| 1 |
51 |
robfinch |
`timescale 1ns / 1ps
|
| 2 |
|
|
// ============================================================================
|
| 3 |
|
|
// __
|
| 4 |
|
|
// \\__/ o\ (C) 2006-2018 Robert Finch, Waterloo
|
| 5 |
|
|
// \ __ / All rights reserved.
|
| 6 |
|
|
// \/_// robfinch<remove>@finitron.ca
|
| 7 |
|
|
// ||
|
| 8 |
|
|
//
|
| 9 |
|
|
// fpAddsub.v
|
| 10 |
|
|
// - floating point adder/subtracter
|
| 11 |
|
|
// - two cycle latency
|
| 12 |
|
|
// - can issue every clock cycle
|
| 13 |
|
|
// - parameterized width
|
| 14 |
|
|
// - IEEE 754 representation
|
| 15 |
|
|
//
|
| 16 |
|
|
//
|
| 17 |
|
|
// This source file is free software: you can redistribute it and/or modify
|
| 18 |
|
|
// it under the terms of the GNU Lesser General Public License as published
|
| 19 |
|
|
// by the Free Software Foundation, either version 3 of the License, or
|
| 20 |
|
|
// (at your option) any later version.
|
| 21 |
|
|
//
|
| 22 |
|
|
// This source file is distributed in the hope that it will be useful,
|
| 23 |
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 24 |
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 25 |
|
|
// GNU General Public License for more details.
|
| 26 |
|
|
//
|
| 27 |
|
|
// You should have received a copy of the GNU General Public License
|
| 28 |
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
| 29 |
|
|
//
|
| 30 |
|
|
// ============================================================================
|
| 31 |
|
|
|
| 32 |
|
|
module fpAddsub(clk, ce, rm, op, a, b, o);
|
| 33 |
|
|
parameter WID = 128;
|
| 34 |
|
|
localparam MSB = WID-1;
|
| 35 |
|
|
localparam EMSB = WID==128 ? 14 :
|
| 36 |
|
|
WID==96 ? 14 :
|
| 37 |
|
|
WID==80 ? 14 :
|
| 38 |
|
|
WID==64 ? 10 :
|
| 39 |
|
|
WID==52 ? 10 :
|
| 40 |
|
|
WID==48 ? 11 :
|
| 41 |
|
|
WID==44 ? 10 :
|
| 42 |
|
|
WID==42 ? 10 :
|
| 43 |
|
|
WID==40 ? 9 :
|
| 44 |
|
|
WID==32 ? 7 :
|
| 45 |
|
|
WID==24 ? 6 : 4;
|
| 46 |
|
|
localparam FMSB = WID==128 ? 111 :
|
| 47 |
|
|
WID==96 ? 79 :
|
| 48 |
|
|
WID==80 ? 63 :
|
| 49 |
|
|
WID==64 ? 51 :
|
| 50 |
|
|
WID==52 ? 39 :
|
| 51 |
|
|
WID==48 ? 34 :
|
| 52 |
|
|
WID==44 ? 31 :
|
| 53 |
|
|
WID==42 ? 29 :
|
| 54 |
|
|
WID==40 ? 28 :
|
| 55 |
|
|
WID==32 ? 22 :
|
| 56 |
|
|
WID==24 ? 15 : 9;
|
| 57 |
|
|
|
| 58 |
|
|
localparam FX = (FMSB+2)*2-1; // the MSB of the expanded fraction
|
| 59 |
|
|
localparam EX = FX + 1 + EMSB + 1 + 1 - 1;
|
| 60 |
|
|
|
| 61 |
|
|
input clk; // system clock
|
| 62 |
|
|
input ce; // core clock enable
|
