OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [sound/] [sparc/] [dbri.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * Driver for DBRI sound chip found on Sparcs.
3
 * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
4
 *
5
 * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
6
 *
7
 * Based entirely upon drivers/sbus/audio/dbri.c which is:
8
 * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
9
 * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
10
 *
11
 * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
12
 * on Sun SPARCStation 10, 20, LX and Voyager models.
13
 *
14
 * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
15
 *   data time multiplexer with ISDN support (aka T7259)
16
 *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
17
 *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
18
 *   Documentation:
19
 *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
20
 *     Sparc Technology Business (courtesy of Sun Support)
21
 *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
22
 *     available from the Lucent (formerly AT&T microelectronics) home
23
 *     page.
24
 *   - http://www.freesoft.org/Linux/DBRI/
25
 * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
26
 *   Interfaces: CHI, Audio In & Out, 2 bits parallel
27
 *   Documentation: from the Crystal Semiconductor home page.
28
 *
29
 * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
30
 * memory and a serial device (long pipes, no. 0-15) or between two serial
31
 * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
32
 * device (short pipes).
33
 * A timeslot defines the bit-offset and no. of bits read from a serial device.
34
 * The timeslots are linked to 6 circular lists, one for each direction for
35
 * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
36
 * (the second one is a monitor/tee pipe, valid only for serial input).
37
 *
38
 * The mmcodec is connected via the CHI bus and needs the data & some
39
 * parameters (volume, output selection) time multiplexed in 8 byte
40
 * chunks. It also has a control mode, which serves for audio format setting.
41
 *
42
 * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
43
 * the same CHI bus, so I thought perhaps it is possible to use the on-board
44
 * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
45
 * audio devices. But the SUN HW group decided against it, at least on my
46
 * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
47
 * connected.
48
 *
49
 * I've tried to stick to the following function naming conventions:
50
 * snd_*        ALSA stuff
51
 * cs4215_*     CS4215 codec specific stuff
52
 * dbri_*       DBRI high-level stuff
53
 * other        DBRI low-level stuff
54
 */
55
 
56
#include <sound/driver.h>
57
#include <linux/interrupt.h>
58
#include <linux/delay.h>
59
#include <linux/irq.h>
60
#include <linux/io.h>
61
 
62
#include <sound/core.h>
63
#include <sound/pcm.h>
64
#include <sound/pcm_params.h>
65
#include <sound/info.h>
66
#include <sound/control.h>
67
#include <sound/initval.h>
68
 
69
#include <linux/of.h>
70
#include <asm/sbus.h>
71
#include <asm/atomic.h>
72
 
73
MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
74
MODULE_DESCRIPTION("Sun DBRI");
75
MODULE_LICENSE("GPL");
76
MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
77
 
78
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;      /* Index 0-MAX */
79
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;       /* ID for this card */
80
/* Enable this card */
81
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
82
 
83
module_param_array(index, int, NULL, 0444);
84
MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
85
module_param_array(id, charp, NULL, 0444);
86
MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
87
module_param_array(enable, bool, NULL, 0444);
88
MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
89
 
90
#undef DBRI_DEBUG
91
 
92
#define D_INT   (1<<0)
93
#define D_GEN   (1<<1)
94
#define D_CMD   (1<<2)
95
#define D_MM    (1<<3)
96
#define D_USR   (1<<4)
97
#define D_DESC  (1<<5)
98
 
99
static int dbri_debug;
100
module_param(dbri_debug, int, 0644);
101
MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
102
 
103
#ifdef DBRI_DEBUG
104
static char *cmds[] = {
105
        "WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
106
        "SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
107
};
108
 
109
#define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
110
 
111
#else
112
#define dprintk(a, x...) do { } while (0)
113
 
114
#endif                          /* DBRI_DEBUG */
115
 
116
#define DBRI_CMD(cmd, intr, value) ((cmd << 28) |       \
117
                                    (intr << 27) |      \
118
                                    value)
119
 
120
/***************************************************************************
121
        CS4215 specific definitions and structures
122
****************************************************************************/
123
 
124
struct cs4215 {
125
        __u8 data[4];           /* Data mode: Time slots 5-8 */
126
        __u8 ctrl[4];           /* Ctrl mode: Time slots 1-4 */
127
        __u8 onboard;
128
        __u8 offset;            /* Bit offset from frame sync to time slot 1 */
129
        volatile __u32 status;
130
        volatile __u32 version;
131
        __u8 precision;         /* In bits, either 8 or 16 */
132
        __u8 channels;          /* 1 or 2 */
133
};
134
 
135
/*
136
 * Control mode first
137
 */
138
 
139
/* Time Slot 1, Status register */
140
#define CS4215_CLB      (1<<2)  /* Control Latch Bit */
141
#define CS4215_OLB      (1<<3)  /* 1: line: 2.0V, speaker 4V */
142
                                /* 0: line: 2.8V, speaker 8V */
143
#define CS4215_MLB      (1<<4)  /* 1: Microphone: 20dB gain disabled */
144
#define CS4215_RSRVD_1  (1<<5)
145
 
146
/* Time Slot 2, Data Format Register */
147
#define CS4215_DFR_LINEAR16     0
148
#define CS4215_DFR_ULAW         1
149
#define CS4215_DFR_ALAW         2
150
#define CS4215_DFR_LINEAR8      3
151
#define CS4215_DFR_STEREO       (1<<2)
152
static struct {
153
        unsigned short freq;
154
        unsigned char xtal;
155
        unsigned char csval;
156
} CS4215_FREQ[] = {
157
        {  8000, (1 << 4), (0 << 3) },
158
        { 16000, (1 << 4), (1 << 3) },
159
        { 27429, (1 << 4), (2 << 3) },  /* Actually 24428.57 */
160
        { 32000, (1 << 4), (3 << 3) },
161
     /* {    NA, (1 << 4), (4 << 3) }, */
162
     /* {    NA, (1 << 4), (5 << 3) }, */
163
        { 48000, (1 << 4), (6 << 3) },
164
        {  9600, (1 << 4), (7 << 3) },
165
        {  5512, (2 << 4), (0 << 3) },   /* Actually 5512.5 */
166
        { 11025, (2 << 4), (1 << 3) },
167
        { 18900, (2 << 4), (2 << 3) },
168
        { 22050, (2 << 4), (3 << 3) },
169
        { 37800, (2 << 4), (4 << 3) },
170
        { 44100, (2 << 4), (5 << 3) },
171
        { 33075, (2 << 4), (6 << 3) },
172
        {  6615, (2 << 4), (7 << 3) },
173
        { 0, 0, 0}
174
};
175
 
176
#define CS4215_HPF      (1<<7)  /* High Pass Filter, 1: Enabled */
177
 
178
#define CS4215_12_MASK  0xfcbf  /* Mask off reserved bits in slot 1 & 2 */
179
 
180
/* Time Slot 3, Serial Port Control register */
181
#define CS4215_XEN      (1<<0)  /* 0: Enable serial output */
182
#define CS4215_XCLK     (1<<1)  /* 1: Master mode: Generate SCLK */
183
#define CS4215_BSEL_64  (0<<2)  /* Bitrate: 64 bits per frame */
184
#define CS4215_BSEL_128 (1<<2)
185
#define CS4215_BSEL_256 (2<<2)
186
#define CS4215_MCK_MAST (0<<4)  /* Master clock */
187
#define CS4215_MCK_XTL1 (1<<4)  /* 24.576 MHz clock source */
188
#define CS4215_MCK_XTL2 (2<<4)  /* 16.9344 MHz clock source */
189
#define CS4215_MCK_CLK1 (3<<4)  /* Clockin, 256 x Fs */
190
#define CS4215_MCK_CLK2 (4<<4)  /* Clockin, see DFR */
191
 
192
/* Time Slot 4, Test Register */
193
#define CS4215_DAD      (1<<0)  /* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
194
#define CS4215_ENL      (1<<1)  /* Enable Loopback Testing */
195
 
196
/* Time Slot 5, Parallel Port Register */
197
/* Read only here and the same as the in data mode */
198
 
199
/* Time Slot 6, Reserved  */
200
 
201
/* Time Slot 7, Version Register  */
202
#define CS4215_VERSION_MASK 0xf /* Known versions 0/C, 1/D, 2/E */
203
 
204
/* Time Slot 8, Reserved  */
205
 
206
/*
207
 * Data mode
208
 */
209
/* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
210
 
211
/* Time Slot 5, Output Setting  */
212
#define CS4215_LO(v)    v       /* Left Output Attenuation 0x3f: -94.5 dB */
213
#define CS4215_LE       (1<<6)  /* Line Out Enable */
214
#define CS4215_HE       (1<<7)  /* Headphone Enable */
215
 
216
/* Time Slot 6, Output Setting  */
217
#define CS4215_RO(v)    v       /* Right Output Attenuation 0x3f: -94.5 dB */
218
#define CS4215_SE       (1<<6)  /* Speaker Enable */
219
#define CS4215_ADI      (1<<7)  /* A/D Data Invalid: Busy in calibration */
220
 
221
/* Time Slot 7, Input Setting */
222
#define CS4215_LG(v)    v       /* Left Gain Setting 0xf: 22.5 dB */
223
#define CS4215_IS       (1<<4)  /* Input Select: 1=Microphone, 0=Line */
224
#define CS4215_OVR      (1<<5)  /* 1: Over range condition occurred */
225
#define CS4215_PIO0     (1<<6)  /* Parallel I/O 0 */
226
#define CS4215_PIO1     (1<<7)
227
 
228
/* Time Slot 8, Input Setting */
229
#define CS4215_RG(v)    v       /* Right Gain Setting 0xf: 22.5 dB */
230
#define CS4215_MA(v)    (v<<4)  /* Monitor Path Attenuation 0xf: mute */
231
 
232
/***************************************************************************
233
                DBRI specific definitions and structures
234
****************************************************************************/
235
 
236
/* DBRI main registers */
237
#define REG0    0x00            /* Status and Control */
238
#define REG1    0x04            /* Mode and Interrupt */
239
#define REG2    0x08            /* Parallel IO */
240
#define REG3    0x0c            /* Test */
241
#define REG8    0x20            /* Command Queue Pointer */
242
#define REG9    0x24            /* Interrupt Queue Pointer */
243
 
244
#define DBRI_NO_CMDS    64
245
#define DBRI_INT_BLK    64
246
#define DBRI_NO_DESCS   64
247
#define DBRI_NO_PIPES   32
248
#define DBRI_MAX_PIPE   (DBRI_NO_PIPES - 1)
249
 
250
#define DBRI_REC        0
251
#define DBRI_PLAY       1
252
#define DBRI_NO_STREAMS 2
253
 
254
/* One transmit/receive descriptor */
255
/* When ba != 0 descriptor is used */
256
struct dbri_mem {
257
        volatile __u32 word1;
258
        __u32 ba;       /* Transmit/Receive Buffer Address */
259
        __u32 nda;      /* Next Descriptor Address */
260
        volatile __u32 word4;
261
};
262
 
263
/* This structure is in a DMA region where it can accessed by both
264
 * the CPU and the DBRI
265
 */
266
struct dbri_dma {
267
        s32 cmd[DBRI_NO_CMDS];                  /* Place for commands */
268
        volatile s32 intr[DBRI_INT_BLK];        /* Interrupt field  */
269
        struct dbri_mem desc[DBRI_NO_DESCS];    /* Xmit/receive descriptors */
270
};
271
 
272
#define dbri_dma_off(member, elem)      \
273
        ((u32)(unsigned long)           \
274
         (&(((struct dbri_dma *)0)->member[elem])))
275
 
276
enum in_or_out { PIPEinput, PIPEoutput };
277
 
278
struct dbri_pipe {
279
        u32 sdp;                /* SDP command word */
280
        int nextpipe;           /* Next pipe in linked list */
281
        int length;             /* Length of timeslot (bits) */
282
        int first_desc;         /* Index of first descriptor */
283
        int desc;               /* Index of active descriptor */
284
        volatile __u32 *recv_fixed_ptr; /* Ptr to receive fixed data */
285
};
286
 
287
/* Per stream (playback or record) information */
288
struct dbri_streaminfo {
289
        struct snd_pcm_substream *substream;
290
        u32 dvma_buffer;        /* Device view of ALSA DMA buffer */
291
        int size;               /* Size of DMA buffer             */
292
        size_t offset;          /* offset in user buffer          */
293
        int pipe;               /* Data pipe used                 */
294
        int left_gain;          /* mixer elements                 */
295
        int right_gain;
296
};
297
 
298
/* This structure holds the information for both chips (DBRI & CS4215) */
299
struct snd_dbri {
300
        int regs_size, irq;     /* Needed for unload */
301
        struct sbus_dev *sdev;  /* SBUS device info */
302
        spinlock_t lock;
303
 
