OpenCores
URL https://opencores.org/ocsvn/thor/thor/trunk

Subversion Repositories thor

[/] [thor/] [trunk/] [rtl/] [verilog/] [fpUnit/] [fpMul.v] - Blame information for rev 23

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 6 robfinch
// ===============================================================
2
//      (C) 2006  Robert Finch
3
//      All rights reserved.
4
//      rob@birdcomputer.ca
5
//
6
//      fpMul.v
7
//              - floating point multiplier
8
//              - two cycle latency
9
//              - can issue every clock cycle
10
//              - parameterized width
11
//              - IEEE 754 representation
12
//
13
//      This source code is free for use and modification for
14
//      non-commercial or evaluation purposes, provided this
15
//      copyright statement and disclaimer remains present in
16
//      the file.
17
//
18
//      If the code is modified, please state the origin and
19
//      note that the code has been modified.
20
//
21
//      NO WARRANTY.
22
//      THIS Work, IS PROVIDEDED "AS IS" WITH NO WARRANTIES OF
23
//      ANY KIND, WHETHER EXPRESS OR IMPLIED. The user must assume
24
//      the entire risk of using the Work.
25
//
26
//      IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
27
//      ANY INCIDENTAL, CONSEQUENTIAL, OR PUNITIVE DAMAGES
28
//      WHATSOEVER RELATING TO THE USE OF THIS WORK, OR YOUR
29
//      RELATIONSHIP WITH THE AUTHOR.
30
//
31
//      IN ADDITION, IN NO EVENT DOES THE AUTHOR AUTHORIZE YOU
32
//      TO USE THE WORK IN APPLICATIONS OR SYSTEMS WHERE THE
33
//      WORK'S FAILURE TO PERFORM CAN REASONABLY BE EXPECTED
34
//      TO RESULT IN A SIGNIFICANT PHYSICAL INJURY, OR IN LOSS
35
//      OF LIFE. ANY SUCH USE BY YOU IS ENTIRELY AT YOUR OWN RISK,
36
//      AND YOU AGREE TO HOLD THE AUTHOR AND CONTRIBUTORS HARMLESS
37
//      FROM ANY CLAIMS OR LOSSES RELATING TO SUCH UNAUTHORIZED
38
//      USE.
39
//
40
//      This multiplier/divider handles denormalized numbers.
41
//      The output format is of an internal expanded representation
42
//      in preparation to be fed into a normalization unit, then
43
//      rounding. Basically, it's the same as the regular format
44
//      except the mantissa is doubled in size, the leading two
45
//      bits of which are assumed to be whole bits.
46
//
47
//
48
//      Floating Point Multiplier
49
//
50
//      Properties:
51
//      +-inf * +-inf = -+inf   (this is handled by exOver)
52
//      +-inf * 0     = QNaN
53
//      
54
//      1 sign number
55
//      8 exponent
56
//      48 mantissa
57
//
58
//      Ref: Webpack8.1i Spartan3-4 xc3s1000-4ft256
59
//      174 LUTS / 113 slices / 24.7 ns
60
//      4 Mults
61
//=============================================================== */
62
 
63
module fpMul (clk, ce, a, b, o, sign_exe, inf, overflow, underflow);
64
parameter WID = 32;
65
localparam MSB = WID-1;
66
localparam EMSB = WID==80 ? 14 :
67
                  WID==64 ? 10 :
68
                                  WID==52 ? 10 :
69
                                  WID==48 ? 10 :
70
                                  WID==44 ? 10 :
71
                                  WID==42 ? 10 :
72
                                  WID==40 ?  9 :
73
                                  WID==32 ?  7 :
74
                                  WID==24 ?  6 : 4;
75
localparam FMSB = WID==80 ? 63 :
76
                  WID==64 ? 51 :
77
                                  WID==52 ? 39 :
78
                                  WID==48 ? 35 :
79
                                  WID==44 ? 31 :
80
                                  WID==42 ? 29 :
81
                                  WID==40 ? 28 :
82
                                  WID==32 ? 22 :
83
                                  WID==24 ? 15 : 9;
84
 