| 63 |
|
|
input [2:0] rm; // rounding mode
|
| 64 |
|
|
input op; // operation 0 = add, 1 = subtract
|
| 65 |
|
|
input [WID-1:0] a; // operand a
|
| 66 |
|
|
input [WID-1:0] b; // operand b
|
| 67 |
|
|
output [EX:0] o; // output
|
| 68 |
|
|
|
| 69 |
|
|
|
| 70 |
|
|
// variables
|
| 71 |
|
|
wire so; // sign output
|
| 72 |
|
|
wire [EMSB:0] xo; // de normalized exponent output
|
| 73 |
|
|
reg [EMSB:0] xo1; // de normalized exponent output
|
| 74 |
|
|
wire [FX:0] mo; // mantissa output
|
| 75 |
|
|
reg [FX:0] mo1; // mantissa output
|
| 76 |
|
|
|
| 77 |
|
|
assign o = {so,xo,mo};
|
| 78 |
|
|
|
| 79 |
|
|
// operands sign,exponent,mantissa
|
| 80 |
|
|
wire sa, sb;
|
| 81 |
|
|
wire [EMSB:0] xa, xb;
|
| 82 |
|
|
wire [FMSB:0] ma, mb;
|
| 83 |
|
|
wire [FMSB+1:0] fracta, fractb;
|
| 84 |
|
|
wire [FMSB+1:0] fracta1, fractb1;
|
| 85 |
|
|
|
| 86 |
|
|
// which has greater magnitude ? Used for sign calc
|
| 87 |
|
|
wire xa_gt_xb = xa > xb;
|
| 88 |
|
|
wire xa_gt_xb1;
|
| 89 |
|
|
wire a_gt_b = xa_gt_xb || (xa==xb && ma > mb);
|
| 90 |
|
|
wire a_gt_b1;
|
| 91 |
|
|
wire az, bz; // operand a,b is zero
|
| 92 |
|
|
|
| 93 |
|
|
wire adn, bdn; // a,b denormalized ?
|
| 94 |
|
|
wire xaInf, xbInf;
|
| 95 |
|
|
wire aInf, bInf, aInf1, bInf1;
|
| 96 |
|
|
wire aNan, bNan, aNan1, bNan1;
|
| 97 |
|
|
|
| 98 |
|
|
wire [EMSB:0] xad = xa|adn; // operand a exponent, compensated for denormalized numbers
|
| 99 |
|
|
wire [EMSB:0] xbd = xb|bdn; // operand b exponent, compensated for denormalized numbers
|
| 100 |
|
|
|
| 101 |
|
|
fpDecomp #(WID) u1a (.i(a), .sgn(sa), .exp(xa), .man(ma), .fract(fracta), .xz(adn), .vz(az), .xinf(xaInf), .inf(aInf), .nan(aNan) );
|
| 102 |
|
|
fpDecomp #(WID) u1b (.i(b), .sgn(sb), .exp(xb), .man(mb), .fract(fractb), .xz(bdn), .vz(bz), .xinf(xbInf), .inf(bInf), .nan(bNan) );
|
| 103 |
|
|
|
| 104 |
|
|
// Figure out which operation is really needed an add or
|
| 105 |
|
|
// subtract ?
|
| 106 |
|
|
// If the signs are the same, use the orignal op,
|
| 107 |
|
|
// otherwise flip the operation
|
| 108 |
|
|
// a + b = add,+
|
| 109 |
|
|
// a + -b = sub, so of larger
|
| 110 |
|
|
// -a + b = sub, so of larger
|
| 111 |
|
|
// -a + -b = add,-
|
| 112 |
|
|
// a - b = sub, so of larger
|
| 113 |
|
|
// a - -b = add,+
|
| 114 |
|
|
// -a - b = add,-
|
| 115 |
|
|
// -a - -b = sub, so of larger
|
| 116 |
|
|
wire realOp = op ^ sa ^ sb;
|
| 117 |
|
|
wire realOp1;
|
| 118 |
|
|
wire op1;
|
| 119 |
|
|
|
| 120 |
|
|
// Find out if the result will be zero.