304
        struct dbri_dma *dma;   /* Pointer to our DMA block */
305
        u32 dma_dvma;           /* DBRI visible DMA address */
306
 
307
        void __iomem *regs;     /* dbri HW regs */
308
        int dbri_irqp;          /* intr queue pointer */
309
 
310
        struct dbri_pipe pipes[DBRI_NO_PIPES];  /* DBRI's 32 data pipes */
311
        int next_desc[DBRI_NO_DESCS];           /* Index of next desc, or -1 */
312
        spinlock_t cmdlock;     /* Protects cmd queue accesses */
313
        s32 *cmdptr;            /* Pointer to the last queued cmd */
314
 
315
        int chi_bpf;
316
 
317
        struct cs4215 mm;       /* mmcodec special info */
318
                                /* per stream (playback/record) info */
319
        struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
320
};
321
 
322
#define DBRI_MAX_VOLUME         63      /* Output volume */
323
#define DBRI_MAX_GAIN           15      /* Input gain */
324
 
325
/* DBRI Reg0 - Status Control Register - defines. (Page 17) */
326
#define D_P             (1<<15) /* Program command & queue pointer valid */
327
#define D_G             (1<<14) /* Allow 4-Word SBus Burst */
328
#define D_S             (1<<13) /* Allow 16-Word SBus Burst */
329
#define D_E             (1<<12) /* Allow 8-Word SBus Burst */
330
#define D_X             (1<<7)  /* Sanity Timer Disable */
331
#define D_T             (1<<6)  /* Permit activation of the TE interface */
332
#define D_N             (1<<5)  /* Permit activation of the NT interface */
333
#define D_C             (1<<4)  /* Permit activation of the CHI interface */
334
#define D_F             (1<<3)  /* Force Sanity Timer Time-Out */
335
#define D_D             (1<<2)  /* Disable Master Mode */
336
#define D_H             (1<<1)  /* Halt for Analysis */
337
#define D_R             (1<<0)  /* Soft Reset */
338
 
339
/* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
340
#define D_LITTLE_END    (1<<8)  /* Byte Order */
341
#define D_BIG_END       (0<<8)  /* Byte Order */
342
#define D_MRR           (1<<4)  /* Multiple Error Ack on SBus (read only) */
343
#define D_MLE           (1<<3)  /* Multiple Late Error on SBus (read only) */
344
#define D_LBG           (1<<2)  /* Lost Bus Grant on SBus (read only) */
345
#define D_MBE           (1<<1)  /* Burst Error on SBus (read only) */
346
#define D_IR            (1<<0)  /* Interrupt Indicator (read only) */
347
 
348
/* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
349
#define D_ENPIO3        (1<<7)  /* Enable Pin 3 */
350
#define D_ENPIO2        (1<<6)  /* Enable Pin 2 */
351
#define D_ENPIO1        (1<<5)  /* Enable Pin 1 */
352
#define D_ENPIO0        (1<<4)  /* Enable Pin 0 */
353
#define D_ENPIO         (0xf0)  /* Enable all the pins */
354
#define D_PIO3          (1<<3)  /* Pin 3: 1: Data mode, 0: Ctrl mode */
355
#define D_PIO2          (1<<2)  /* Pin 2: 1: Onboard PDN */
356
#define D_PIO1          (1<<1)  /* Pin 1: 0: Reset */
357
#define D_PIO0          (1<<0)  /* Pin 0: 1: Speakerbox PDN */
358
 
359
/* DBRI Commands (Page 20) */
360
#define D_WAIT          0x0     /* Stop execution */
361
#define D_PAUSE         0x1     /* Flush long pipes */
362
#define D_JUMP          0x2     /* New command queue */
363
#define D_IIQ           0x3     /* Initialize Interrupt Queue */
364
#define D_REX           0x4     /* Report command execution via interrupt */
365
#define D_SDP           0x5     /* Setup Data Pipe */
366
#define D_CDP           0x6     /* Continue Data Pipe (reread NULL Pointer) */
367
#define D_DTS           0x7     /* Define Time Slot */
368
#define D_SSP           0x8     /* Set short Data Pipe */
369
#define D_CHI           0x9     /* Set CHI Global Mode */
370
#define D_NT            0xa     /* NT Command */
371
#define D_TE            0xb     /* TE Command */
372
#define D_CDEC          0xc     /* Codec setup */
373
#define D_TEST          0xd     /* No comment */
374
#define D_CDM           0xe     /* CHI Data mode command */
375
 
376
/* Special bits for some commands */
377
#define D_PIPE(v)      ((v)<<0) /* Pipe No.: 0-15 long, 16-21 short */
378
 
379
/* Setup Data Pipe */
380
/* IRM */
381
#define D_SDP_2SAME     (1<<18) /* Report 2nd time in a row value received */
382
#define D_SDP_CHANGE    (2<<18) /* Report any changes */
383
#define D_SDP_EVERY     (3<<18) /* Report any changes */
384
#define D_SDP_EOL       (1<<17) /* EOL interrupt enable */
385
#define D_SDP_IDLE      (1<<16) /* HDLC idle interrupt enable */
386
 
387
/* Pipe data MODE */
388
#define D_SDP_MEM       (0<<13) /* To/from memory */
389
#define D_SDP_HDLC      (2<<13)
390
#define D_SDP_HDLC_D    (3<<13) /* D Channel (prio control) */
391
#define D_SDP_SER       (4<<13) /* Serial to serial */
392
#define D_SDP_FIXED     (6<<13) /* Short only */
393
#define D_SDP_MODE(v)   ((v)&(7<<13))
394
 
395
#define D_SDP_TO_SER    (1<<12) /* Direction */
396
#define D_SDP_FROM_SER  (0<<12) /* Direction */
397
#define D_SDP_MSB       (1<<11) /* Bit order within Byte */
398
#define D_SDP_LSB       (0<<11) /* Bit order within Byte */
399
#define D_SDP_P         (1<<10) /* Pointer Valid */
400
#define D_SDP_A         (1<<8)  /* Abort */
401
#define D_SDP_C         (1<<7)  /* Clear */
402
 
403
/* Define Time Slot */
404
#define D_DTS_VI        (1<<17) /* Valid Input Time-Slot Descriptor */
405
#define D_DTS_VO        (1<<16) /* Valid Output Time-Slot Descriptor */
406
#define D_DTS_INS       (1<<15) /* Insert Time Slot */
407
#define D_DTS_DEL       (0<<15) /* Delete Time Slot */
408
#define D_DTS_PRVIN(v) ((v)<<10)        /* Previous In Pipe */
409
#define D_DTS_PRVOUT(v)        ((v)<<5) /* Previous Out Pipe */
410
 
411
/* Time Slot defines */
412
#define D_TS_LEN(v)     ((v)<<24)       /* Number of bits in this time slot */
413
#define D_TS_CYCLE(v)   ((v)<<14)       /* Bit Count at start of TS */
414
#define D_TS_DI         (1<<13) /* Data Invert */
415
#define D_TS_1CHANNEL   (0<<10) /* Single Channel / Normal mode */
416
#define D_TS_MONITOR    (2<<10) /* Monitor pipe */
417
#define D_TS_NONCONTIG  (3<<10) /* Non contiguous mode */
418
#define D_TS_ANCHOR     (7<<10) /* Starting short pipes */
419
#define D_TS_MON(v)    ((v)<<5) /* Monitor Pipe */
420
#define D_TS_NEXT(v)   ((v)<<0) /* Pipe no.: 0-15 long, 16-21 short */
421
 
422
/* Concentration Highway Interface Modes */
423
#define D_CHI_CHICM(v)  ((v)<<16)       /* Clock mode */
424
#define D_CHI_IR        (1<<15) /* Immediate Interrupt Report */
425
#define D_CHI_EN        (1<<14) /* CHIL Interrupt enabled */
426
#define D_CHI_OD        (1<<13) /* Open Drain Enable */
427
#define D_CHI_FE        (1<<12) /* Sample CHIFS on Rising Frame Edge */
428
#define D_CHI_FD        (1<<11) /* Frame Drive */
429
#define D_CHI_BPF(v)    ((v)<<0)        /* Bits per Frame */
430
 
431
/* NT: These are here for completeness */
432
#define D_NT_FBIT       (1<<17) /* Frame Bit */
433
#define D_NT_NBF        (1<<16) /* Number of bad frames to loose framing */
434
#define D_NT_IRM_IMM    (1<<15) /* Interrupt Report & Mask: Immediate */
435
#define D_NT_IRM_EN     (1<<14) /* Interrupt Report & Mask: Enable */
436
#define D_NT_ISNT       (1<<13) /* Configure interface as NT */
437
#define D_NT_FT         (1<<12) /* Fixed Timing */
438
#define D_NT_EZ         (1<<11) /* Echo Channel is Zeros */
439
#define D_NT_IFA        (1<<10) /* Inhibit Final Activation */
440
#define D_NT_ACT        (1<<9)  /* Activate Interface */
441
#define D_NT_MFE        (1<<8)  /* Multiframe Enable */
442
#define D_NT_RLB(v)     ((v)<<5)        /* Remote Loopback */
443
#define D_NT_LLB(v)     ((v)<<2)        /* Local Loopback */
444
#define D_NT_FACT       (1<<1)  /* Force Activation */
445
#define D_NT_ABV        (1<<0)  /* Activate Bipolar Violation */
446
 
447
/* Codec Setup */
448
#define D_CDEC_CK(v)    ((v)<<24)       /* Clock Select */
449
#define D_CDEC_FED(v)   ((v)<<12)       /* FSCOD Falling Edge Delay */
450
#define D_CDEC_RED(v)   ((v)<<0)        /* FSCOD Rising Edge Delay */
451
 
452
/* Test */
453
#define D_TEST_RAM(v)   ((v)<<16)       /* RAM Pointer */
454
#define D_TEST_SIZE(v)  ((v)<<11)       /* */
455
#define D_TEST_ROMONOFF 0x5     /* Toggle ROM opcode monitor on/off */
456
#define D_TEST_PROC     0x6     /* Microprocessor test */
457
#define D_TEST_SER      0x7     /* Serial-Controller test */
458
#define D_TEST_RAMREAD  0x8     /* Copy from Ram to system memory */
459
#define D_TEST_RAMWRITE 0x9     /* Copy into Ram from system memory */
460
#define D_TEST_RAMBIST  0xa     /* RAM Built-In Self Test */
461
#define D_TEST_MCBIST   0xb     /* Microcontroller Built-In Self Test */
462
#define D_TEST_DUMP     0xe     /* ROM Dump */
463
 
464
/* CHI Data Mode */
465
#define D_CDM_THI       (1 << 8)        /* Transmit Data on CHIDR Pin */
466
#define D_CDM_RHI       (1 << 7)        /* Receive Data on CHIDX Pin */
467
#define D_CDM_RCE       (1 << 6)        /* Receive on Rising Edge of CHICK */
468
#define D_CDM_XCE       (1 << 2) /* Transmit Data on Rising Edge of CHICK */
469
#define D_CDM_XEN       (1 << 1)        /* Transmit Highway Enable */
470
#define D_CDM_REN       (1 << 0)        /* Receive Highway Enable */
471
 
472
/* The Interrupts */
473
#define D_INTR_BRDY     1       /* Buffer Ready for processing */
474
#define D_INTR_MINT     2       /* Marked Interrupt in RD/TD */
475
#define D_INTR_IBEG     3       /* Flag to idle transition detected (HDLC) */
476
#define D_INTR_IEND     4       /* Idle to flag transition detected (HDLC) */
477
#define D_INTR_EOL      5       /* End of List */
478
#define D_INTR_CMDI     6       /* Command has bean read */
479
#define D_INTR_XCMP     8       /* Transmission of frame complete */
480
#define D_INTR_SBRI     9       /* BRI status change info */
481
#define D_INTR_FXDT     10      /* Fixed data change */
482
#define D_INTR_CHIL     11      /* CHI lost frame sync (channel 36 only) */
483
#define D_INTR_COLL     11      /* Unrecoverable D-Channel collision */
484
#define D_INTR_DBYT     12      /* Dropped by frame slip */
485
#define D_INTR_RBYT     13      /* Repeated by frame slip */
486
#define D_INTR_LINT     14      /* Lost Interrupt */
487
#define D_INTR_UNDR     15      /* DMA underrun */
488
 
489
#define D_INTR_TE       32
490
#define D_INTR_NT       34
491
#define D_INTR_CHI      36
492
#define D_INTR_CMD      38
493
 
494
#define D_INTR_GETCHAN(v)       (((v) >> 24) & 0x3f)
495
#define D_INTR_GETCODE(v)       (((v) >> 20) & 0xf)
496
#define D_INTR_GETCMD(v)        (((v) >> 16) & 0xf)
497
#define D_INTR_GETVAL(v)        ((v) & 0xffff)
498
#define D_INTR_GETRVAL(v)       ((v) & 0xfffff)
499
 
