422
        int ret = 0;
423
        static DEFINE_SPINLOCK(notif_lock);
424
        unsigned long flag;
425
 
426
        spin_lock_irqsave(&notif_lock, flag);
427
        if (is_insert) {
428
                if (seqno < avc_cache.latest_notif) {
429
                        printk(KERN_WARNING "avc:  seqno %d < latest_notif %d\n",
430
                               seqno, avc_cache.latest_notif);
431
                        ret = -EAGAIN;
432
                }
433
        } else {
434
                if (seqno > avc_cache.latest_notif)
435
                        avc_cache.latest_notif = seqno;
436
        }
437
        spin_unlock_irqrestore(&notif_lock, flag);
438
 
439
        return ret;
440
}
441
 
442
/**
443
 * avc_insert - Insert an AVC entry.
444
 * @ssid: source security identifier
445
 * @tsid: target security identifier
446
 * @tclass: target security class
447
 * @ae: AVC entry
448
 *
449
 * Insert an AVC entry for the SID pair
450
 * (@ssid, @tsid) and class @tclass.
451
 * The access vectors and the sequence number are
452
 * normally provided by the security server in
453
 * response to a security_compute_av() call.  If the
454
 * sequence number @ae->avd.seqno is not less than the latest
455
 * revocation notification, then the function copies
456
 * the access vectors into a cache entry, returns
457
 * avc_node inserted. Otherwise, this function returns NULL.
458
 */
459
static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
460
{
461
        struct avc_node *pos, *node = NULL;
462
        int hvalue;
463
        unsigned long flag;
464
 
465
        if (avc_latest_notif_update(ae->avd.seqno, 1))
466
                goto out;
467
 
468
        node = avc_alloc_node();
469
        if (node) {
470
                hvalue = avc_hash(ssid, tsid, tclass);
471
                avc_node_populate(node, ssid, tsid, tclass, ae);
472
 
473
                spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
474
                list_for_each_entry(pos, &avc_cache.slots[hvalue], list) {
475
                        if (pos->ae.ssid == ssid &&
476
                            pos->ae.tsid == tsid &&
477
                            pos->ae.tclass == tclass) {
478
                                avc_node_replace(node, pos);
479
                                goto found;
480
                        }
481
                }
482
                list_add_rcu(&node->list, &avc_cache.slots[hvalue]);
483
found:
484
                spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
485
        }
486
out:
487
        return node;
488
}
489
 
490
static inline void avc_print_ipv6_addr(struct audit_buffer *ab,
491
                                       struct in6_addr *addr, __be16 port,
492
                                       char *name1, char *name2)
493
{
494
        if (!ipv6_addr_any(addr))
495
                audit_log_format(ab, " %s=" NIP6_FMT, name1, NIP6(*addr));
496
        if (port)
497
                audit_log_format(ab, " %s=%d", name2, ntohs(port));
498
}
499
 
500
static inline void avc_print_ipv4_addr(struct audit_buffer *ab, __be32 addr,
501
                                       __be16 port, char *name1, char *name2)
502
{
503
        if (addr)
504
                audit_log_format(ab, " %s=" NIPQUAD_FMT, name1, NIPQUAD(addr));
505
        if (port)
506
                audit_log_format(ab, " %s=%d", name2, ntohs(port));
507
}
508
 
509
/**
510
 * avc_audit - Audit the granting or denial of permissions.
511
 * @ssid: source security identifier
512
 * @tsid: target security identifier
513
 * @tclass: target security class
514
 * @requested: requested permissions
515
 * @avd: access vector decisions
516
 * @result: result from avc_has_perm_noaudit
517
 * @a:  auxiliary audit data
518
 *
519
 * Audit the granting or denial of permissions in accordance
520
 * with the policy.  This function is typically called by
521
 * avc_has_perm() after a permission check, but can also be
522
 * called directly by callers who use avc_has_perm_noaudit()
523
 * in order to separate the permission check from the auditing.
524
 * For example, this separation is useful when the permission check must
525
 * be performed under a lock, to allow the lock to be released
526
 * before calling the auditing code.
527
 */
528
void avc_audit(u32 ssid, u32 tsid,
529
               u16 tclass, u32 requested,
530
               struct av_decision *avd, int result, struct avc_audit_data *a)
531
{
532
        struct task_struct *tsk = current;
533
        struct inode *inode = NULL;
534
        u32 denied, audited;
535
        struct audit_buffer *ab;
536
 
537
        denied = requested & ~avd->allowed;
538
        if (denied) {
539
                audited = denied;
540
                if (!(audited & avd->auditdeny))
541
                        return;
542
        } else if (result) {
543
                audited = denied = requested;
544
        } else {
545
                audited = requested;
546
                if (!(audited & avd->auditallow))
547
                        return;
548
        }
549
 