|
| 121 |
|
|
wire resZero = (realOp && xa==xb && ma==mb) || // subtract, same magnitude
|
| 122 |
|
|
(az & bz); // both a,b zero
|
| 123 |
|
|
|
| 124 |
|
|
// Compute output exponent
|
| 125 |
|
|
//
|
| 126 |
|
|
// The output exponent is the larger of the two exponents,
|
| 127 |
|
|
// unless a subtract operation is in progress and the two
|
| 128 |
|
|
// numbers are equal, in which case the exponent should be
|
| 129 |
|
|
// zero.
|
| 130 |
|
|
|
| 131 |
|
|
always @(xaInf,xbInf,resZero,xa,xb,xa_gt_xb)
|
| 132 |
|
|
xo1 = (xaInf&xbInf) ? xa : resZero ? 0 : xa_gt_xb ? xa : xb;
|
| 133 |
|
|
|
| 134 |
|
|
// Compute output sign
|
| 135 |
|
|
reg so1;
|
| 136 |
|
|
always @*
|
| 137 |
|
|
case ({resZero,sa,op,sb}) // synopsys full_case parallel_case
|
| 138 |
|
|
4'b0000: so1 <= 0; // + + + = +
|
| 139 |
|
|
4'b0001: so1 <= !a_gt_b; // + + - = sign of larger
|
| 140 |
|
|
4'b0010: so1 <= !a_gt_b; // + - + = sign of larger
|
| 141 |
|
|
4'b0011: so1 <= 0; // + - - = +
|
| 142 |
|
|
4'b0100: so1 <= a_gt_b; // - + + = sign of larger
|
| 143 |
|
|
4'b0101: so1 <= 1; // - + - = -
|
| 144 |
|
|
4'b0110: so1 <= 1; // - - + = -
|
| 145 |
|
|
4'b0111: so1 <= a_gt_b; // - - - = sign of larger
|
| 146 |
|
|
4'b1000: so1 <= 0; // A + B, sign = +
|
| 147 |
|
|
4'b1001: so1 <= rm==3; // A + -B, sign = + unless rounding down
|
| 148 |
|
|
4'b1010: so1 <= rm==3; // A - B, sign = + unless rounding down
|
| 149 |
|
|
4'b1011: so1 <= 0; // +A - -B, sign = +
|
| 150 |
|
|
4'b1100: so1 <= rm==3; // -A + B, sign = + unless rounding down
|
| 151 |
|
|
4'b1101: so1 <= 1; // -A + -B, sign = -
|
| 152 |
|
|
4'b1110: so1 <= 1; // -A - +B, sign = -
|
| 153 |
|
|
4'b1111: so1 <= rm==3; // -A - -B, sign = + unless rounding down
|
| 154 |
|
|
endcase
|
| 155 |
|
|
|
| 156 |
|
|
delay2 #(EMSB+1) d1(.clk(clk), .ce(ce), .i(xo1), .o(xo) );
|
| 157 |
|
|
delay2 #(1) d2(.clk(clk), .ce(ce), .i(so1), .o(so) );
|
| 158 |
|
|
|
| 159 |
|
|
// Compute the difference in exponents, provides shift amount
|
| 160 |
|
|
wire [EMSB:0] xdiff = xa_gt_xb ? xad - xbd : xbd - xad;
|
| 161 |
|
|
wire [6:0] xdif = xdiff > FMSB+3 ? FMSB+3 : xdiff;
|
| 162 |
|
|
wire [6:0] xdif1;
|
| 163 |
|
|
|
| 164 |
|
|
// determine which fraction to denormalize
|
| 165 |
|
|
wire [FMSB+1:0] mfs = xa_gt_xb ? fractb : fracta;
|
| 166 |
