| 1 |
209 |
diegovalve |
/*
|
| 2 |
|
|
Fixed point Multiplication Module Qm.n
|
| 3 |
|
|
C = (A << n) / B
|
| 4 |
|
|
|
| 5 |
|
|
*/
|
| 6 |
|
|
|
| 7 |
|
|
`timescale 1ns / 1ps
|
| 8 |
|
|
`include "aDefinitions.v"
|
| 9 |
|
|
//---------------------------------------------------------------------------
|
| 10 |
|
|
// serial_divide_uu.v -- Serial division module
|
| 11 |
|
|
//
|
| 12 |
|
|
//
|
| 13 |
|
|
// Description: See description below (which suffices for IP core
|
| 14 |
|
|
// specification document.)
|
| 15 |
|
|
//
|
| 16 |
|
|
// Copyright (C) 2002 John Clayton and OPENCORES.ORG (this Verilog version)
|
| 17 |
|
|
//
|
| 18 |
|
|
// This source file may be used and distributed without restriction provided
|
| 19 |
|
|
// that this copyright statement is not removed from the file and that any
|
| 20 |
|
|
// derivative work contains the original copyright notice and the associated
|
| 21 |
|
|
// disclaimer.
|
| 22 |
|
|
//
|
| 23 |
|
|
// This source file is free software; you can redistribute it and/or modify
|
| 24 |
|
|
// it under the terms of the GNU Lesser General Public License as published
|
| 25 |
|
|
// by the Free Software Foundation; either version 2.1 of the License, or
|
| 26 |
|
|
// (at your option) any later version.
|
| 27 |
|
|
//
|
| 28 |
|
|
// This source is distributed in the hope that it will be useful, but WITHOUT
|
| 29 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 30 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
| 31 |
|
|
// License for more details.
|
| 32 |
|
|
//
|
| 33 |
|
|
// You should have received a copy of the GNU Lesser General Public License
|
| 34 |
|
|
// along with this source.
|
| 35 |
|
|
// If not, download it from http://www.opencores.org/lgpl.shtml
|
| 36 |
|
|
//
|
| 37 |
|
|
//-----------------------------------------------------------------------------
|
| 38 |
|
|
//
|
| 39 |
|
|
// Author: John Clayton
|
| 40 |
|
|
// Date : Jan. 30, 2003
|
| 41 |
|
|
// Update: Jan. 30, 2003 Copied this file from "vga_crosshair.v"
|
| 42 |
|
|
// Stripped out extraneous stuff.
|
| 43 |
|
|
// Update: Mar. 14, 2003 Added S_PP parameter, made some simple changes to
|
| 44 |
|
|
// implement quotient leading zero "skip" feature.
|
| 45 |
|
|
// Update: Mar. 24, 2003 Updated comments to improve readability.
|
| 46 |
|
|
//
|
| 47 |
|
|
//-----------------------------------------------------------------------------
|
| 48 |
|
|
// Description:
|
| 49 |
|
|
//
|
| 50 |
|
|
// This module performs a division operation serially, producing one bit of the
|
| 51 |
|
|
// answer per clock cycle. The dividend and the divisor are both taken to be
|
| 52 |
|
|
// unsigned quantities. The divider is conceived as an integer divider (as
|
| 53 |
|
|
// opposed to a divider for fractional quantities) but the user can configure
|
| 54 |
|
|
// the divider to divide fractional quantities as long as the position of the
|
| 55 |
|
|
// binary point is carefully monitored.
|
| 56 |
|
|
//
|
| 57 |
|
|
// The widths of the signals are configurable by parameters, as follows:
|
| 58 |
|
|
//
|
| 59 |
|
|
// M_PP = Bit width of the dividend
|
| 60 |
|
|
// N_PP = Bit width of the divisor
|
| 61 |
|
|
// R_PP = Remainder bits desired
|
| 62 |
|
|
// S_PP = Skipped quotient bits
|
| 63 |
|
|
//
|
| 64 |
|
|
// The skipped quotient bits parameter provides a way to prevent the divider
|
| 65 |
|
|
// from calculating the full M_PP+R_PP output bits, in case some of the leading
|
| 66 |
|
|
// bits are already known to be zero. This is the case, for example, when
|
| 67 |
|
|
// dividing two quantities to obtain a result that is a fraction between 0 and 1
|
| 68 |
|
|
// (as when measuring PWM signals). In that case the integer portion of the
|
| 69 |
|
|
// quotient is always zero, and therefore it need not be calculated.