500
#define D_P_0           0        /* TE receive anchor */
501
#define D_P_1           1       /* TE transmit anchor */
502
#define D_P_2           2       /* NT transmit anchor */
503
#define D_P_3           3       /* NT receive anchor */
504
#define D_P_4           4       /* CHI send data */
505
#define D_P_5           5       /* CHI receive data */
506
#define D_P_6           6       /* */
507
#define D_P_7           7       /* */
508
#define D_P_8           8       /* */
509
#define D_P_9           9       /* */
510
#define D_P_10          10      /* */
511
#define D_P_11          11      /* */
512
#define D_P_12          12      /* */
513
#define D_P_13          13      /* */
514
#define D_P_14          14      /* */
515
#define D_P_15          15      /* */
516
#define D_P_16          16      /* CHI anchor pipe */
517
#define D_P_17          17      /* CHI send */
518
#define D_P_18          18      /* CHI receive */
519
#define D_P_19          19      /* CHI receive */
520
#define D_P_20          20      /* CHI receive */
521
#define D_P_21          21      /* */
522
#define D_P_22          22      /* */
523
#define D_P_23          23      /* */
524
#define D_P_24          24      /* */
525
#define D_P_25          25      /* */
526
#define D_P_26          26      /* */
527
#define D_P_27          27      /* */
528
#define D_P_28          28      /* */
529
#define D_P_29          29      /* */
530
#define D_P_30          30      /* */
531
#define D_P_31          31      /* */
532
 
533
/* Transmit descriptor defines */
534
#define DBRI_TD_F       (1 << 31)       /* End of Frame */
535
#define DBRI_TD_D       (1 << 30)       /* Do not append CRC */
536
#define DBRI_TD_CNT(v)  ((v) << 16) /* Number of valid bytes in the buffer */
537
#define DBRI_TD_B       (1 << 15)       /* Final interrupt */
538
#define DBRI_TD_M       (1 << 14)       /* Marker interrupt */
539
#define DBRI_TD_I       (1 << 13)       /* Transmit Idle Characters */
540
#define DBRI_TD_FCNT(v) (v)             /* Flag Count */
541
#define DBRI_TD_UNR     (1 << 3) /* Underrun: transmitter is out of data */
542
#define DBRI_TD_ABT     (1 << 2)        /* Abort: frame aborted */
543
#define DBRI_TD_TBC     (1 << 0)        /* Transmit buffer Complete */
544
#define DBRI_TD_STATUS(v)       ((v) & 0xff)    /* Transmit status */
545
                        /* Maximum buffer size per TD: almost 8KB */
546
#define DBRI_TD_MAXCNT  ((1 << 13) - 4)
547
 
548
/* Receive descriptor defines */
549
#define DBRI_RD_F       (1 << 31)       /* End of Frame */
550
#define DBRI_RD_C       (1 << 30)       /* Completed buffer */
551
#define DBRI_RD_B       (1 << 15)       /* Final interrupt */
552
#define DBRI_RD_M       (1 << 14)       /* Marker interrupt */
553
#define DBRI_RD_BCNT(v) (v)             /* Buffer size */
554
#define DBRI_RD_CRC     (1 << 7)        /* 0: CRC is correct */
555
#define DBRI_RD_BBC     (1 << 6)        /* 1: Bad Byte received */
556
#define DBRI_RD_ABT     (1 << 5)        /* Abort: frame aborted */
557
#define DBRI_RD_OVRN    (1 << 3)        /* Overrun: data lost */
558
#define DBRI_RD_STATUS(v)      ((v) & 0xff)     /* Receive status */
559
#define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff)   /* Valid bytes in the buffer */
560
 
561
/* stream_info[] access */
562
/* Translate the ALSA direction into the array index */
563
#define DBRI_STREAMNO(substream)                                \
564
                (substream->stream ==                           \
565
                 SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
566
 
567
/* Return a pointer to dbri_streaminfo */
568
#define DBRI_STREAM(dbri, substream)    \
569
                &dbri->stream_info[DBRI_STREAMNO(substream)]
570
 
571
/*
572
 * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
573
 * So we have to reverse the bits. Note: not all bit lengths are supported
574
 */
575
static __u32 reverse_bytes(__u32 b, int len)
576
{
577
        switch (len) {
578
        case 32:
579
                b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
580
        case 16:
581
                b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
582
        case 8:
583
                b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
584
        case 4:
585
                b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
586
        case 2:
587
                b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
588
        case 1:
589
        case 0:
590
                break;
591
        default:
592
                printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
593
        };
594
 
595
        return b;
596
}
597
 
598
/*
599
****************************************************************************
600
************** DBRI initialization and command synchronization *************
601
****************************************************************************
602
 
603
Commands are sent to the DBRI by building a list of them in memory,
604
then writing the address of the first list item to DBRI register 8.
605
The list is terminated with a WAIT command, which generates a
606
CPU interrupt to signal completion.
607
 
608
Since the DBRI can run in parallel with the CPU, several means of
609
synchronization present themselves. The method implemented here uses
610
the dbri_cmdwait() to wait for execution of batch of sent commands.
611
 
612
A circular command buffer is used here. A new command is being added
613
while another can be executed. The scheme works by adding two WAIT commands
614
after each sent batch of commands. When the next batch is prepared it is
615
added after the WAIT commands then the WAITs are replaced with single JUMP
616
command to the new batch. The the DBRI is forced to reread the last WAIT
617
command (replaced by the JUMP by then). If the DBRI is still executing
618
previous commands the request to reread the WAIT command is ignored.
619
 
620
Every time a routine wants to write commands to the DBRI, it must
621
first call dbri_cmdlock() and get pointer to a free space in
622
dbri->dma->cmd buffer. After this, the commands can be written to
623
the buffer, and dbri_cmdsend() is called with the final pointer value
624
to send them to the DBRI.
625
 
626
*/
627
 
628
#define MAXLOOPS 20
629
/*
630
 * Wait for the current command string to execute
631
 */
632
static void dbri_cmdwait(struct snd_dbri *dbri)
633
{
634
        int maxloops = MAXLOOPS;
635
        unsigned long flags;
636
 
637
        /* Delay if previous commands are still being processed */
638
        spin_lock_irqsave(&dbri->lock, flags);
639
        while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
640
                spin_unlock_irqrestore(&dbri->lock, flags);
641
                msleep_interruptible(1);
642
                spin_lock_irqsave(&dbri->lock, flags);
643
        }
644
        spin_unlock_irqrestore(&dbri->lock, flags);
645
 
646
        if (maxloops == 0)
647
                printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
648
        else
649
                dprintk(D_CMD, "Chip completed command buffer (%d)\n",
650
                        MAXLOOPS - maxloops - 1);
651
}
652
/*
653
 * Lock the command queue and return pointer to space for len cmd words
654
 * It locks the cmdlock spinlock.
655
 */
656
static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
657
{
658
        /* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
659
        len += 2;
660
        spin_lock(&dbri->cmdlock);
661
        if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
662
                return dbri->cmdptr + 2;
663
        else if (len < sbus_readl(dbri->regs + REG8) - dbri->dma_dvma)
664
                return dbri->dma->cmd;
665
        else
666
                printk(KERN_ERR "DBRI: no space for commands.");
667
 
668
        return NULL;
669
}
670
 
671
/*
672
 * Send prepared cmd string. It works by writing a JUMP cmd into
673
 * the last WAIT cmd and force DBRI to reread the cmd.
674
 * The JUMP cmd points to the new cmd string.
675
 * It also releases the cmdlock spinlock.
676
 *
677
 * Lock must be held before calling this.
678
 */
679
static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
680
{
681
        s32 tmp, addr;
682
        static int wait_id = 0;
683
 
684
        wait_id++;
685
        wait_id &= 0xffff;      /* restrict it to a 16 bit counter. */
686
        *(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
687
        *(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
688
 
689
        /* Replace the last command with JUMP */
690
        addr = dbri->dma_dvma + (cmd - len - dbri->dma->cmd) * sizeof(s32);
691
        *(dbri->cmdptr+1) = addr;
692
        *(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
693
 
694
#ifdef DBRI_DEBUG
695
        if (cmd > dbri->cmdptr) {
696
                s32 *ptr;
697
 
698
                for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
699
                        dprintk(D_CMD, "cmd: %lx:%08x\n",
700
                                (unsigned long)ptr, *ptr);
701
        } else {
702
                s32 *ptr = dbri->cmdptr;
703
 
704
                dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
705
                ptr++;
706
                dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
707
                for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
708
                        dprintk(D_CMD, "cmd: %lx:%08x\n",
709
                                (unsigned long)ptr, *ptr);
710
        }
711
#endif
712
 
713
        /* Reread the last command */
714
        tmp = sbus_readl(dbri->regs + REG0);
715
        tmp |= D_P;
716
        sbus_writel(tmp, dbri->regs + REG0);
717
 
718
        dbri->cmdptr = cmd;
719
        spin_unlock(&dbri->cmdlock);
720
}
721
 
722
/* Lock must be held when calling this */
723
static void dbri_reset(struct snd_dbri *dbri)
724
{
725
        int i;
726
        u32 tmp;
727
 
728
        dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
729
                sbus_readl(dbri->regs + REG0),
730
                sbus_readl(dbri->regs + REG2),
731
                sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
732
 
733
        sbus_writel(D_R, dbri->regs + REG0);    /* Soft Reset */
734
        for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
735
                udelay(10);
736
 
737
        /* A brute approach - DBRI falls back to working burst size by itself
738
         * On SS20 D_S does not work, so do not try so high. */
739
        tmp = sbus_readl(dbri->regs + REG0);
740
        tmp |= D_G | D_E;
741
        tmp &= ~D_S;
742
        sbus_writel(tmp, dbri->regs + REG0);
743
}
744
 
745
/* Lock must not be held before calling this */
746
static void __devinit dbri_initialize(struct snd_dbri *dbri)
747
{
748
        s32 *cmd;
749
        u32 dma_addr;
750
        unsigned long flags;
751
        int n;
752
 
753
        spin_lock_irqsave(&dbri->lock, flags);
754
 
755
        dbri_reset(dbri);
756
 
757
        /* Initialize pipes */
758
        for (n = 0; n < DBRI_NO_PIPES; n++)
759
                dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
760
 
761
        spin_lock_init(&dbri->cmdlock);
762
        /*
763
         * Initialize the interrupt ring buffer.
764
         */
765
        dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
766
        dbri->dma->intr[0] = dma_addr;
767
        dbri->dbri_irqp = 1;
768
        /*
769
         * Set up the interrupt queue
770
         */
771
        spin_lock(&dbri->cmdlock);
772
        cmd = dbri->cmdptr = dbri->dma->cmd;
773
        *(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
774
        *(cmd++) = dma_addr;
775
        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
776
        dbri->cmdptr = cmd;
777
        *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
778
        *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
779
        dma_addr = dbri->dma_dvma + dbri_dma_off(cmd, 0);
780
        sbus_writel(dma_addr, dbri->regs + REG8);
781
        spin_unlock(&dbri->cmdlock);
782
 
783
        spin_unlock_irqrestore(&dbri->lock, flags);
784
        dbri_cmdwait(dbri);
785
}
786
 
787
/*
788
****************************************************************************
789
************************** DBRI data pipe management ***********************
790
****************************************************************************
791
 
792
While DBRI control functions use the command and interrupt buffers, the
793
main data path takes the form of data pipes, which can be short (command
794
and interrupt driven), or long (attached to DMA buffers).  These functions
795
provide a rudimentary means of setting up and managing the DBRI's pipes,
796
but the calling functions have to make sure they respect the pipes' linked
797
list ordering, among other things.  The transmit and receive functions
798
here interface closely with the transmit and receive interrupt code.
799
 
800
*/
801
static inline int pipe_active(struct snd_dbri *dbri, int pipe)
802
{
803
        return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
804
}
805
 
806
/* reset_pipe(dbri, pipe)
807
 *
808
 * Called on an in-use pipe to clear anything being transmitted or received
809
 * Lock must be held before calling this.
810
 */
811
static void reset_pipe(struct snd_dbri *dbri, int pipe)
812
{
813
        int sdp;
814
        int desc;
815
        s32 *cmd;
816
 
817
        if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
818
                printk(KERN_ERR "DBRI: reset_pipe called with "
819
                        "illegal pipe number\n");
820
                return;
821
        }
822
 
823
        sdp = dbri->pipes[pipe].sdp;
824
        if (sdp == 0) {
825
                printk(KERN_ERR "DBRI: reset_pipe called "
826
                        "on uninitialized pipe\n");
827
                return;
828
        }
829
 
830
        cmd = dbri_cmdlock(dbri, 3);
831
        *(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
832
        *(cmd++) = 0;
833
        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
834
        dbri_cmdsend(dbri, cmd, 3);
835
 