85
localparam FX = (FMSB+2)*2-1;   // the MSB of the expanded fraction
86
localparam EX = FX + 1 + EMSB + 1 + 1 - 1;
87
 
88
input clk;
89
input ce;
90
input  [WID:1] a, b;
91
output [EX:0] o;
92
output sign_exe;
93
output inf;
94
output overflow;
95
output underflow;
96
 
97
reg [EMSB:0] xo1;                // extra bit for sign
98
reg [FX:0] mo1;
99
 
100
// constants
101
wire [EMSB:0] infXp = {EMSB+1{1'b1}};    // infinite / NaN - all ones
102
// The following is the value for an exponent of zero, with the offset
103
// eg. 8'h7f for eight bit exponent, 11'h7ff for eleven bit exponent, etc.
104
wire [EMSB:0] bias = {1'b0,{EMSB{1'b1}}};        //2^0 exponent
105
// The following is a template for a quiet nan. (MSB=1)
106
wire [FMSB:0] qNaN  = {1'b1,{FMSB{1'b0}}};
107
 
108
// variables
109
reg [FX:0] fract1,fract1a;
110
wire [FX:0] fracto;
111
wire [EMSB+2:0] ex1;     // sum of exponents
112
wire [EMSB  :0] ex2;
113
 
114
// Decompose the operands
115
wire sa, sb;                    // sign bit
116
wire [EMSB:0] xa, xb;    // exponent bits
117
wire [FMSB+1:0] fracta, fractb;
118
wire a_dn, b_dn;                        // a/b is denormalized
119
wire az, bz;
120
wire aInf, bInf, aInf1, bInf1;
121
 
122
 
123
// -----------------------------------------------------------
124
// First clock
125
// - decode the input operands
126
// - derive basic information
127
// - calculate exponent
128
// - calculate fraction
129
// -----------------------------------------------------------
130
 
131
fpDecomp #(WID) u1a (.i(a), .sgn(sa), .exp(xa), .fract(fracta), .xz(a_dn), .vz(az), .inf(aInf) );
132
fpDecomp #(WID) u1b (.i(b), .sgn(sb), .exp(xb), .fract(fractb), .xz(b_dn), .vz(bz), .inf(bInf) );
133
 
134
// Compute the sum of the exponents.
135
// correct the exponent for denormalized operands
136
// adjust the sum by the exponent offset (subtract 127)
137
// mul: ex1 = xa + xb,  result should always be < 1ffh
138
assign ex1 = (az|bz) ? 0 : (xa|a_dn) + (xb|b_dn) - bias;
139
generate
140
if (WID==64) begin
141
        reg [35:0] p00,p01,p02;
142
        reg [35:0] p10,p11,p12;
143
        reg [35:0] p20,p21,p22;
144
        always @(posedge clk)
145
        if (ce) begin
146
                p00 <= fracta[17: 0] * fractb[17: 0];
147
                p01 <= fracta[35:18] * fractb[17: 0];
148
                p02 <= fracta[52:36] * fractb[17: 0];
149
                p10 <= fracta[17: 0] * fractb[35:18];
150
                p11 <= fracta[35:18] * fractb[35:18];
151
                p12 <= fracta[52:36] * fractb[35:18];
152
                p20 <= fracta[17: 0] * fractb[52:36];
153
                p21 <= fracta[35:18] * fractb[52:36];
154
                p22 <= fracta[52:36] * fractb[52:36];
155
                fract1 <=                                   {p02,36'b0} + {p01,18'b0} + p00 +
156
                                                                  {p12,54'b0} + {p11,36'b0} + {p10,18'b0} +
157
                                        {p22,72'b0} + {p21,54'b0} + {p20,36'b0}
158
                                ;
159
        end
160
end
161
else if (WID==32) begin
162
        reg [35:0] p00,p01;
163
        reg [35:0] p10,p11;
164
        always @(posedge clk)
165
        if (ce) begin
166
                p00 <= fracta[17: 0] * fractb[17: 0];
167
                p01 <= fracta[23:18] * fractb[17: 0];
168
                p10 <= fracta[17: 0] * fractb[23:18];
169
                p11 <= fracta[23:18] * fractb[23:18];
170
                fract1 <= {p11,p00} + {p01,18'b0} + {p10,18'b0};
171
        end
172
end
173
endgenerate
174
 