|
| 70 |
|
|
//
|
| 71 |
|
|
// The divide operation is begun by providing a pulse on the divide_i input.
|
| 72 |
|
|
// The quotient is provided (M_PP+R_PP-S_PP) clock cycles later.
|
| 73 |
|
|
// The divide_i pulse stores the input parameters in registers, so they do
|
| 74 |
|
|
// not need to be maintained at the inputs throughout the operation of the module.
|
| 75 |
|
|
// If a divide_i pulse is given to the serial_divide_uu module during the time
|
| 76 |
|
|
// when it is already working on a previous divide operation, it will abort the
|
| 77 |
|
|
// operation it was doing, and begin working on the new one.
|
| 78 |
|
|
//
|
| 79 |
|
|
// The user is responsible for treating the results correctly. The position
|
| 80 |
|
|
// of the binary point is not given, but it is understood that the integer part
|
| 81 |
|
|
// of the result is the M_PP most significant bits of the quotient output.
|
| 82 |
|
|
// The remaining R_PP least significant bits are the fractional part.
|
| 83 |
|
|
//
|
| 84 |
|
|
// This is illustrated graphically:
|
| 85 |
|
|
//
|
| 86 |
|
|
// [ M_PP bits ][ R_PP bits]
|
| 87 |
|
|
// [ S_PP bits ][quotient_o]
|
| 88 |
|
|
//
|
| 89 |
|
|
// The quotient will consist of whatever bits are left after removing the S_PP
|
| 90 |
|
|
// most significant bits from the (M_PP+R_PP) result bits.
|
| 91 |
|
|
//
|
| 92 |
|
|
// Attempting to divide by zero will simply produce a result of all ones.
|
| 93 |
|
|
// This core is so simple, that no checking for this condition is provided.
|
| 94 |
|
|
// If the user is concerned about a possible divide by zero condition, he should
|
| 95 |
|
|
// compare the divisor to zero and flag that condition himself!
|
| 96 |
|
|
//
|
| 97 |
|
|
// The COUNT_WIDTH_PP parameter must be sized so that 2^COUNT_WIDTH_PP-1 is >=
|
| 98 |
|
|
// M_PP+R_PP-S_PP-1. The unit terminates the divide operation when the count
|
| 99 |
|
|
// is equal to M_PP+R_PP-S_PP-1.
|
| 100 |
|
|
//
|
| 101 |
|
|
// The HELD_OUTPUT_PP parameter causes the unit to keep its output result in
|
| 102 |
|
|
// a register other than the one which it uses to compute the quotient. This
|
| 103 |
|
|
// is useful for applications where the divider is used repeatedly and the
|
| 104 |
|
|
// previous divide result (quotient) must be stable during the computation of the
|
| 105 |
|
|
// next divide result. Using the additional output register does incur some
|
| 106 |
|
|
// additional utilization of resources.
|
| 107 |
|
|
//
|
| 108 |
|
|
//-----------------------------------------------------------------------------
|
| 109 |
|
|
|
| 110 |
|
|
|
| 111 |
|
|
module serial_divide_uu (
|
| 112 |
|
|
clk_i,
|
| 113 |
|
|
clk_en_i,
|
| 114 |
|
|
rst_i,
|
| 115 |
|
|
divide_i,
|
| 116 |
|
|
dividend_i,
|
| 117 |
|
|
divisor_i,
|
| 118 |
|
|
quotient_o,
|
| 119 |
|
|
done_o
|
| 120 |
|
|
);
|
| 121 |
|
|
/*
|
| 122 |
|
|
M_PP => 21,
|
| 123 |
|
|
N_PP => 21,
|
| 124 |
|
|
R_PP => 0,
|
| 125 |
|
|
S_PP => 0,
|
| 126 |
|
|
HELD_OUTPUT_PP => 1
|
| 127 |
|
|
*/
|
| 128 |
|
|
parameter M_PP = 21; // Size of dividend
|
| 129 |
|
|
parameter N_PP = 21; // Size of divisor
|
| 130 |
|
|
parameter R_PP = 0; // Size of remainder
|
| 131 |
|
|
parameter S_PP = 0; // Skip this many bits (known leading zeros)
|
| 132 |
|
|
parameter COUNT_WIDTH_PP = 5; // 2^COUNT_WIDTH_PP-1 >= (M_PP+R_PP-S_PP-1)
|
| 133 |
|
|
parameter HELD_OUTPUT_PP = 1; // Set to 1 if stable output should be held
|
| 134 |
|
|
// from previous operation, during current
|
| 135 |
|
|
// operation. Using this option will increase
|
| 136 |
|
|
// the resource utilization (costs extra
|
| 137 |
|
|
// d-flip-flops.)