836
        desc = dbri->pipes[pipe].first_desc;
837
        if (desc >= 0)
838
                do {
839
                        dbri->dma->desc[desc].ba = 0;
840
                        dbri->dma->desc[desc].nda = 0;
841
                        desc = dbri->next_desc[desc];
842
                } while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
843
 
844
        dbri->pipes[pipe].desc = -1;
845
        dbri->pipes[pipe].first_desc = -1;
846
}
847
 
848
/*
849
 * Lock must be held before calling this.
850
 */
851
static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
852
{
853
        if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
854
                printk(KERN_ERR "DBRI: setup_pipe called "
855
                        "with illegal pipe number\n");
856
                return;
857
        }
858
 
859
        if ((sdp & 0xf800) != sdp) {
860
                printk(KERN_ERR "DBRI: setup_pipe called "
861
                        "with strange SDP value\n");
862
                /* sdp &= 0xf800; */
863
        }
864
 
865
        /* If this is a fixed receive pipe, arrange for an interrupt
866
         * every time its data changes
867
         */
868
        if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
869
                sdp |= D_SDP_CHANGE;
870
 
871
        sdp |= D_PIPE(pipe);
872
        dbri->pipes[pipe].sdp = sdp;
873
        dbri->pipes[pipe].desc = -1;
874
        dbri->pipes[pipe].first_desc = -1;
875
 
876
        reset_pipe(dbri, pipe);
877
}
878
 
879
/*
880
 * Lock must be held before calling this.
881
 */
882
static void link_time_slot(struct snd_dbri *dbri, int pipe,
883
                           int prevpipe, int nextpipe,
884
                           int length, int cycle)
885
{
886
        s32 *cmd;
887
        int val;
888
 
889
        if (pipe < 0 || pipe > DBRI_MAX_PIPE
890
                        || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
891
                        || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
892
                printk(KERN_ERR
893
                    "DBRI: link_time_slot called with illegal pipe number\n");
894
                return;
895
        }
896
 
897
        if (dbri->pipes[pipe].sdp == 0
898
                        || dbri->pipes[prevpipe].sdp == 0
899
                        || dbri->pipes[nextpipe].sdp == 0) {
900
                printk(KERN_ERR "DBRI: link_time_slot called "
901
                        "on uninitialized pipe\n");
902
                return;
903
        }
904
 
905
        dbri->pipes[prevpipe].nextpipe = pipe;
906
        dbri->pipes[pipe].nextpipe = nextpipe;
907
        dbri->pipes[pipe].length = length;
908
 
909
        cmd = dbri_cmdlock(dbri, 4);
910
 
911
        if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
912
                /* Deal with CHI special case:
913
                 * "If transmission on edges 0 or 1 is desired, then cycle n
914
                 *  (where n = # of bit times per frame...) must be used."
915
                 *                  - DBRI data sheet, page 11
916
                 */
917
                if (prevpipe == 16 && cycle == 0)
918
                        cycle = dbri->chi_bpf;
919
 
920
                val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
921
                *(cmd++) = DBRI_CMD(D_DTS, 0, val);
922
                *(cmd++) = 0;
923
                *(cmd++) =
924
                    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
925
        } else {
926
                val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
927
                *(cmd++) = DBRI_CMD(D_DTS, 0, val);
928
                *(cmd++) =
929
                    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
930
                *(cmd++) = 0;
931
        }
932
        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
933
 
934
        dbri_cmdsend(dbri, cmd, 4);
935
}
936
 
937
#if 0
938
/*
939
 * Lock must be held before calling this.
940
 */
941
static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
942
                             enum in_or_out direction, int prevpipe,
943
                             int nextpipe)
944
{
945
        s32 *cmd;
946
        int val;
947
 
948
        if (pipe < 0 || pipe > DBRI_MAX_PIPE
949
                        || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
950
                        || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
951
                printk(KERN_ERR
952
                    "DBRI: unlink_time_slot called with illegal pipe number\n");
953
                return;
954
        }
955
 
956
        cmd = dbri_cmdlock(dbri, 4);
957
 
958
        if (direction == PIPEinput) {
959
                val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
960
                *(cmd++) = DBRI_CMD(D_DTS, 0, val);
961
                *(cmd++) = D_TS_NEXT(nextpipe);
962
                *(cmd++) = 0;
963
        } else {
964
                val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
965
                *(cmd++) = DBRI_CMD(D_DTS, 0, val);
966
                *(cmd++) = 0;
967
                *(cmd++) = D_TS_NEXT(nextpipe);
968
        }
969
        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
970
 
971
        dbri_cmdsend(dbri, cmd, 4);
972
}
973
#endif
974
 
975
/* xmit_fixed() / recv_fixed()
976
 *
977
 * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
978
 * expected to change much, and which we don't need to buffer.
979
 * The DBRI only interrupts us when the data changes (receive pipes),
980
 * or only changes the data when this function is called (transmit pipes).
981
 * Only short pipes (numbers 16-31) can be used in fixed data mode.
982
 *
983
 * These function operate on a 32-bit field, no matter how large
984
 * the actual time slot is.  The interrupt handler takes care of bit
985
 * ordering and alignment.  An 8-bit time slot will always end up
986
 * in the low-order 8 bits, filled either MSB-first or LSB-first,
987
 * depending on the settings passed to setup_pipe().
988
 *
989
 * Lock must not be held before calling it.
990
 */
991
static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
992
{
993
        s32 *cmd;
994
        unsigned long flags;
995
 
996
        if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
997
                printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
998
                return;
999
        }
1000
 
1001
        if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1002
                printk(KERN_ERR "DBRI: xmit_fixed: "
1003
                        "Uninitialized pipe %d\n", pipe);
1004
                return;
1005
        }
1006
 
1007
        if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1008
                printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1009
                return;
1010
        }
1011
 
1012
        if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1013
                printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1014
                        pipe);
1015
                return;
1016
        }
1017
 
1018
        /* DBRI short pipes always transmit LSB first */
1019
 
1020
        if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1021
                data = reverse_bytes(data, dbri->pipes[pipe].length);
1022
 
1023
        cmd = dbri_cmdlock(dbri, 3);
1024
 
1025
        *(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1026
        *(cmd++) = data;
1027
        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1028
 
1029
        spin_lock_irqsave(&dbri->lock, flags);
1030
        dbri_cmdsend(dbri, cmd, 3);
1031
        spin_unlock_irqrestore(&dbri->lock, flags);
1032
        dbri_cmdwait(dbri);
1033
 
1034
}
1035
 
1036
static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1037
{
1038
        if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1039
                printk(KERN_ERR "DBRI: recv_fixed called with "
1040
                        "illegal pipe number\n");
1041
                return;
1042
        }
1043
 
1044
        if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1045
                printk(KERN_ERR "DBRI: recv_fixed called on "
1046
                        "non-fixed pipe %d\n", pipe);
1047
                return;
1048
        }
1049
 
1050
        if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1051
                printk(KERN_ERR "DBRI: recv_fixed called on "
1052
                        "transmit pipe %d\n", pipe);
1053
                return;
1054
        }
1055
 
1056
        dbri->pipes[pipe].recv_fixed_ptr = ptr;
1057
}
1058
 
1059
/* setup_descs()
1060
 *
1061
 * Setup transmit/receive data on a "long" pipe - i.e, one associated
1062
 * with a DMA buffer.
1063
 *
1064
 * Only pipe numbers 0-15 can be used in this mode.
1065
 *
1066
 * This function takes a stream number pointing to a data buffer,
1067
 * and work by building chains of descriptors which identify the
1068
 * data buffers.  Buffers too large for a single descriptor will
1069
 * be spread across multiple descriptors.
1070
 *
1071
 * All descriptors create a ring buffer.
1072
 *
1073
 * Lock must be held before calling this.
1074
 */
1075
static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1076
{
1077
        struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1078
        __u32 dvma_buffer;
1079
        int desc;
1080
        int len;
1081
        int first_desc = -1;
1082
        int last_desc = -1;
1083
 
1084
        if (info->pipe < 0 || info->pipe > 15) {
1085
                printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1086
                return -2;
1087
        }
1088
 
1089
        if (dbri->pipes[info->pipe].sdp == 0) {
1090
                printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1091
                       info->pipe);
1092
                return -2;
1093
        }
1094
 
1095
        dvma_buffer = info->dvma_buffer;
1096
        len = info->size;
1097
 
1098
        if (streamno == DBRI_PLAY) {
1099
                if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1100
                        printk(KERN_ERR "DBRI: setup_descs: "
1101
                                "Called on receive pipe %d\n", info->pipe);
1102
                        return -2;
1103
                }
1104
        } else {
1105
                if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1106
                        printk(KERN_ERR
1107
                            "DBRI: setup_descs: Called on transmit pipe %d\n",
1108
                             info->pipe);
1109
                        return -2;
1110
                }
1111
                /* Should be able to queue multiple buffers
1112
                 * to receive on a pipe
1113
                 */
1114
                if (pipe_active(dbri, info->pipe)) {
1115
                        printk(KERN_ERR "DBRI: recv_on_pipe: "
1116
                                "Called on active pipe %d\n", info->pipe);
1117
                        return -2;
1118
                }
1119
 
1120
                /* Make sure buffer size is multiple of four */
1121
                len &= ~3;
1122
        }
1123
 
1124
        /* Free descriptors if pipe has any */
1125
        desc = dbri->pipes[info->pipe].first_desc;
1126
        if (desc >= 0)
1127
                do {
1128
                        dbri->dma->desc[desc].ba = 0;
1129
                        dbri->dma->desc[desc].nda = 0;
1130
                        desc = dbri->next_desc[desc];
1131
                } while (desc != -1 &&
1132
                         desc != dbri->pipes[info->pipe].first_desc);
1133
 
1134
        dbri->pipes[info->pipe].desc = -1;
1135
        dbri->pipes[info->pipe].first_desc = -1;
1136
 
1137
        desc = 0;
1138
        while (len > 0) {
1139
                int mylen;
1140
 
1141
                for (; desc < DBRI_NO_DESCS; desc++) {
1142
                        if (!dbri->dma->desc[desc].ba)
1143
                                break;
1144
                }
1145
 
1146
                if (desc == DBRI_NO_DESCS) {
1147
                        printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1148
                        return -1;
1149
                }
1150
 
1151
                if (len > DBRI_TD_MAXCNT)
1152
                        mylen = DBRI_TD_MAXCNT; /* 8KB - 4 */
1153
                else
1154
                        mylen = len;
1155
 
1156
                if (mylen > period)
1157
                        mylen = period;
1158
 
1159
                dbri->next_desc[desc] = -1;
1160
                dbri->dma->desc[desc].ba = dvma_buffer;
1161
                dbri->dma->desc[desc].nda = 0;
1162
 
1163
                if (streamno == DBRI_PLAY) {
1164
                        dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1165
                        dbri->dma->desc[desc].word4 = 0;
1166
                        dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1167
                } else {
1168
                        dbri->dma->desc[desc].word1 = 0;
1169
                        dbri->dma->desc[desc].word4 =
1170
                            DBRI_RD_B | DBRI_RD_BCNT(mylen);
1171
                }
1172
 
1173
                if (first_desc == -1)
1174
                        first_desc = desc;
1175
                else {
1176
                        dbri->next_desc[last_desc] = desc;
1177
                        dbri->dma->desc[last_desc].nda =
1178
                            dbri->dma_dvma + dbri_dma_off(desc, desc);
1179
                }
1180
 
1181
                last_desc = desc;
1182
                dvma_buffer += mylen;
1183
                len -= mylen;
1184
        }
1185
 
1186
        if (first_desc == -1 || last_desc == -1) {
1187
                printk(KERN_ERR "DBRI: setup_descs: "
1188
                        " Not enough descriptors available\n");
1189
                return -1;
1190
        }
1191
 
1192
        dbri->dma->desc[last_desc].nda =
1193
            dbri->dma_dvma + dbri_dma_off(desc, first_desc);
1194
        dbri->next_desc[last_desc] = first_desc;
1195
        dbri->pipes[info->pipe].first_desc = first_desc;
1196
        dbri->pipes[info->pipe].desc = first_desc;
1197
 
1198
#ifdef DBRI_DEBUG
1199
        for (desc = first_desc; desc != -1;) {
1200
                dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1201
                        desc,
1202
                        dbri->dma->desc[desc].word1,
1203
                        dbri->dma->desc[desc].ba,
1204
                        dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1205
                        desc = dbri->next_desc[desc];
1206
                        if (desc == first_desc)
1207
                                break;
1208
        }
1209
#endif
1210
        return 0;
1211
}
1212
 
1213
/*
1214
****************************************************************************
1215
************************** DBRI - CHI interface ****************************
1216
****************************************************************************
1217
 
1218
The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1219
multiplexed serial interface which the DBRI can operate in either master
1220
(give clock/frame sync) or slave (take clock/frame sync) mode.
1221
 