550
        ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_AVC);
551
        if (!ab)
552
                return;         /* audit_panic has been called */
553
        audit_log_format(ab, "avc:  %s ", denied ? "denied" : "granted");
554
        avc_dump_av(ab, tclass,audited);
555
        audit_log_format(ab, " for ");
556
        if (a && a->tsk)
557
                tsk = a->tsk;
558
        if (tsk && tsk->pid) {
559
                audit_log_format(ab, " pid=%d comm=", tsk->pid);
560
                audit_log_untrustedstring(ab, tsk->comm);
561
        }
562
        if (a) {
563
                switch (a->type) {
564
                case AVC_AUDIT_DATA_IPC:
565
                        audit_log_format(ab, " key=%d", a->u.ipc_id);
566
                        break;
567
                case AVC_AUDIT_DATA_CAP:
568
                        audit_log_format(ab, " capability=%d", a->u.cap);
569
                        break;
570
                case AVC_AUDIT_DATA_FS:
571
                        if (a->u.fs.dentry) {
572
                                struct dentry *dentry = a->u.fs.dentry;
573
                                if (a->u.fs.mnt) {
574
                                        audit_log_d_path(ab, "path=", dentry, a->u.fs.mnt);
575
                                } else {
576
                                        audit_log_format(ab, " name=");
577
                                        audit_log_untrustedstring(ab, dentry->d_name.name);
578
                                }
579
                                inode = dentry->d_inode;
580
                        } else if (a->u.fs.inode) {
581
                                struct dentry *dentry;
582
                                inode = a->u.fs.inode;
583
                                dentry = d_find_alias(inode);
584
                                if (dentry) {
585
                                        audit_log_format(ab, " name=");
586
                                        audit_log_untrustedstring(ab, dentry->d_name.name);
587
                                        dput(dentry);
588
                                }
589
                        }
590
                        if (inode)
591
                                audit_log_format(ab, " dev=%s ino=%lu",
592
                                                 inode->i_sb->s_id,
593
                                                 inode->i_ino);
594
                        break;
595
                case AVC_AUDIT_DATA_NET:
596
                        if (a->u.net.sk) {
597
                                struct sock *sk = a->u.net.sk;
598
                                struct unix_sock *u;
599
                                int len = 0;
600
                                char *p = NULL;
601
 
602
                                switch (sk->sk_family) {
603
                                case AF_INET: {
604
                                        struct inet_sock *inet = inet_sk(sk);
605
 
606
                                        avc_print_ipv4_addr(ab, inet->rcv_saddr,
607
                                                            inet->sport,
608
                                                            "laddr", "lport");
609
                                        avc_print_ipv4_addr(ab, inet->daddr,
610
                                                            inet->dport,
611
                                                            "faddr", "fport");
612
                                        break;
613
                                }
614
                                case AF_INET6: {
615
                                        struct inet_sock *inet = inet_sk(sk);
616
                                        struct ipv6_pinfo *inet6 = inet6_sk(sk);
617
 
618
                                        avc_print_ipv6_addr(ab, &inet6->rcv_saddr,
619
                                                            inet->sport,
620
                                                            "laddr", "lport");
621
                                        avc_print_ipv6_addr(ab, &inet6->daddr,
622
                                                            inet->dport,
623
                                                            "faddr", "fport");
624
                                        break;
625
                                }
626
                                case AF_UNIX:
627
                                        u = unix_sk(sk);
628
                                        if (u->dentry) {
629
                                                audit_log_d_path(ab, "path=",
630
                                                                 u->dentry, u->mnt);
631
                                                break;
632
                                        }
633
                                        if (!u->addr)
634
                                                break;
635
                                        len = u->addr->len-sizeof(short);
636
                                        p = &u->addr->name->sun_path[0];
637
                                        audit_log_format(ab, " path=");
638
                                        if (*p)
639
                                                audit_log_untrustedstring(ab, p);
640
                                        else
641
                                                audit_log_hex(ab, p, len);
642
                                        break;
643
                                }
644
                        }
645
 
646
                        switch (a->u.net.family) {
647
                        case AF_INET:
648
                                avc_print_ipv4_addr(ab, a->u.net.v4info.saddr,
649
                                                    a->u.net.sport,
650
                                                    "saddr", "src");
651
                                avc_print_ipv4_addr(ab, a->u.net.v4info.daddr,
652
                                                    a->u.net.dport,
653
                                                    "daddr", "dest");
654
                                break;
655
                        case AF_INET6:
656
                                avc_print_ipv6_addr(ab, &a->u.net.v6info.saddr,
657
                                                    a->u.net.sport,
658
                                                    "saddr", "src");
659
                                avc_print_ipv6_addr(ab, &a->u.net.v6info.daddr,
660
                                                    a->u.net.dport,
661
                                                    "daddr", "dest");
662
                                break;
663
                        }
664
                        if (a->u.net.netif)
665
                                audit_log_format(ab, " netif=%s",
666
                                        a->u.net.netif);
667
                        break;
668
                }
669
        }
670
        audit_log_format(ab, " ");
671
        avc_dump_query(ab, ssid, tsid, tclass);
672
        audit_log_end(ab);
673
}
674
 