|
|
wire [FMSB+1:0] mfs1;
|
| 167 |
|
|
|
| 168 |
|
|
// Determine the sticky bit
|
| 169 |
|
|
wire sticky, sticky1;
|
| 170 |
|
|
generate
|
| 171 |
|
|
begin
|
| 172 |
|
|
if (WID==128)
|
| 173 |
|
|
redor128 u1 (.a(xdif), .b({mfs,2'b0}), .o(sticky) );
|
| 174 |
|
|
else if (WID==96)
|
| 175 |
|
|
redor96 u1 (.a(xdif), .b({mfs,2'b0}), .o(sticky) );
|
| 176 |
|
|
else if (WID==80)
|
| 177 |
|
|
redor80 u1 (.a(xdif), .b({mfs,2'b0}), .o(sticky) );
|
| 178 |
|
|
else if (WID==64)
|
| 179 |
|
|
redor64 u1 (.a(xdif), .b({mfs,2'b0}), .o(sticky) );
|
| 180 |
|
|
else if (WID==32)
|
| 181 |
|
|
redor32 u1 (.a(xdif), .b({mfs,2'b0}), .o(sticky) );
|
| 182 |
|
|
end
|
| 183 |
|
|
endgenerate
|
| 184 |
|
|
|
| 185 |
|
|
// register inputs to shifter and shift
|
| 186 |
|
|
delay1 #(1) d16(.clk(clk), .ce(ce), .i(sticky), .o(sticky1) );
|
| 187 |
|
|
delay1 #(7) d15(.clk(clk), .ce(ce), .i(xdif), .o(xdif1) );
|
| 188 |
|
|
delay1 #(FMSB+2) d14(.clk(clk), .ce(ce), .i(mfs), .o(mfs1) );
|
| 189 |
|
|
|
| 190 |
|
|
wire [FMSB+3:0] md1 = ({mfs1,2'b0} >> xdif1)|sticky1;
|
| 191 |
|
|
|
| 192 |
|
|
// sync control signals
|
| 193 |
|
|
delay1 #(1) d4 (.clk(clk), .ce(ce), .i(xa_gt_xb), .o(xa_gt_xb1) );
|
| 194 |
|
|
delay1 #(1) d17(.clk(clk), .ce(ce), .i(a_gt_b), .o(a_gt_b1) );
|
| 195 |
|
|
delay1 #(1) d5 (.clk(clk), .ce(ce), .i(realOp), .o(realOp1) );
|
| 196 |
|
|
delay1 #(FMSB+2) d5a(.clk(clk), .ce(ce), .i(fracta), .o(fracta1) );
|
| 197 |
|
|
delay1 #(FMSB+2) d6a(.clk(clk), .ce(ce), .i(fractb), .o(fractb1) );
|
| 198 |
|
|
delay1 #(1) d7 (.clk(clk), .ce(ce), .i(aInf), .o(aInf1) );
|
| 199 |
|
|
delay1 #(1) d8 (.clk(clk), .ce(ce), .i(bInf), .o(bInf1) );
|
| 200 |
|
|
delay1 #(1) d9 (.clk(clk), .ce(ce), .i(aNan), .o(aNan1) );
|
| 201 |
|
|
delay1 #(1) d10(.clk(clk), .ce(ce), .i(bNan), .o(bNan1) );
|
| 202 |
|
|
delay1 #(1) d11(.clk(clk), .ce(ce), .i(op), .o(op1) );
|
| 203 |
|
|
|
| 204 |
|
|
// Sort operands and perform add/subtract
|
| 205 |
|
|
// addition can generate an extra bit, subtract can't go negative
|
| 206 |
|
|
wire [FMSB+3:0] oa = xa_gt_xb1 ? {fracta1,2'b0} : md1;
|
| 207 |
|
|
wire [FMSB+3:0] ob = xa_gt_xb1 ? md1 : {fractb1,2'b0};
|
| 208 |
|
|
wire [FMSB+3:0] oaa = a_gt_b1 ? oa : ob;
|
| 209 |
|
|
wire [FMSB+3:0] obb = a_gt_b1 ? ob : oa;
|
| 210 |
|
|