1222
*/
1223
 
1224
enum master_or_slave { CHImaster, CHIslave };
1225
 
1226
/*
1227
 * Lock must not be held before calling it.
1228
 */
1229
static void reset_chi(struct snd_dbri *dbri,
1230
                      enum master_or_slave master_or_slave,
1231
                      int bits_per_frame)
1232
{
1233
        s32 *cmd;
1234
        int val;
1235
 
1236
        /* Set CHI Anchor: Pipe 16 */
1237
 
1238
        cmd = dbri_cmdlock(dbri, 4);
1239
        val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1240
                | D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1241
        *(cmd++) = DBRI_CMD(D_DTS, 0, val);
1242
        *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1243
        *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1244
        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1245
        dbri_cmdsend(dbri, cmd, 4);
1246
 
1247
        dbri->pipes[16].sdp = 1;
1248
        dbri->pipes[16].nextpipe = 16;
1249
 
1250
        cmd = dbri_cmdlock(dbri, 4);
1251
 
1252
        if (master_or_slave == CHIslave) {
1253
                /* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1254
                 *
1255
                 * CHICM  = 0 (slave mode, 8 kHz frame rate)
1256
                 * IR     = give immediate CHI status interrupt
1257
                 * EN     = give CHI status interrupt upon change
1258
                 */
1259
                *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1260
        } else {
1261
                /* Setup DBRI for CHI Master - generate clock, FS
1262
                 *
1263
                 * BPF                          =  bits per 8 kHz frame
1264
                 * 12.288 MHz / CHICM_divisor   = clock rate
1265
                 * FD = 1 - drive CHIFS on rising edge of CHICK
1266
                 */
1267
                int clockrate = bits_per_frame * 8;
1268
                int divisor = 12288 / clockrate;
1269
 
1270
                if (divisor > 255 || divisor * clockrate != 12288)
1271
                        printk(KERN_ERR "DBRI: illegal bits_per_frame "
1272
                                "in setup_chi\n");
1273
 
1274
                *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1275
                                    | D_CHI_BPF(bits_per_frame));
1276
        }
1277
 
1278
        dbri->chi_bpf = bits_per_frame;
1279
 
1280
        /* CHI Data Mode
1281
         *
1282
         * RCE   =  0 - receive on falling edge of CHICK
1283
         * XCE   =  1 - transmit on rising edge of CHICK
1284
         * XEN   =  1 - enable transmitter
1285
         * REN   =  1 - enable receiver
1286
         */
1287
 
1288
        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1289
        *(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1290
        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1291
 
1292
        dbri_cmdsend(dbri, cmd, 4);
1293
}
1294
 
1295
/*
1296
****************************************************************************
1297
*********************** CS4215 audio codec management **********************
1298
****************************************************************************
1299
 
1300
In the standard SPARC audio configuration, the CS4215 codec is attached
1301
to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1302
 
1303
 * Lock must not be held before calling it.
1304
 
1305
*/
1306
static __devinit void cs4215_setup_pipes(struct snd_dbri *dbri)
1307
{
1308
        unsigned long flags;
1309
 
1310
        spin_lock_irqsave(&dbri->lock, flags);
1311
        /*
1312
         * Data mode:
1313
         * Pipe  4: Send timeslots 1-4 (audio data)
1314
         * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1315
         * Pipe  6: Receive timeslots 1-4 (audio data)
1316
         * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1317
         *          interrupt, and the rest of the data (slot 5 and 8) is
1318
         *          not relevant for us (only for doublechecking).
1319
         *
1320
         * Control mode:
1321
         * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1322
         * Pipe 18: Receive timeslot 1 (clb).
1323
         * Pipe 19: Receive timeslot 7 (version).
1324
         */
1325
 
1326
        setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1327
        setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1328
        setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1329
        setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1330
 
1331
        setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1332
        setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1333
        setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1334
        spin_unlock_irqrestore(&dbri->lock, flags);
1335
 
1336
        dbri_cmdwait(dbri);
1337
}
1338
 
1339
static __devinit int cs4215_init_data(struct cs4215 *mm)
1340
{
1341
        /*
1342
         * No action, memory resetting only.
1343
         *
1344
         * Data Time Slot 5-8
1345
         * Speaker,Line and Headphone enable. Gain set to the half.
1346
         * Input is mike.
1347
         */
1348
        mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1349
        mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1350
        mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1351
        mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1352
 
1353
        /*
1354
         * Control Time Slot 1-4
1355
         * 0: Default I/O voltage scale
1356
         * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1357
         * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1358
         * 3: Tests disabled
1359
         */
1360
        mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1361
        mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1362
        mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1363
        mm->ctrl[3] = 0;
1364
 
1365
        mm->status = 0;
1366
        mm->version = 0xff;
1367
        mm->precision = 8;      /* For ULAW */
1368
        mm->channels = 1;
1369
 
1370
        return 0;
1371
}
1372
 
1373
static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1374
{
1375
        if (muted) {
1376
                dbri->mm.data[0] |= 63;
1377
                dbri->mm.data[1] |= 63;
1378
                dbri->mm.data[2] &= ~15;
1379
                dbri->mm.data[3] &= ~15;
1380
        } else {
1381
                /* Start by setting the playback attenuation. */
1382
                struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1383
                int left_gain = info->left_gain & 0x3f;
1384
                int right_gain = info->right_gain & 0x3f;
1385
 
1386
                dbri->mm.data[0] &= ~0x3f;       /* Reset the volume bits */
1387
                dbri->mm.data[1] &= ~0x3f;
1388
                dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1389
                dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1390
 
1391
                /* Now set the recording gain. */
1392
                info = &dbri->stream_info[DBRI_REC];
1393
                left_gain = info->left_gain & 0xf;
1394
                right_gain = info->right_gain & 0xf;
1395
                dbri->mm.data[2] |= CS4215_LG(left_gain);
1396
                dbri->mm.data[3] |= CS4215_RG(right_gain);
1397
        }
1398
 
1399
        xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1400
}
1401
 
1402
/*
1403
 * Set the CS4215 to data mode.
1404
 */
1405
static void cs4215_open(struct snd_dbri *dbri)
1406
{
1407
        int data_width;
1408
        u32 tmp;
1409
        unsigned long flags;
1410
 
1411
        dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1412
                dbri->mm.channels, dbri->mm.precision);
1413
 
1414
        /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1415
         * to make sure this takes.  This avoids clicking noises.
1416
         */
1417
 
1418
        cs4215_setdata(dbri, 1);
1419
        udelay(125);
1420
 
1421
        /*
1422
         * Data mode:
1423
         * Pipe  4: Send timeslots 1-4 (audio data)
1424
         * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1425
         * Pipe  6: Receive timeslots 1-4 (audio data)
1426
         * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1427
         *          interrupt, and the rest of the data (slot 5 and 8) is
1428
         *          not relevant for us (only for doublechecking).
1429
         *
1430
         * Just like in control mode, the time slots are all offset by eight
1431
         * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1432
         * even if it's the CHI master.  Don't ask me...
1433
         */
1434
        spin_lock_irqsave(&dbri->lock, flags);
1435
        tmp = sbus_readl(dbri->regs + REG0);
1436
        tmp &= ~(D_C);          /* Disable CHI */
1437
        sbus_writel(tmp, dbri->regs + REG0);
1438
 
1439
        /* Switch CS4215 to data mode - set PIO3 to 1 */
1440
        sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1441
                    (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1442
 
1443
        reset_chi(dbri, CHIslave, 128);
1444
 
1445
        /* Note: this next doesn't work for 8-bit stereo, because the two
1446
         * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1447
         * (See CS4215 datasheet Fig 15)
1448
         *
1449
         * DBRI non-contiguous mode would be required to make this work.
1450
         */
1451
        data_width = dbri->mm.channels * dbri->mm.precision;
1452
 
1453
        link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1454
        link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1455
        link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1456
        link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1457
 
1458
        /* FIXME: enable CHI after _setdata? */
1459
        tmp = sbus_readl(dbri->regs + REG0);
1460
        tmp |= D_C;             /* Enable CHI */
1461
        sbus_writel(tmp, dbri->regs + REG0);
1462
        spin_unlock_irqrestore(&dbri->lock, flags);
1463
 
1464
        cs4215_setdata(dbri, 0);
1465
}
1466
 
1467
/*
1468
 * Send the control information (i.e. audio format)
1469
 */
1470
static int cs4215_setctrl(struct snd_dbri *dbri)
1471
{
1472
        int i, val;
1473
        u32 tmp;
1474
        unsigned long flags;
1475
 
1476
        /* FIXME - let the CPU do something useful during these delays */
1477
 
1478
        /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1479
         * to make sure this takes.  This avoids clicking noises.
1480
         */
1481
        cs4215_setdata(dbri, 1);
1482
        udelay(125);
1483
 
1484
        /*
1485
         * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1486
         * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1487
         */
1488
        val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1489
        sbus_writel(val, dbri->regs + REG2);
1490
        dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1491
        udelay(34);
1492
 
1493
        /* In Control mode, the CS4215 is a slave device, so the DBRI must
1494
         * operate as CHI master, supplying clocking and frame synchronization.
1495
         *
1496
         * In Data mode, however, the CS4215 must be CHI master to insure
1497
         * that its data stream is synchronous with its codec.
1498
         *
1499
         * The upshot of all this?  We start by putting the DBRI into master
1500
         * mode, program the CS4215 in Control mode, then switch the CS4215
1501
         * into Data mode and put the DBRI into slave mode.  Various timing
1502
         * requirements must be observed along the way.
1503
         *
1504
         * Oh, and one more thing, on a SPARCStation 20 (and maybe
1505
         * others?), the addressing of the CS4215's time slots is
1506
         * offset by eight bits, so we add eight to all the "cycle"
1507
         * values in the Define Time Slot (DTS) commands.  This is
1508
         * done in hardware by a TI 248 that delays the DBRI->4215
1509
         * frame sync signal by eight clock cycles.  Anybody know why?
1510
         */
1511
        spin_lock_irqsave(&dbri->lock, flags);
1512
        tmp = sbus_readl(dbri->regs + REG0);
1513
        tmp &= ~D_C;            /* Disable CHI */
1514
        sbus_writel(tmp, dbri->regs + REG0);
1515
 
1516
        reset_chi(dbri, CHImaster, 128);
1517
 
1518
        /*
1519
         * Control mode:
1520
         * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1521
         * Pipe 18: Receive timeslot 1 (clb).
1522
         * Pipe 19: Receive timeslot 7 (version).
1523
         */
1524
 
1525
        link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1526
        link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1527
        link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1528
        spin_unlock_irqrestore(&dbri->lock, flags);
1529
 
1530
        /* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1531
        dbri->mm.ctrl[0] &= ~CS4215_CLB;
1532
        xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1533
 
1534
        spin_lock_irqsave(&dbri->lock, flags);
1535
        tmp = sbus_readl(dbri->regs + REG0);
1536
        tmp |= D_C;             /* Enable CHI */
1537
        sbus_writel(tmp, dbri->regs + REG0);
1538
        spin_unlock_irqrestore(&dbri->lock, flags);
1539
 
1540
        for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1541
                msleep_interruptible(1);
1542
 
1543
        if (i == 0) {
1544
                dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1545
                        dbri->mm.status);
1546
                return -1;
1547
        }
1548
 
1549
        /* Disable changes to our copy of the version number, as we are about
1550
         * to leave control mode.
1551
         */
1552
        recv_fixed(dbri, 19, NULL);
1553
 
1554
        /* Terminate CS4215 control mode - data sheet says
1555
         * "Set CLB=1 and send two more frames of valid control info"
1556
         */
1557
        dbri->mm.ctrl[0] |= CS4215_CLB;
1558
        xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1559
 
1560
        /* Two frames of control info @ 8kHz frame rate = 250 us delay */
1561
        udelay(250);
1562
 
1563
        cs4215_setdata(dbri, 0);
1564
 
1565
        return 0;
1566
}
1567
 
1568
/*
1569
 * Setup the codec with the sampling rate, audio format and number of
1570
 * channels.
1571
 * As part of the process we resend the settings for the data
1572
 * timeslots as well.
1573
 */
1574
static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1575
                          snd_pcm_format_t format, unsigned int channels)
1576
{
1577
        int freq_idx;
1578
        int ret = 0;
1579
 
1580
        /* Lookup index for this rate */
1581
        for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1582
                if (CS4215_FREQ[freq_idx].freq == rate)
1583
                        break;
1584
        }
1585
        if (CS4215_FREQ[freq_idx].freq != rate) {
1586
                printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1587
                return -1;
1588
        }
1589
 