|
| 138 |
|
|
|
| 139 |
|
|
// I/O declarations
|
| 140 |
|
|
input clk_i; //
|
| 141 |
|
|
input clk_en_i;
|
| 142 |
|
|
input rst_i; // synchronous reset
|
| 143 |
|
|
input divide_i; // starts division operation
|
| 144 |
|
|
input [M_PP-1:0] dividend_i; //
|
| 145 |
|
|
input [N_PP-1:0] divisor_i; //
|
| 146 |
|
|
output [M_PP+R_PP-S_PP-1:0] quotient_o; //
|
| 147 |
|
|
output done_o; // indicates completion of operation
|
| 148 |
|
|
|
| 149 |
|
|
//reg [M_PP+R_PP-1:0] quotient_o;
|
| 150 |
|
|
reg done_o;
|
| 151 |
|
|
|
| 152 |
|
|
// Internal signal declarations
|
| 153 |
|
|
|
| 154 |
|
|
reg [M_PP+R_PP-1:0] grand_dividend;
|
| 155 |
|
|
reg [M_PP+N_PP+R_PP-2:0] grand_divisor;
|
| 156 |
|
|
reg [M_PP+R_PP-S_PP-1:0] quotient;
|
| 157 |
|
|
reg [M_PP+R_PP-1:0] quotient_reg; // Used exclusively for the held output
|
| 158 |
|
|
reg [COUNT_WIDTH_PP-1:0] divide_count;
|
| 159 |
|
|
|
| 160 |
|
|
wire [M_PP+N_PP+R_PP-1:0] subtract_node; // Subtract node has extra "sign" bit
|
| 161 |
|
|
wire [M_PP+R_PP-1:0] quotient_node; // Shifted version of quotient
|
| 162 |
|
|
wire [M_PP+N_PP+R_PP-2:0] divisor_node; // Shifted version of grand divisor
|
| 163 |
|
|
|
| 164 |
|
|
//--------------------------------------------------------------------------
|
| 165 |
|
|
// Module code
|
| 166 |
|
|
|
| 167 |
|
|
// Serial dividing module
|
| 168 |
|
|
always @(posedge clk_i)
|
| 169 |
|
|
begin
|
| 170 |
|
|
if (rst_i)
|
| 171 |
|
|
begin
|
| 172 |
|
|
grand_dividend <= 0;
|
| 173 |
|
|
grand_divisor <= 0;
|
| 174 |
|
|
divide_count <= 0;
|
| 175 |
|
|
quotient <= 0;
|
| 176 |
|
|
done_o <= 0;
|
| 177 |
|
|
end
|
| 178 |
|
|
else if (clk_en_i)
|
| 179 |
|
|
begin
|
| 180 |
|
|
done_o <= 0;
|
| 181 |
|
|
if (divide_i) // Start a new division
|
| 182 |
|
|
begin
|
| 183 |
|
|
quotient <= 0;
|
| 184 |
|
|
divide_count <= 0;
|
| 185 |
|
|
// dividend placed initially so that remainder bits are zero...
|
| 186 |
|
|
grand_dividend <= dividend_i << R_PP;
|
| 187 |
|
|
// divisor placed initially for a 1 bit overlap with dividend...
|
| 188 |
|
|
// But adjust it back by S_PP, to account for bits that are known
|
| 189 |
|
|
// to be leading zeros in the quotient.