wire [FMSB+4:0] mab = realOp1 ? oaa - obb : oaa + obb;
|
| 211 |
|
|
|
| 212 |
|
|
always @*
|
| 213 |
|
|
casez({aInf1&bInf1,aNan1,bNan1})
|
| 214 |
|
|
3'b1??: mo1 = {1'b0,op1,{FMSB-1{1'b0}},op1,{FMSB{1'b0}}}; // inf +/- inf - generate QNaN on subtract, inf on add
|
| 215 |
|
|
3'b01?: mo1 = {1'b0,fracta1[FMSB+1:0],{FMSB{1'b0}}};
|
| 216 |
|
|
3'b001: mo1 = {1'b0,fractb1[FMSB+1:0],{FMSB{1'b0}}};
|
| 217 |
|
|
default: mo1 = {mab,{FMSB-1{1'b0}}}; // mab has an extra lead bit and two trailing bits
|
| 218 |
|
|
endcase
|
| 219 |
|
|
|
| 220 |
|
|
delay1 #(FX+1) d3(.clk(clk), .ce(ce), .i(mo1), .o(mo) );
|
| 221 |
|
|
|
| 222 |
|
|
endmodule
|
| 223 |
|
|
|
| 224 |
|
|
module fpAddsubnr(clk, ce, rm, op, a, b, o);
|
| 225 |
|
|
parameter WID = 128;
|
| 226 |
|
|
localparam MSB = WID-1;
|
| 227 |
|
|
localparam EMSB = WID==128 ? 14 :
|
| 228 |
|
|
WID==96 ? 14 :
|
| 229 |
|
|
WID==80 ? 14 :
|
| 230 |
|
|
WID==64 ? 10 :
|
| 231 |
|
|
WID==52 ? 10 :
|
| 232 |
|
|
WID==48 ? 11 :
|
| 233 |
|
|
WID==44 ? 10 :
|
| 234 |
|
|
WID==42 ? 10 :
|
| 235 |
|
|
WID==40 ? 9 :
|
| 236 |
|
|
WID==32 ? 7 :
|
| 237 |
|
|
WID==24 ? 6 : 4;
|
| 238 |
|
|
localparam FMSB = WID==128 ? 111 :
|
| 239 |
|
|
WID==96 ? 79 :
|
| 240 |
|
|
WID==80 ? 63 :
|
| 241 |
|
|
WID==64 ? 51 :
|
| 242 |
|
|
WID==52 ? 39 :
|
| 243 |
|
|
WID==48 ? 34 :
|
| 244 |
|
|
WID==44 ? 31 :
|
| 245 |
|
|
WID==42 ? 29 :
|
| 246 |
|
|
WID==40 ? 28 :
|
| 247 |
|
|
WID==32 ? 22 :
|
| 248 |
|
|
WID==24 ? 15 : 9;
|
| 249 |
|
|
|
| 250 |
|
|
localparam FX = (FMSB+2)*2-1; // the MSB of the expanded fraction
|
| 251 |
|
|
localparam EX = FX + 1 + EMSB + 1 + 1 - 1;
|
| 252 |
|
|
|
| 253 |
|
|
input clk; // system clock
|
| 254 |
|
|
input ce; // core clock enable
|
| 255 |
|
|
input [2:0] rm; // rounding mode
|
| 256 |
|
|
input op; // operation 0 = add, 1 = subtract
|
| 257 |
|
|
input [MSB:0] a; // operand a
|
| 258 |
|
|
input [MSB:0] b; // operand b
|
| 259 |
|
|
output [MSB:0] o; // output
|
| 260 |
|
|
|
| 261 |
|
|
wire [EX:0] o1;
|
| 262 |
|
|
wire [MSB+3:0] fpn0;
|
| 263 |
|
|
|
| 264 |
|
|
fpAddsub #(WID) u1 (clk, ce, rm, op, a, b, o1);
|
| 265 |
|
|
fpNormalize #(WID) u2(.clk(clk), .ce(ce), .under(1'b0), .i(o1), .o(fpn0) );
|
| 266 |
|
|
fpRoundReg #(WID) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );
|
| 267 |
|
|
|
| 268 |
|
|
endmodule
|