675
/**
676
 * avc_add_callback - Register a callback for security events.
677
 * @callback: callback function
678
 * @events: security events
679
 * @ssid: source security identifier or %SECSID_WILD
680
 * @tsid: target security identifier or %SECSID_WILD
681
 * @tclass: target security class
682
 * @perms: permissions
683
 *
684
 * Register a callback function for events in the set @events
685
 * related to the SID pair (@ssid, @tsid) and
686
 * and the permissions @perms, interpreting
687
 * @perms based on @tclass.  Returns %0 on success or
688
 * -%ENOMEM if insufficient memory exists to add the callback.
689
 */
690
int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
691
                                     u16 tclass, u32 perms,
692
                                     u32 *out_retained),
693
                     u32 events, u32 ssid, u32 tsid,
694
                     u16 tclass, u32 perms)
695
{
696
        struct avc_callback_node *c;
697
        int rc = 0;
698
 
699
        c = kmalloc(sizeof(*c), GFP_ATOMIC);
700
        if (!c) {
701
                rc = -ENOMEM;
702
                goto out;
703
        }
704
 
705
        c->callback = callback;
706
        c->events = events;
707
        c->ssid = ssid;
708
        c->tsid = tsid;
709
        c->perms = perms;
710
        c->next = avc_callbacks;
711
        avc_callbacks = c;
712
out:
713
        return rc;
714
}
715
 
716
static inline int avc_sidcmp(u32 x, u32 y)
717
{
718
        return (x == y || x == SECSID_WILD || y == SECSID_WILD);
719
}
720
 
721
/**
722
 * avc_update_node Update an AVC entry
723
 * @event : Updating event
724
 * @perms : Permission mask bits
725
 * @ssid,@tsid,@tclass : identifier of an AVC entry
726
 *
727
 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
728
 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
729
 * otherwise, this function update the AVC entry. The original AVC-entry object
730
 * will release later by RCU.
731
 */
732
static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass)
733
{
734
        int hvalue, rc = 0;
735
        unsigned long flag;
736
        struct avc_node *pos, *node, *orig = NULL;
737
 
738
        node = avc_alloc_node();
739
        if (!node) {
740
                rc = -ENOMEM;
741
                goto out;
742
        }
743
 
744
        /* Lock the target slot */
745
        hvalue = avc_hash(ssid, tsid, tclass);
746
        spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
747
 
748
        list_for_each_entry(pos, &avc_cache.slots[hvalue], list){
749
                if ( ssid==pos->ae.ssid &&
750
                     tsid==pos->ae.tsid &&
751
                     tclass==pos->ae.tclass ){
752
                        orig = pos;
753
                        break;
754
                }
755
        }
756
 
757
        if (!orig) {
758
                rc = -ENOENT;
759
                avc_node_kill(node);
760
                goto out_unlock;
761
        }
762
 
763
        /*
764
         * Copy and replace original node.
765
         */
766
 
767
        avc_node_populate(node, ssid, tsid, tclass, &orig->ae);
768
 
769
        switch (event) {
770
        case AVC_CALLBACK_GRANT:
771
                node->ae.avd.allowed |= perms;
772
                break;
773
        case AVC_CALLBACK_TRY_REVOKE:
774
        case AVC_CALLBACK_REVOKE:
775
                node->ae.avd.allowed &= ~perms;
776
                break;
777
        case AVC_CALLBACK_AUDITALLOW_ENABLE:
778
                node->ae.avd.auditallow |= perms;
779
                break;
780
        case AVC_CALLBACK_AUDITALLOW_DISABLE:
781
                node->ae.avd.auditallow &= ~perms;
782
                break;
783
        case AVC_CALLBACK_AUDITDENY_ENABLE:
784
                node->ae.avd.auditdeny |= perms;
785
                break;
786
        case AVC_CALLBACK_AUDITDENY_DISABLE:
787
                node->ae.avd.auditdeny &= ~perms;
788
                break;
789
        }
790
        avc_node_replace(node, orig);
791
out_unlock:
792
        spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
793
out:
794
        return rc;
795
}
796
 