|
| 190 |
|
|
/* verilator lint_off WIDTH */
|
| 191 |
|
|
grand_divisor <= divisor_i << (N_PP+R_PP-S_PP-1);
|
| 192 |
|
|
/* verilator lint_on WIDTH */
|
| 193 |
|
|
end
|
| 194 |
|
|
/* verilator lint_off WIDTH */
|
| 195 |
|
|
else if (divide_count == M_PP+R_PP-S_PP-1)
|
| 196 |
|
|
/* verilator lint_on WIDTH */
|
| 197 |
|
|
begin
|
| 198 |
|
|
if (~done_o) quotient <= quotient_node; // final shift...
|
| 199 |
|
|
if (~done_o) quotient_reg <= quotient_node; // final shift (held output)
|
| 200 |
|
|
done_o <= 1; // Indicate done, just sit
|
| 201 |
|
|
end
|
| 202 |
|
|
else // Division in progress
|
| 203 |
|
|
begin
|
| 204 |
|
|
// If the subtraction yields a positive result, then store that result
|
| 205 |
|
|
/* verilator lint_off WIDTH */
|
| 206 |
|
|
if (~subtract_node[M_PP+N_PP+R_PP-1]) grand_dividend <= subtract_node;
|
| 207 |
|
|
/* verilator lint_on WIDTH */
|
| 208 |
|
|
// If the subtraction yields a positive result, then a 1 bit goes into
|
| 209 |
|
|
// the quotient, via a shift register
|
| 210 |
|
|
quotient <= quotient_node;
|
| 211 |
|
|
// shift the grand divisor to the right, to cut it in half next clock cycle
|
| 212 |
|
|
grand_divisor <= divisor_node;
|
| 213 |
|
|
// Advance the counter
|
| 214 |
|
|
divide_count <= divide_count + 1;
|
| 215 |
|
|
end
|
| 216 |
|
|
end // End of else if clk_en_i
|
| 217 |
|
|
end // End of always block
|
| 218 |
|
|
|
| 219 |
|
|
/* verilator lint_off WIDTH */
|
| 220 |
|
|
assign subtract_node = {1'b0,grand_dividend} - {1'b0,grand_divisor};
|
| 221 |
|
|
/* verilator lint_on WIDTH */
|
| 222 |
|
|
assign quotient_node =
|
| 223 |
|
|
{quotient[M_PP+R_PP-S_PP-2:0],~subtract_node[M_PP+N_PP+R_PP-1]};
|
| 224 |
|
|
assign divisor_node = {1'b0,grand_divisor[M_PP+N_PP+R_PP-2:1]};
|
| 225 |
|
|
|
| 226 |
|
|
assign quotient_o = (HELD_OUTPUT_PP == 0)?quotient:quotient_reg;
|
| 227 |
|
|
|
| 228 |
|
|
endmodule
|
| 229 |
|
|
|
| 230 |
|
|
module SignedIntegerDivision
|
| 231 |
|
|
(
|
| 232 |
|
|
input wire Clock,
|
| 233 |
|
|
input wire Reset,
|
| 234 |
|
|
output wire [`WIDTH-1:0] oQuotient,
|
| 235 |
|
|
input wire [`LONG_WIDTH-1:0] iDividend,
|
| 236 |
|
|
input wire [`LONG_WIDTH-1:0] iDivisor,
|
| 237 |
|
|
input wire iInputReady,
|
| 238 |
|
|
output wire OutputReady
|
| 239 |
|
|
|
| 240 |
|
|
|
| 241 |
|
|
);
|
| 242 |
|
|
|
| 243 |
|
|
|
| 244 |
|
|
wire wInputReadyDelay1,wInputReadyPulse;
|
| 245 |
|
|
FFD_POSEDGE_SYNCRONOUS_RESET # ( 1 ) FF_DELAY1
|
| 246 |
|
|
(
|
| 247 |
|
|
.Clock( Clock ),
|
| 248 |
|
|
.Reset( Reset ),
|
| 249 |
|
|
.Enable( 1'b1 ),
|
| 250 |
|
|
.D( iInputReady ),