1590
        switch (format) {
1591
        case SNDRV_PCM_FORMAT_MU_LAW:
1592
                dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1593
                dbri->mm.precision = 8;
1594
                break;
1595
        case SNDRV_PCM_FORMAT_A_LAW:
1596
                dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1597
                dbri->mm.precision = 8;
1598
                break;
1599
        case SNDRV_PCM_FORMAT_U8:
1600
                dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1601
                dbri->mm.precision = 8;
1602
                break;
1603
        case SNDRV_PCM_FORMAT_S16_BE:
1604
                dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1605
                dbri->mm.precision = 16;
1606
                break;
1607
        default:
1608
                printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1609
                return -1;
1610
        }
1611
 
1612
        /* Add rate parameters */
1613
        dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1614
        dbri->mm.ctrl[2] = CS4215_XCLK |
1615
            CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1616
 
1617
        dbri->mm.channels = channels;
1618
        if (channels == 2)
1619
                dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1620
 
1621
        ret = cs4215_setctrl(dbri);
1622
        if (ret == 0)
1623
                cs4215_open(dbri);      /* set codec to data mode */
1624
 
1625
        return ret;
1626
}
1627
 
1628
/*
1629
 *
1630
 */
1631
static __devinit int cs4215_init(struct snd_dbri *dbri)
1632
{
1633
        u32 reg2 = sbus_readl(dbri->regs + REG2);
1634
        dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1635
 
1636
        /* Look for the cs4215 chips */
1637
        if (reg2 & D_PIO2) {
1638
                dprintk(D_MM, "Onboard CS4215 detected\n");
1639
                dbri->mm.onboard = 1;
1640
        }
1641
        if (reg2 & D_PIO0) {
1642
                dprintk(D_MM, "Speakerbox detected\n");
1643
                dbri->mm.onboard = 0;
1644
 
1645
                if (reg2 & D_PIO2) {
1646
                        printk(KERN_INFO "DBRI: Using speakerbox / "
1647
                               "ignoring onboard mmcodec.\n");
1648
                        sbus_writel(D_ENPIO2, dbri->regs + REG2);
1649
                }
1650
        }
1651
 
1652
        if (!(reg2 & (D_PIO0 | D_PIO2))) {
1653
                printk(KERN_ERR "DBRI: no mmcodec found.\n");
1654
                return -EIO;
1655
        }
1656
 
1657
        cs4215_setup_pipes(dbri);
1658
        cs4215_init_data(&dbri->mm);
1659
 
1660
        /* Enable capture of the status & version timeslots. */
1661
        recv_fixed(dbri, 18, &dbri->mm.status);
1662
        recv_fixed(dbri, 19, &dbri->mm.version);
1663
 
1664
        dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1665
        if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1666
                dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1667
                        dbri->mm.offset);
1668
                return -EIO;
1669
        }
1670
        dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1671
 
1672
        return 0;
1673
}
1674
 
1675
/*
1676
****************************************************************************
1677
*************************** DBRI interrupt handler *************************
1678
****************************************************************************
1679
 
1680
The DBRI communicates with the CPU mainly via a circular interrupt
1681
buffer.  When an interrupt is signaled, the CPU walks through the
1682
buffer and calls dbri_process_one_interrupt() for each interrupt word.
1683
Complicated interrupts are handled by dedicated functions (which
1684
appear first in this file).  Any pending interrupts can be serviced by
1685
calling dbri_process_interrupt_buffer(), which works even if the CPU's
1686
interrupts are disabled.
1687
 
1688
*/
1689
 
1690
/* xmit_descs()
1691
 *
1692
 * Starts transmitting the current TD's for recording/playing.
1693
 * For playback, ALSA has filled the DMA memory with new data (we hope).
1694
 */
1695
static void xmit_descs(struct snd_dbri *dbri)
1696
{
1697
        struct dbri_streaminfo *info;
1698
        s32 *cmd;
1699
        unsigned long flags;
1700
        int first_td;
1701
 
1702
        if (dbri == NULL)
1703
                return;         /* Disabled */
1704
 
1705
        info = &dbri->stream_info[DBRI_REC];
1706
        spin_lock_irqsave(&dbri->lock, flags);
1707
 
1708
        if (info->pipe >= 0) {
1709
                first_td = dbri->pipes[info->pipe].first_desc;
1710
 
1711
                dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1712
 
1713
                /* Stream could be closed by the time we run. */
1714
                if (first_td >= 0) {
1715
                        cmd = dbri_cmdlock(dbri, 2);
1716
                        *(cmd++) = DBRI_CMD(D_SDP, 0,
1717
                                            dbri->pipes[info->pipe].sdp
1718
                                            | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1719
                        *(cmd++) = dbri->dma_dvma +
1720
                                   dbri_dma_off(desc, first_td);
1721
                        dbri_cmdsend(dbri, cmd, 2);
1722
 
1723
                        /* Reset our admin of the pipe. */
1724
                        dbri->pipes[info->pipe].desc = first_td;
1725
                }
1726
        }
1727
 
1728
        info = &dbri->stream_info[DBRI_PLAY];
1729
 
1730
        if (info->pipe >= 0) {
1731
                first_td = dbri->pipes[info->pipe].first_desc;
1732
 
1733
                dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1734
 
1735
                /* Stream could be closed by the time we run. */
1736
                if (first_td >= 0) {
1737
                        cmd = dbri_cmdlock(dbri, 2);
1738
                        *(cmd++) = DBRI_CMD(D_SDP, 0,
1739
                                            dbri->pipes[info->pipe].sdp
1740
                                            | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1741
                        *(cmd++) = dbri->dma_dvma +
1742
                                   dbri_dma_off(desc, first_td);
1743
                        dbri_cmdsend(dbri, cmd, 2);
1744
 
1745
                        /* Reset our admin of the pipe. */
1746
                        dbri->pipes[info->pipe].desc = first_td;
1747
                }
1748
        }
1749
 
1750
        spin_unlock_irqrestore(&dbri->lock, flags);
1751
}
1752
 
1753
/* transmission_complete_intr()
1754
 *
1755
 * Called by main interrupt handler when DBRI signals transmission complete
1756
 * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1757
 *
1758
 * Walks through the pipe's list of transmit buffer descriptors and marks
1759
 * them as available. Stops when the first descriptor is found without
1760
 * TBC (Transmit Buffer Complete) set, or we've run through them all.
1761
 *
1762
 * The DMA buffers are not released. They form a ring buffer and
1763
 * they are filled by ALSA while others are transmitted by DMA.
1764
 *
1765
 */
1766
 
1767
static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1768
{
1769
        struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1770
        int td = dbri->pipes[pipe].desc;
1771
        int status;
1772
 
1773
        while (td >= 0) {
1774
                if (td >= DBRI_NO_DESCS) {
1775
                        printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1776
                        return;
1777
                }
1778
 
1779
                status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1780
                if (!(status & DBRI_TD_TBC))
1781
                        break;
1782
 
1783
                dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1784
 
1785
                dbri->dma->desc[td].word4 = 0;   /* Reset it for next time. */
1786
                info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1787
 
1788
                td = dbri->next_desc[td];
1789
                dbri->pipes[pipe].desc = td;
1790
        }
1791
 
1792
        /* Notify ALSA */
1793
        spin_unlock(&dbri->lock);
1794
        snd_pcm_period_elapsed(info->substream);
1795
        spin_lock(&dbri->lock);
1796
}
1797
 
1798
static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1799
{
1800
        struct dbri_streaminfo *info;
1801
        int rd = dbri->pipes[pipe].desc;
1802
        s32 status;
1803
 
1804
        if (rd < 0 || rd >= DBRI_NO_DESCS) {
1805
                printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1806
                return;
1807
        }
1808
 
1809
        dbri->pipes[pipe].desc = dbri->next_desc[rd];
1810
        status = dbri->dma->desc[rd].word1;
1811
        dbri->dma->desc[rd].word1 = 0;   /* Reset it for next time. */
1812
 
1813
        info = &dbri->stream_info[DBRI_REC];
1814
        info->offset += DBRI_RD_CNT(status);
1815
 
1816
        /* FIXME: Check status */
1817
 
1818
        dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1819
                rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1820
 
1821
        /* Notify ALSA */
1822
        spin_unlock(&dbri->lock);
1823
        snd_pcm_period_elapsed(info->substream);
1824
        spin_lock(&dbri->lock);
1825
}
1826
 
1827
static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1828
{
1829
        int val = D_INTR_GETVAL(x);
1830
        int channel = D_INTR_GETCHAN(x);
1831
        int command = D_INTR_GETCMD(x);
1832
        int code = D_INTR_GETCODE(x);
1833
#ifdef DBRI_DEBUG
1834
        int rval = D_INTR_GETRVAL(x);
1835
#endif
1836
 
1837
        if (channel == D_INTR_CMD) {
1838
                dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1839
                        cmds[command], val);
1840
        } else {
1841
                dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1842
                        channel, code, rval);
1843
        }
1844
 
1845
        switch (code) {
1846
        case D_INTR_CMDI:
1847
                if (command != D_WAIT)
1848
                        printk(KERN_ERR "DBRI: Command read interrupt\n");
1849
                break;
1850
        case D_INTR_BRDY:
1851
                reception_complete_intr(dbri, channel);
1852
                break;
1853
        case D_INTR_XCMP:
1854
        case D_INTR_MINT:
1855
                transmission_complete_intr(dbri, channel);
1856
                break;
1857
        case D_INTR_UNDR:
1858
                /* UNDR - Transmission underrun
1859
                 * resend SDP command with clear pipe bit (C) set
1860
                 */
1861
                {
1862
        /* FIXME: do something useful in case of underrun */
1863
                        printk(KERN_ERR "DBRI: Underrun error\n");
1864
#if 0
1865
                        s32 *cmd;
1866
                        int pipe = channel;
1867
                        int td = dbri->pipes[pipe].desc;
1868
 
1869
                        dbri->dma->desc[td].word4 = 0;
1870
                        cmd = dbri_cmdlock(dbri, NoGetLock);
1871
                        *(cmd++) = DBRI_CMD(D_SDP, 0,
1872
                                            dbri->pipes[pipe].sdp
1873
                                            | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1874
                        *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1875
                        dbri_cmdsend(dbri, cmd);
1876
#endif
1877
                }
1878
                break;
1879
        case D_INTR_FXDT:
1880
                /* FXDT - Fixed data change */
1881
                if (dbri->pipes[channel].sdp & D_SDP_MSB)
1882
                        val = reverse_bytes(val, dbri->pipes[channel].length);
1883
 
1884
                if (dbri->pipes[channel].recv_fixed_ptr)
1885
                        *(dbri->pipes[channel].recv_fixed_ptr) = val;
1886
                break;
1887
        default:
1888
                if (channel != D_INTR_CMD)
1889
                        printk(KERN_WARNING
1890
                               "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1891
        }
1892
}
1893
 
1894
/* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1895
 * buffer until it finds a zero word (indicating nothing more to do
1896
 * right now).  Non-zero words require processing and are handed off
1897
 * to dbri_process_one_interrupt AFTER advancing the pointer.
1898
 */
1899
static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1900
{
1901
        s32 x;
1902
 
1903
        while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1904
                dbri->dma->intr[dbri->dbri_irqp] = 0;
1905
                dbri->dbri_irqp++;
1906
                if (dbri->dbri_irqp == DBRI_INT_BLK)
1907
                        dbri->dbri_irqp = 1;
1908
 
1909
                dbri_process_one_interrupt(dbri, x);
1910
        }
1911
}
1912
 
1913
static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1914
{
1915
        struct snd_dbri *dbri = dev_id;
1916
        static int errcnt = 0;
1917
        int x;
1918
 
1919
        if (dbri == NULL)
1920
                return IRQ_NONE;
1921
        spin_lock(&dbri->lock);
1922
 
1923
        /*
1924
         * Read it, so the interrupt goes away.
1925
         */
1926
        x = sbus_readl(dbri->regs + REG1);
1927
 
1928
        if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1929
                u32 tmp;
1930
 
1931
                if (x & D_MRR)
1932
                        printk(KERN_ERR
1933
                               "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1934
                               x);
1935
                if (x & D_MLE)
1936
                        printk(KERN_ERR
1937
                               "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1938
                               x);
1939
                if (x & D_LBG)
1940
                        printk(KERN_ERR
1941
                               "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1942
                if (x & D_MBE)
1943
                        printk(KERN_ERR
1944
                               "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1945
 
1946
                /* Some of these SBus errors cause the chip's SBus circuitry
1947
                 * to be disabled, so just re-enable and try to keep going.
1948
                 *
1949
                 * The only one I've seen is MRR, which will be triggered
1950
                 * if you let a transmit pipe underrun, then try to CDP it.
1951
                 *
1952
                 * If these things persist, we reset the chip.
1953
                 */
1954
                if ((++errcnt) % 10 == 0) {
1955
                        dprintk(D_INT, "Interrupt errors exceeded.\n");
1956
                        dbri_reset(dbri);
1957
                } else {
1958
                        tmp = sbus_readl(dbri->regs + REG0);
1959
                        tmp &= ~(D_D);
1960
                        sbus_writel(tmp, dbri->regs + REG0);
1961
                }
1962
        }
1963
 