797
/**
798
 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
799
 * @seqno: policy sequence number
800
 */
801
int avc_ss_reset(u32 seqno)
802
{
803
        struct avc_callback_node *c;
804
        int i, rc = 0, tmprc;
805
        unsigned long flag;
806
        struct avc_node *node;
807
 
808
        for (i = 0; i < AVC_CACHE_SLOTS; i++) {
809
                spin_lock_irqsave(&avc_cache.slots_lock[i], flag);
810
                list_for_each_entry(node, &avc_cache.slots[i], list)
811
                        avc_node_delete(node);
812
                spin_unlock_irqrestore(&avc_cache.slots_lock[i], flag);
813
        }
814
 
815
        for (c = avc_callbacks; c; c = c->next) {
816
                if (c->events & AVC_CALLBACK_RESET) {
817
                        tmprc = c->callback(AVC_CALLBACK_RESET,
818
                                            0, 0, 0, 0, NULL);
819
                        /* save the first error encountered for the return
820
                           value and continue processing the callbacks */
821
                        if (!rc)
822
                                rc = tmprc;
823
                }
824
        }
825
 
826
        avc_latest_notif_update(seqno, 0);
827
        return rc;
828
}
829
 
830
/**
831
 * avc_has_perm_noaudit - Check permissions but perform no auditing.
832
 * @ssid: source security identifier
833
 * @tsid: target security identifier
834
 * @tclass: target security class
835
 * @requested: requested permissions, interpreted based on @tclass
836
 * @flags:  AVC_STRICT or 0
837
 * @avd: access vector decisions
838
 *
839
 * Check the AVC to determine whether the @requested permissions are granted
840
 * for the SID pair (@ssid, @tsid), interpreting the permissions
841
 * based on @tclass, and call the security server on a cache miss to obtain
842
 * a new decision and add it to the cache.  Return a copy of the decisions
843
 * in @avd.  Return %0 if all @requested permissions are granted,
844
 * -%EACCES if any permissions are denied, or another -errno upon
845
 * other errors.  This function is typically called by avc_has_perm(),
846
 * but may also be called directly to separate permission checking from
847
 * auditing, e.g. in cases where a lock must be held for the check but
848
 * should be released for the auditing.
849
 */
850
int avc_has_perm_noaudit(u32 ssid, u32 tsid,
851
                         u16 tclass, u32 requested,
852
                         unsigned flags,
853
                         struct av_decision *avd)
854
{
855
        struct avc_node *node;
856
        struct avc_entry entry, *p_ae;
857
        int rc = 0;
858
        u32 denied;
859
 
860
        rcu_read_lock();
861
 
862
        node = avc_lookup(ssid, tsid, tclass, requested);
863
        if (!node) {
864
                rcu_read_unlock();
865
                rc = security_compute_av(ssid,tsid,tclass,requested,&entry.avd);
866
                if (rc)
867
                        goto out;
868
                rcu_read_lock();
869
                node = avc_insert(ssid,tsid,tclass,&entry);
870
        }
871
 
872
        p_ae = node ? &node->ae : &entry;
873
 
874
        if (avd)
875
                memcpy(avd, &p_ae->avd, sizeof(*avd));
876
 
877
        denied = requested & ~(p_ae->avd.allowed);
878
 
879
        if (!requested || denied) {
880
                if (selinux_enforcing || (flags & AVC_STRICT))
881
                        rc = -EACCES;
882
                else
883
                        if (node)
884
                                avc_update_node(AVC_CALLBACK_GRANT,requested,
885
                                                ssid,tsid,tclass);
886
        }
887
 
888
        rcu_read_unlock();
889
out:
890
        return rc;
891
}
892
 
893
/**
894
 * avc_has_perm - Check permissions and perform any appropriate auditing.
895
 * @ssid: source security identifier
896
 * @tsid: target security identifier
897
 * @tclass: target security class
898
 * @requested: requested permissions, interpreted based on @tclass
899
 * @auditdata: auxiliary audit data
900
 *
901
 * Check the AVC to determine whether the @requested permissions are granted
902
 * for the SID pair (@ssid, @tsid), interpreting the permissions
903
 * based on @tclass, and call the security server on a cache miss to obtain
904
 * a new decision and add it to the cache.  Audit the granting or denial of
905
 * permissions in accordance with the policy.  Return %0 if all @requested
906
 * permissions are granted, -%EACCES if any permissions are denied, or
907
 * another -errno upon other errors.
908
 */
909
int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
910
                 u32 requested, struct avc_audit_data *auditdata)
911
{
912
        struct av_decision avd;
913
        int rc;
914
 
915
        rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
916
        avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
917
        return rc;
918
}
919
 
920
u32 avc_policy_seqno(void)
921
{
922
        return avc_cache.latest_notif;
923
}

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.