|
| 251 |
|
|
.Q(wInputReadyDelay1)
|
| 252 |
|
|
);
|
| 253 |
|
|
|
| 254 |
|
|
assign wInputReadyPulse = iInputReady & ~wInputReadyDelay1;
|
| 255 |
|
|
|
| 256 |
|
|
wire [`LONG_WIDTH-1:0] wDividend,wDivisor,wScaledDividend;
|
| 257 |
|
|
wire [`LONG_WIDTH-1:0] wNegDividend,wNegDivisor;
|
| 258 |
|
|
assign wNegDividend = ~iDividend+1'b1;
|
| 259 |
|
|
assign wNegDivisor = ~iDivisor + 1'b1;
|
| 260 |
|
|
|
| 261 |
|
|
wire [`LONG_WIDTH-1:0] wQuotient;
|
| 262 |
|
|
//Assign the sign extended signed value
|
| 263 |
|
|
assign wDividend = (iDividend[`LONG_WIDTH-1] == 1'b1) ? wNegDividend : iDividend;
|
| 264 |
|
|
|
| 265 |
|
|
assign wDivisor = (iDivisor[`LONG_WIDTH-1] == 1'b1) ? wNegDivisor : iDivisor ;
|
| 266 |
|
|
wire wNegativeOutput;
|
| 267 |
|
|
assign wNegativeOutput = iDividend[`LONG_WIDTH-1] ^ iDivisor[`LONG_WIDTH-1];
|
| 268 |
|
|
|
| 269 |
|
|
wire wNegativeOutput_Latched;
|
| 270 |
|
|
FFD_POSEDGE_SYNCRONOUS_RESET # ( 1 ) FF_NEG
|
| 271 |
|
|
(
|
| 272 |
|
|
.Clock( Clock ),
|
| 273 |
|
|
.Reset( Reset ),
|
| 274 |
|
|
.Enable( iInputReady ),
|
| 275 |
|
|
.D( wNegativeOutput ),
|
| 276 |
|
|
.Q(wNegativeOutput_Latched)
|
| 277 |
|
|
);
|
| 278 |
|
|
|
| 279 |
|
|
wire wDividerEnable;
|
| 280 |
|
|
UPCOUNTER_POSEDGE # (1) UP1
|
| 281 |
|
|
(
|
| 282 |
|
|
.Clock(Clock),
|
| 283 |
|
|
.Reset(Reset),
|
| 284 |
|
|
.Initial(1'b0),
|
| 285 |
|
|
.Enable(OutputReady | iInputReady ),
|
| 286 |
|
|
.Q(wDividerEnable)
|
| 287 |
|
|
);
|
| 288 |
|
|
|
| 289 |
|
|
|
| 290 |
|
|
assign oQuotient = (wNegativeOutput_Latched) ? ~wQuotient[`WIDTH-1:0]+1'b1 : wQuotient[`WIDTH-1:0];
|
| 291 |
|
|
wire wOutputReady,wOutputReadyDelay1;
|
| 292 |
|
|
|
| 293 |
|
|
FFD_POSEDGE_SYNCRONOUS_RESET # ( 1 ) FF_DELAY2
|
| 294 |
|
|
(
|
| 295 |
|
|
.Clock( Clock ),
|
| 296 |
|
|
.Reset( Reset | iInputReady),
|
| 297 |
|
|
.Enable( 1'b1 ),
|
| 298 |
|
|
.D( wOutputReady ),
|
| 299 |
|
|
.Q(wOutputReadyDelay1)
|
| 300 |
|
|
);
|
| 301 |
|
|
assign OutputReady = (wOutputReady ^ wOutputReadyDelay1) & wDividerEnable;
|
| 302 |
|
|
assign wScaledDividend = (wDividend); //<< `SCALE);
|
| 303 |
|
|
|
| 304 |
|
|
serial_divide_uu # ( 64,64,0,0,6,1 ) uu_div(
|
| 305 |
|
|
.clk_i(Clock),
|
| 306 |
|
|
.clk_en_i(
|
| 307 |
|
|
//wDividerEnable | Reset),
|
| 308 |
|
|
1'b1),
|
| 309 |
|
|
.rst_i(Reset),
|
| 310 |
|
|
.divide_i(wInputReadyPulse),//iInputReady),
|
| 311 |
|
|
.dividend_i(wScaledDividend),
|
| 312 |
|
|
.divisor_i(wDivisor),
|
| 313 |
|
|
.quotient_o(wQuotient),
|
| 314 |
|
|
.done_o(wOutputReady)
|
| 315 |
|
|
);
|
| 316 |
|
|
|
| 317 |
|
|
endmodule
|