1964
        dbri_process_interrupt_buffer(dbri);
1965
 
1966
        spin_unlock(&dbri->lock);
1967
 
1968
        return IRQ_HANDLED;
1969
}
1970
 
1971
/****************************************************************************
1972
                PCM Interface
1973
****************************************************************************/
1974
static struct snd_pcm_hardware snd_dbri_pcm_hw = {
1975
        .info           = SNDRV_PCM_INFO_MMAP |
1976
                          SNDRV_PCM_INFO_INTERLEAVED |
1977
                          SNDRV_PCM_INFO_BLOCK_TRANSFER |
1978
                          SNDRV_PCM_INFO_MMAP_VALID,
1979
        .formats        = SNDRV_PCM_FMTBIT_MU_LAW |
1980
                          SNDRV_PCM_FMTBIT_A_LAW |
1981
                          SNDRV_PCM_FMTBIT_U8 |
1982
                          SNDRV_PCM_FMTBIT_S16_BE,
1983
        .rates          = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1984
        .rate_min               = 5512,
1985
        .rate_max               = 48000,
1986
        .channels_min           = 1,
1987
        .channels_max           = 2,
1988
        .buffer_bytes_max       = 64 * 1024,
1989
        .period_bytes_min       = 1,
1990
        .period_bytes_max       = DBRI_TD_MAXCNT,
1991
        .periods_min            = 1,
1992
        .periods_max            = 1024,
1993
};
1994
 
1995
static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
1996
                              struct snd_pcm_hw_rule *rule)
1997
{
1998
        struct snd_interval *c = hw_param_interval(params,
1999
                                SNDRV_PCM_HW_PARAM_CHANNELS);
2000
        struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2001
        struct snd_mask fmt;
2002
 
2003
        snd_mask_any(&fmt);
2004
        if (c->min > 1) {
2005
                fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2006
                return snd_mask_refine(f, &fmt);
2007
        }
2008
        return 0;
2009
}
2010
 
2011
static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2012
                                struct snd_pcm_hw_rule *rule)
2013
{
2014
        struct snd_interval *c = hw_param_interval(params,
2015
                                SNDRV_PCM_HW_PARAM_CHANNELS);
2016
        struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2017
        struct snd_interval ch;
2018
 
2019
        snd_interval_any(&ch);
2020
        if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2021
                ch.min = 1;
2022
                ch.max = 1;
2023
                ch.integer = 1;
2024
                return snd_interval_refine(c, &ch);
2025
        }
2026
        return 0;
2027
}
2028
 
2029
static int snd_dbri_open(struct snd_pcm_substream *substream)
2030
{
2031
        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2032
        struct snd_pcm_runtime *runtime = substream->runtime;
2033
        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2034
        unsigned long flags;
2035
 
2036
        dprintk(D_USR, "open audio output.\n");
2037
        runtime->hw = snd_dbri_pcm_hw;
2038
 
2039
        spin_lock_irqsave(&dbri->lock, flags);
2040
        info->substream = substream;
2041
        info->offset = 0;
2042
        info->dvma_buffer = 0;
2043
        info->pipe = -1;
2044
        spin_unlock_irqrestore(&dbri->lock, flags);
2045
 
2046
        snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2047
                            snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2048
                            -1);
2049
        snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2050
                            snd_hw_rule_channels, NULL,
2051
                            SNDRV_PCM_HW_PARAM_CHANNELS,
2052
                            -1);
2053
 
2054
        cs4215_open(dbri);
2055
 
2056
        return 0;
2057
}
2058
 
2059
static int snd_dbri_close(struct snd_pcm_substream *substream)
2060
{
2061
        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2062
        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2063
 
2064
        dprintk(D_USR, "close audio output.\n");
2065
        info->substream = NULL;
2066
        info->offset = 0;
2067
 
2068
        return 0;
2069
}
2070
 
2071
static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2072
                              struct snd_pcm_hw_params *hw_params)
2073
{
2074
        struct snd_pcm_runtime *runtime = substream->runtime;
2075
        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2076
        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2077
        int direction;
2078
        int ret;
2079
 
2080
        /* set sampling rate, audio format and number of channels */
2081
        ret = cs4215_prepare(dbri, params_rate(hw_params),
2082
                             params_format(hw_params),
2083
                             params_channels(hw_params));
2084
        if (ret != 0)
2085
                return ret;
2086
 
2087
        if ((ret = snd_pcm_lib_malloc_pages(substream,
2088
                                params_buffer_bytes(hw_params))) < 0) {
2089
                printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2090
                return ret;
2091
        }
2092
 
2093
        /* hw_params can get called multiple times. Only map the DMA once.
2094
         */
2095
        if (info->dvma_buffer == 0) {
2096
                if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2097
                        direction = SBUS_DMA_TODEVICE;
2098
                else
2099
                        direction = SBUS_DMA_FROMDEVICE;
2100
 
2101
                info->dvma_buffer = sbus_map_single(dbri->sdev,
2102
                                        runtime->dma_area,
2103
                                        params_buffer_bytes(hw_params),
2104
                                        direction);
2105
        }
2106
 
2107
        direction = params_buffer_bytes(hw_params);
2108
        dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2109
                direction, info->dvma_buffer);
2110
        return 0;
2111
}
2112
 
2113
static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2114
{
2115
        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2116
        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2117
        int direction;
2118
 
2119
        dprintk(D_USR, "hw_free.\n");
2120
 
2121
        /* hw_free can get called multiple times. Only unmap the DMA once.
2122
         */
2123
        if (info->dvma_buffer) {
2124
                if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2125
                        direction = SBUS_DMA_TODEVICE;
2126
                else
2127
                        direction = SBUS_DMA_FROMDEVICE;
2128
 
2129
                sbus_unmap_single(dbri->sdev, info->dvma_buffer,
2130
                                  substream->runtime->buffer_size, direction);
2131
                info->dvma_buffer = 0;
2132
        }
2133
        if (info->pipe != -1) {
2134
                reset_pipe(dbri, info->pipe);
2135
                info->pipe = -1;
2136
        }
2137
 
2138
        return snd_pcm_lib_free_pages(substream);
2139
}
2140
 
2141
static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2142
{
2143
        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2144
        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2145
        int ret;
2146
 
2147
        info->size = snd_pcm_lib_buffer_bytes(substream);
2148
        if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2149
                info->pipe = 4; /* Send pipe */
2150
        else
2151
                info->pipe = 6; /* Receive pipe */
2152
 
2153
        spin_lock_irq(&dbri->lock);
2154
        info->offset = 0;
2155
 
2156
        /* Setup the all the transmit/receive descriptors to cover the
2157
         * whole DMA buffer.
2158
         */
2159
        ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2160
                          snd_pcm_lib_period_bytes(substream));
2161
 
2162
        spin_unlock_irq(&dbri->lock);
2163
 
2164
        dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2165
        return ret;
2166
}
2167
 
2168
static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2169
{
2170
        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2171
        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2172
        int ret = 0;
2173
 
2174
        switch (cmd) {
2175
        case SNDRV_PCM_TRIGGER_START:
2176
                dprintk(D_USR, "start audio, period is %d bytes\n",
2177
                        (int)snd_pcm_lib_period_bytes(substream));
2178
                /* Re-submit the TDs. */
2179
                xmit_descs(dbri);
2180
                break;
2181
        case SNDRV_PCM_TRIGGER_STOP:
2182
                dprintk(D_USR, "stop audio.\n");
2183
                reset_pipe(dbri, info->pipe);
2184
                break;
2185
        default:
2186
                ret = -EINVAL;
2187
        }
2188
 
2189
        return ret;
2190
}
2191
 
2192
static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2193
{
2194
        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2195
        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2196
        snd_pcm_uframes_t ret;
2197
 
2198
        ret = bytes_to_frames(substream->runtime, info->offset)
2199
                % substream->runtime->buffer_size;
2200
        dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2201
                ret, substream->runtime->buffer_size);
2202
        return ret;
2203
}
2204
 
2205
static struct snd_pcm_ops snd_dbri_ops = {
2206
        .open = snd_dbri_open,
2207
        .close = snd_dbri_close,
2208
        .ioctl = snd_pcm_lib_ioctl,
2209
        .hw_params = snd_dbri_hw_params,
2210
        .hw_free = snd_dbri_hw_free,
2211
        .prepare = snd_dbri_prepare,
2212
        .trigger = snd_dbri_trigger,
2213
        .pointer = snd_dbri_pointer,
2214
};
2215
 
2216
static int __devinit snd_dbri_pcm(struct snd_card *card)
2217
{
2218
        struct snd_pcm *pcm;
2219
        int err;
2220
 
2221
        if ((err = snd_pcm_new(card,
2222
                               /* ID */             "sun_dbri",
2223
                               /* device */         0,
2224
                               /* playback count */ 1,
2225
                               /* capture count */  1, &pcm)) < 0)
2226
                return err;
2227
        snd_assert(pcm != NULL, return -EINVAL);
2228
 
2229
        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2230
        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2231
 
2232
        pcm->private_data = card->private_data;
2233
        pcm->info_flags = 0;
2234
        strcpy(pcm->name, card->shortname);
2235
 
2236
        if ((err = snd_pcm_lib_preallocate_pages_for_all(pcm,
2237
                        SNDRV_DMA_TYPE_CONTINUOUS,
2238
                        snd_dma_continuous_data(GFP_KERNEL),
2239
                        64 * 1024, 64 * 1024)) < 0)
2240
                return err;
2241
 
2242
        return 0;
2243
}
2244
 
2245
/*****************************************************************************
2246
                        Mixer interface
2247
*****************************************************************************/
2248
 
2249
static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2250
                                  struct snd_ctl_elem_info *uinfo)
2251
{
2252
        uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2253
        uinfo->count = 2;
2254
        uinfo->value.integer.min = 0;
2255
        if (kcontrol->private_value == DBRI_PLAY)
2256
                uinfo->value.integer.max = DBRI_MAX_VOLUME;
2257
        else
2258
                uinfo->value.integer.max = DBRI_MAX_GAIN;
2259
        return 0;
2260
}
2261
 
2262
static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2263
                                 struct snd_ctl_elem_value *ucontrol)
2264
{
2265
        struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2266
        struct dbri_streaminfo *info;
2267
        snd_assert(dbri != NULL, return -EINVAL);
2268
        info = &dbri->stream_info[kcontrol->private_value];
2269
        snd_assert(info != NULL, return -EINVAL);
2270
 
2271
        ucontrol->value.integer.value[0] = info->left_gain;
2272
        ucontrol->value.integer.value[1] = info->right_gain;
2273
        return 0;
2274
}
2275
 
2276
static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2277
                                 struct snd_ctl_elem_value *ucontrol)
2278
{
2279
        struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2280
        struct dbri_streaminfo *info =
2281
                                &dbri->stream_info[kcontrol->private_value];
2282
        int changed = 0;
2283
 
2284
        if (info->left_gain != ucontrol->value.integer.value[0]) {
2285
                info->left_gain = ucontrol->value.integer.value[0];
2286
                changed = 1;
2287
        }
2288
        if (info->right_gain != ucontrol->value.integer.value[1]) {
2289
                info->right_gain = ucontrol->value.integer.value[1];
2290
                changed = 1;
2291
        }
2292
        if (changed) {
2293
                /* First mute outputs, and wait 1/8000 sec (125 us)
2294
                 * to make sure this takes.  This avoids clicking noises.
2295
                 */
2296
                cs4215_setdata(dbri, 1);
2297
                udelay(125);
2298
                cs4215_setdata(dbri, 0);
2299
        }
2300
        return changed;
2301
}
2302
 
2303
static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2304
                                  struct snd_ctl_elem_info *uinfo)
2305
{
2306
        int mask = (kcontrol->private_value >> 16) & 0xff;
2307
 
2308
        uinfo->type = (mask == 1) ?
2309
            SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2310
        uinfo->count = 1;
2311
        uinfo->value.integer.min = 0;
2312
        uinfo->value.integer.max = mask;
2313
        return 0;
2314
}
2315
 
2316
static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2317
                                 struct snd_ctl_elem_value *ucontrol)
2318
{
2319
        struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2320
        int elem = kcontrol->private_value & 0xff;
2321
        int shift = (kcontrol->private_value >> 8) & 0xff;
2322
        int mask = (kcontrol->private_value >> 16) & 0xff;
2323
        int invert = (kcontrol->private_value >> 24) & 1;
2324
        snd_assert(dbri != NULL, return -EINVAL);
2325
 
2326
        if (elem < 4)
2327
                ucontrol->value.integer.value[0] =
2328
                    (dbri->mm.data[elem] >> shift) & mask;
2329
        else
2330
                ucontrol->value.integer.value[0] =
2331
                    (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2332
 