175
// Status
176
wire under1, over1;
177
wire under = ex1[EMSB+2];       // exponent underflow
178
wire over = (&ex1[EMSB:0] | ex1[EMSB+1]) & !ex1[EMSB+2];
179
 
180
delay2 #(EMSB) u3 (.clk(clk), .ce(ce), .i(ex1[EMSB:0]), .o(ex2) );
181
delay2 #(FX+1) u4 (.clk(clk), .ce(ce), .i(fract1), .o(fracto) );
182
delay2 u2a (.clk(clk), .ce(ce), .i(aInf), .o(aInf1) );
183
delay2 u2b (.clk(clk), .ce(ce), .i(bInf), .o(bInf1) );
184
delay2 u6  (.clk(clk), .ce(ce), .i(under), .o(under1) );
185
delay2 u7  (.clk(clk), .ce(ce), .i(over), .o(over1) );
186
 
187
// determine when a NaN is output
188
wire qNaNOut;
189
delay2 u5 (.clk(clk), .ce(ce), .i((aInf&bz)|(bInf&az)), .o(qNaNOut) );
190
 
191
 
192
// -----------------------------------------------------------
193
// Second clock
194
// - correct xponent and mantissa for exceptional conditions
195
// -----------------------------------------------------------
196
 
197
wire so1;
198
delay3 u8 (.clk(clk), .ce(ce), .i(sa ^ sb), .o(so1) );// two clock delay!
199
 
200
always @(posedge clk)
201
        if (ce)
202
                casex({qNaNOut,aInf1,bInf1,over1,under1})
203
                5'b1xxxx:       xo1 = infXp;    // qNaN - infinity * zero
204
                5'b01xxx:       xo1 = infXp;    // 'a' infinite
205
                5'b001xx:       xo1 = infXp;    // 'b' infinite
206
                5'b0001x:       xo1 = infXp;    // result overflow
207
                5'b00001:       xo1 = 0;         // underflow
208
                default:        xo1 = ex2[EMSB:0];       // situation normal
209
                endcase
210
 
211
always @(posedge clk)
212
        if (ce)
213
                casex({qNaNOut,aInf1,bInf1,over1})
214
                4'b1xxx:        mo1 = {1'b0,qNaN|3'd4,{FMSB+1{1'b0}}};  // multiply inf * zero
215
                4'b01xx:        mo1 = 0; // mul inf's
216
                4'b001x:        mo1 = 0; // mul inf's
217
                4'b0001:        mo1 = 0; // mul overflow
218
                default:        mo1 = fracto;
219
                endcase
220
 
221
delay3 u10 (.clk(clk), .ce(ce), .i(sa & sb), .o(sign_exe) );
222
delay1 u11 (.clk(clk), .ce(ce), .i(over1),  .o(overflow) );
223
delay1 u12 (.clk(clk), .ce(ce), .i(over1),  .o(inf) );
224
delay1 u13 (.clk(clk), .ce(ce), .i(under1), .o(underflow) );
225
 
226
assign o = {so1,xo1,mo1};
227
 
228
endmodule
229
 
230
module fpMul_tb();
231
reg clk;
232
 
233
initial begin
234
        clk = 0;
235
end
236
always #10 clk <= ~clk;
237
 
238
fpMul u1 (.clk(clk), .ce(1'b1), .a(0), .b(0), .o(o1), .sign_exe(sgnx1), .inf(inf1), .overflow(of1), .underflow(uf1));
239
fpMul u2 (.clk(clk), .ce(1'b1), .a(0), .b(0), .o(o1), .sign_exe(sgnx1), .inf(inf1), .overflow(of1), .underflow(uf1));
240
 
241
endmodule

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.