2333
        if (invert == 1)
2334
                ucontrol->value.integer.value[0] =
2335
                    mask - ucontrol->value.integer.value[0];
2336
        return 0;
2337
}
2338
 
2339
static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2340
                                 struct snd_ctl_elem_value *ucontrol)
2341
{
2342
        struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2343
        int elem = kcontrol->private_value & 0xff;
2344
        int shift = (kcontrol->private_value >> 8) & 0xff;
2345
        int mask = (kcontrol->private_value >> 16) & 0xff;
2346
        int invert = (kcontrol->private_value >> 24) & 1;
2347
        int changed = 0;
2348
        unsigned short val;
2349
        snd_assert(dbri != NULL, return -EINVAL);
2350
 
2351
        val = (ucontrol->value.integer.value[0] & mask);
2352
        if (invert == 1)
2353
                val = mask - val;
2354
        val <<= shift;
2355
 
2356
        if (elem < 4) {
2357
                dbri->mm.data[elem] = (dbri->mm.data[elem] &
2358
                                       ~(mask << shift)) | val;
2359
                changed = (val != dbri->mm.data[elem]);
2360
        } else {
2361
                dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2362
                                           ~(mask << shift)) | val;
2363
                changed = (val != dbri->mm.ctrl[elem - 4]);
2364
        }
2365
 
2366
        dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2367
                "mixer-value=%ld, mm-value=0x%x\n",
2368
                mask, changed, ucontrol->value.integer.value[0],
2369
                dbri->mm.data[elem & 3]);
2370
 
2371
        if (changed) {
2372
                /* First mute outputs, and wait 1/8000 sec (125 us)
2373
                 * to make sure this takes.  This avoids clicking noises.
2374
                 */
2375
                cs4215_setdata(dbri, 1);
2376
                udelay(125);
2377
                cs4215_setdata(dbri, 0);
2378
        }
2379
        return changed;
2380
}
2381
 
2382
/* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2383
   timeslots. Shift is the bit offset in the timeslot, mask defines the
2384
   number of bits. invert is a boolean for use with attenuation.
2385
 */
2386
#define CS4215_SINGLE(xname, entry, shift, mask, invert)        \
2387
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),         \
2388
  .info = snd_cs4215_info_single,                               \
2389
  .get = snd_cs4215_get_single, .put = snd_cs4215_put_single,   \
2390
  .private_value = (entry) | ((shift) << 8) | ((mask) << 16) |  \
2391
                        ((invert) << 24) },
2392
 
2393
static struct snd_kcontrol_new dbri_controls[] __devinitdata = {
2394
        {
2395
         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2396
         .name  = "Playback Volume",
2397
         .info  = snd_cs4215_info_volume,
2398
         .get   = snd_cs4215_get_volume,
2399
         .put   = snd_cs4215_put_volume,
2400
         .private_value = DBRI_PLAY,
2401
         },
2402
        CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2403
        CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2404
        CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2405
        {
2406
         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2407
         .name  = "Capture Volume",
2408
         .info  = snd_cs4215_info_volume,
2409
         .get   = snd_cs4215_get_volume,
2410
         .put   = snd_cs4215_put_volume,
2411
         .private_value = DBRI_REC,
2412
         },
2413
        /* FIXME: mic/line switch */
2414
        CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2415
        CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2416
        CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2417
        CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2418
};
2419
 
2420
static int __devinit snd_dbri_mixer(struct snd_card *card)
2421
{
2422
        int idx, err;
2423
        struct snd_dbri *dbri;
2424
 
2425
        snd_assert(card != NULL && card->private_data != NULL, return -EINVAL);
2426
        dbri = card->private_data;
2427
 
2428
        strcpy(card->mixername, card->shortname);
2429
 
2430
        for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2431
                err = snd_ctl_add(card,
2432
                                snd_ctl_new1(&dbri_controls[idx], dbri));
2433
                if (err < 0)
2434
                        return err;
2435
        }
2436
 
2437
        for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2438
                dbri->stream_info[idx].left_gain = 0;
2439
                dbri->stream_info[idx].right_gain = 0;
2440
        }
2441
 
2442
        return 0;
2443
}
2444
 
2445
/****************************************************************************
2446
                        /proc interface
2447
****************************************************************************/
2448
static void dbri_regs_read(struct snd_info_entry *entry,
2449
                           struct snd_info_buffer *buffer)
2450
{
2451
        struct snd_dbri *dbri = entry->private_data;
2452
 
2453
        snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2454
        snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2455
        snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2456
        snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2457
}
2458
 
2459
#ifdef DBRI_DEBUG
2460
static void dbri_debug_read(struct snd_info_entry *entry,
2461
                            struct snd_info_buffer *buffer)
2462
{
2463
        struct snd_dbri *dbri = entry->private_data;
2464
        int pipe;
2465
        snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2466
 
2467
        for (pipe = 0; pipe < 32; pipe++) {
2468
                if (pipe_active(dbri, pipe)) {
2469
                        struct dbri_pipe *pptr = &dbri->pipes[pipe];
2470
                        snd_iprintf(buffer,
2471
                                    "Pipe %d: %s SDP=0x%x desc=%d, "
2472
                                    "len=%d next %d\n",
2473
                                    pipe,
2474
                                   (pptr->sdp & D_SDP_TO_SER) ? "output" :
2475
                                                                 "input",
2476
                                    pptr->sdp, pptr->desc,
2477
                                    pptr->length, pptr->nextpipe);
2478
                }
2479
        }
2480
}
2481
#endif
2482
 
2483
void __devinit snd_dbri_proc(struct snd_card *card)
2484
{
2485
        struct snd_dbri *dbri = card->private_data;
2486
        struct snd_info_entry *entry;
2487
 
2488
        if (!snd_card_proc_new(card, "regs", &entry))
2489
                snd_info_set_text_ops(entry, dbri, dbri_regs_read);
2490
 
2491
#ifdef DBRI_DEBUG
2492
        if (!snd_card_proc_new(card, "debug", &entry)) {
2493
                snd_info_set_text_ops(entry, dbri, dbri_debug_read);
2494
                entry->mode = S_IFREG | S_IRUGO;        /* Readable only. */
2495
        }
2496
#endif
2497
}
2498
 
2499
/*
2500
****************************************************************************
2501
**************************** Initialization ********************************
2502
****************************************************************************
2503
*/
2504
static void snd_dbri_free(struct snd_dbri *dbri);
2505
 
2506
static int __devinit snd_dbri_create(struct snd_card *card,
2507
                                  struct sbus_dev *sdev,
2508
                                  int irq, int dev)
2509
{
2510
        struct snd_dbri *dbri = card->private_data;
2511
        int err;
2512
 
2513
        spin_lock_init(&dbri->lock);
2514
        dbri->sdev = sdev;
2515
        dbri->irq = irq;
2516
 
2517
        dbri->dma = sbus_alloc_consistent(sdev, sizeof(struct dbri_dma),
2518
                                          &dbri->dma_dvma);
2519
        memset((void *)dbri->dma, 0, sizeof(struct dbri_dma));
2520
 
2521
        dprintk(D_GEN, "DMA Cmd Block 0x%p (0x%08x)\n",
2522
                dbri->dma, dbri->dma_dvma);
2523
 
2524
        /* Map the registers into memory. */
2525
        dbri->regs_size = sdev->reg_addrs[0].reg_size;
2526
        dbri->regs = sbus_ioremap(&sdev->resource[0], 0,
2527
                                  dbri->regs_size, "DBRI Registers");
2528
        if (!dbri->regs) {
2529
                printk(KERN_ERR "DBRI: could not allocate registers\n");
2530
                sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2531
                                     (void *)dbri->dma, dbri->dma_dvma);
2532
                return -EIO;
2533
        }
2534
 
2535
        err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2536
                          "DBRI audio", dbri);
2537
        if (err) {
2538
                printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2539
                sbus_iounmap(dbri->regs, dbri->regs_size);
2540
                sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2541
                                     (void *)dbri->dma, dbri->dma_dvma);
2542
                return err;
2543
        }
2544
 
2545
        /* Do low level initialization of the DBRI and CS4215 chips */
2546
        dbri_initialize(dbri);
2547
        err = cs4215_init(dbri);
2548
        if (err) {
2549
                snd_dbri_free(dbri);
2550
                return err;
2551
        }
2552
 
2553
        return 0;
2554
}
2555
 
2556
static void snd_dbri_free(struct snd_dbri *dbri)
2557
{
2558
        dprintk(D_GEN, "snd_dbri_free\n");
2559
        dbri_reset(dbri);
2560
 
2561
        if (dbri->irq)
2562
                free_irq(dbri->irq, dbri);
2563
 
2564
        if (dbri->regs)
2565
                sbus_iounmap(dbri->regs, dbri->regs_size);
2566
 
2567
        if (dbri->dma)
2568
                sbus_free_consistent(dbri->sdev, sizeof(struct dbri_dma),
2569
                                     (void *)dbri->dma, dbri->dma_dvma);
2570
}
2571
 
2572
static int __devinit dbri_probe(struct of_device *of_dev,
2573
                                const struct of_device_id *match)
2574
{
2575
        struct sbus_dev *sdev = to_sbus_device(&of_dev->dev);
2576
        struct snd_dbri *dbri;
2577
        int irq;
2578
        struct resource *rp;
2579
        struct snd_card *card;
2580
        static int dev = 0;
2581
        int err;
2582
 
2583
        dprintk(D_GEN, "DBRI: Found %s in SBUS slot %d\n",
2584
                sdev->prom_name, sdev->slot);
2585
 
2586
        if (dev >= SNDRV_CARDS)
2587
                return -ENODEV;
2588
        if (!enable[dev]) {
2589
                dev++;
2590
                return -ENOENT;
2591
        }
2592
 
2593
        irq = sdev->irqs[0];
2594
        if (irq <= 0) {
2595
                printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2596
                return -ENODEV;
2597
        }
2598
 
2599
        card = snd_card_new(index[dev], id[dev], THIS_MODULE,
2600
                            sizeof(struct snd_dbri));
2601
        if (card == NULL)
2602
                return -ENOMEM;
2603
 
2604
        strcpy(card->driver, "DBRI");
2605
        strcpy(card->shortname, "Sun DBRI");
2606
        rp = &sdev->resource[0];
2607
        sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2608
                card->shortname,
2609
                rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2610
 
2611
        err = snd_dbri_create(card, sdev, irq, dev);
2612
        if (err < 0) {
2613
                snd_card_free(card);
2614
                return err;
2615
        }
2616
 
2617
        dbri = card->private_data;
2618
        err = snd_dbri_pcm(card);
2619
        if (err < 0)
2620
                goto _err;
2621
 
2622
        err = snd_dbri_mixer(card);
2623
        if (err < 0)
2624
                goto _err;
2625
 
2626
        /* /proc file handling */
2627
        snd_dbri_proc(card);
2628
        dev_set_drvdata(&of_dev->dev, card);
2629
 
2630
        err = snd_card_register(card);
2631
        if (err < 0)
2632
                goto _err;
2633
 
2634
        printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2635
               dev, dbri->regs,
2636
               dbri->irq, sdev->prom_name[9], dbri->mm.version);
2637
        dev++;
2638
 
2639
        return 0;
2640
 
2641
_err:
2642
        snd_dbri_free(dbri);
2643
        snd_card_free(card);
2644
        return err;
2645
}
2646
 
2647
static int __devexit dbri_remove(struct of_device *dev)
2648
{
2649
        struct snd_card *card = dev_get_drvdata(&dev->dev);
2650
 
2651
        snd_dbri_free(card->private_data);
2652
        snd_card_free(card);
2653
 
2654
        dev_set_drvdata(&dev->dev, NULL);
2655
 
2656
        return 0;
2657
}
2658
 
2659
static struct of_device_id dbri_match[] = {
2660
        {
2661
                .name = "SUNW,DBRIe",
2662
        },
2663
        {
2664
                .name = "SUNW,DBRIf",
2665
        },
2666
        {},
2667
};
2668
 
2669
MODULE_DEVICE_TABLE(of, dbri_match);
2670
 
2671
static struct of_platform_driver dbri_sbus_driver = {
2672
        .name           = "dbri",
2673
        .match_table    = dbri_match,
2674
        .probe          = dbri_probe,
2675
        .remove         = __devexit_p(dbri_remove),
2676
};
2677
 
2678
/* Probe for the dbri chip and then attach the driver. */
2679
static int __init dbri_init(void)
2680
{
2681
        return of_register_driver(&dbri_sbus_driver, &sbus_bus_type);
2682
}
2683
 
2684
static void __exit dbri_exit(void)
2685
{
2686
        of_unregister_driver(&dbri_sbus_driver);
2687
}
2688
 
2689
module_init(dbri_init);
2690
module_exit(dbri_exit);

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.