1 |
6 |
robfinch |
// ============================================================================
|
2 |
|
|
// __
|
3 |
|
|
// \\__/ o\ (C) 2006,2015 Robert Finch, Stratford
|
4 |
|
|
// \ __ / All rights reserved.
|
5 |
|
|
// \/_// robfinch<remove>@finitron.ca
|
6 |
|
|
// ||
|
7 |
|
|
//
|
8 |
|
|
// This source file is free software: you can redistribute it and/or modify
|
9 |
|
|
// it under the terms of the GNU Lesser General Public License as published
|
10 |
|
|
// by the Free Software Foundation, either version 3 of the License, or
|
11 |
|
|
// (at your option) any later version.
|
12 |
|
|
//
|
13 |
|
|
// This source file is distributed in the hope that it will be useful,
|
14 |
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
// GNU General Public License for more details.
|
17 |
|
|
//
|
18 |
|
|
// You should have received a copy of the GNU General Public License
|
19 |
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
20 |
|
|
//
|
21 |
|
|
//
|
22 |
|
|
// Thor SuperScalar
|
23 |
|
|
// fpUnit.v
|
24 |
|
|
// - floating point unit
|
25 |
|
|
// - parameterized width
|
26 |
|
|
// - IEEE 754 representation
|
27 |
|
|
//
|
28 |
|
|
// NaN Value Origin
|
29 |
|
|
// 31'h7FC00001 - infinity - infinity
|
30 |
|
|
// 31'h7FC00002 - infinity / infinity
|
31 |
|
|
// 31'h7FC00003 - zero / zero
|
32 |
|
|
// 31'h7FC00004 - infinity X zero
|
33 |
|
|
//
|
34 |
|
|
// Whenever the fpu encounters a NaN input, the NaN is
|
35 |
|
|
// passed through to the output.
|
36 |
|
|
//
|
37 |
|
|
// Ref: Webpack 8.2 Spartan3-4 xc3s1000-4ft256
|
38 |
|
|
// 2335 LUTS / 1260 slices / 43.4 MHz
|
39 |
|
|
// Ref: Webpack 13.1 Spartan3e xc3s1200e-4fg320
|
40 |
|
|
// 2433 LUTs / 1301 slices / 51.6 MHz
|
41 |
|
|
//
|
42 |
|
|
// Instr. Cyc Lat
|
43 |
|
|
// fc__ ; 1 0 compare, lt le gt ge eq ne or un
|
44 |
|
|
// fabs ; 1 0 absolute value
|
45 |
|
|
// fnabs ; 1 0 negative absolute value
|
46 |
|
|
// fneg ; 1 0 negate
|
47 |
|
|
// fmov ; 1 0 move
|
48 |
|
|
// fman ; 1 0 get mantissa
|
49 |
|
|
// fsign ; 1 0 get sign
|
50 |
|
|
//
|
51 |
|
|
// f2i ; 1 1 convert float to integer
|
52 |
|
|
// i2f ; 1 1 convert integer to float
|
53 |
|
|
//
|
54 |
|
|
// fadd ; 1 4 addition
|
55 |
|
|
// fsub ; 1 4 subtraction
|
56 |
|
|
// fmul ; 1 4 multiplication
|
57 |
|
|
//
|
58 |
|
|
// fdiv ; 16 4 division
|
59 |
|
|
//
|
60 |
|
|
// ftx ; 1 0 trigger fp exception
|
61 |
|
|
// fcx ; 1 0 clear fp exception
|
62 |
|
|
// fex ; 1 0 enable fp exception
|
63 |
|
|
// fdx ; 1 0 disable fp exception
|
64 |
|
|
// frm ; 1 0 set rounding mode
|
65 |
|
|
// fstat ; 1 0 get status register
|
66 |
|
|
//
|
67 |
|
|
// related integer:
|
68 |
|
|
// graf ; 1 0 get random float (0,1]
|
69 |
|
|
//
|
70 |
|
|
// ============================================================================
|
71 |
|
|
//
|
72 |
|
|
`include "..\Thor_defines.v"
|
73 |
|
|
|
74 |
|
|
`define QINFOS 23'h7FC000 // info
|
75 |
|
|
`define QSUBINFS 31'h7FC00001 // - infinity - infinity
|
76 |
|
|
`define QINFDIVS 31'h7FC00002 // - infinity / infinity
|
77 |
|
|
`define QZEROZEROS 31'h7FC00003 // - zero / zero
|
78 |
|
|
`define QINFZEROS 31'h7FC00004 // - infinity X zero
|
79 |
|
|
|
80 |
|
|
`define QINFO 52'h7FC000 // info
|
81 |
|
|
`define QSUBINF 62'h7FF0000000000001 // - infinity - infinity
|
82 |
|
|
`define QINFDIV 62'h7FF0000000000002 // - infinity / infinity
|
83 |
|
|
`define QZEROZERO 62'h7FF0000000000003 // - zero / zero
|
84 |
|
|
`define QINFZERO 62'h7FF0000000000004 // - infinity X zero
|
85 |
|
|
|
86 |
|
|
module fpUnit(rst, clk, ce, op, fn, ld, a, b, o, exception);
|
87 |
|
|
|
88 |
|
|
parameter WID = 32;
|
89 |
|
|
localparam MSB = WID-1;
|
90 |
|
|
localparam EMSB = WID==80 ? 14 :
|
91 |
|
|
WID==64 ? 10 :
|
92 |
|
|
WID==52 ? 10 :
|
93 |
|
|
WID==48 ? 10 :
|
94 |
|
|
WID==44 ? 10 :
|
95 |
|
|
WID==42 ? 10 :
|
96 |
|
|
WID==40 ? 9 :
|
97 |
|
|
WID==32 ? 7 :
|
98 |
|
|
WID==24 ? 6 : 4;
|
99 |
|
|
localparam FMSB = WID==80 ? 63 :
|
100 |
|
|
WID==64 ? 51 :
|
101 |
|
|
WID==52 ? 39 :
|
102 |
|
|
WID==48 ? 35 :
|
103 |
|
|
WID==44 ? 31 :
|
104 |
|
|
WID==42 ? 29 :
|
105 |
|
|
WID==40 ? 28 :
|
106 |
|
|
WID==32 ? 22 :
|
107 |
|
|
WID==24 ? 15 : 9;
|
108 |
|
|
localparam EMSBS = 7;
|
109 |
|
|
localparam FMSBS = 22;
|
110 |
|
|
localparam FX = (FMSB+2)*2-1; // the MSB of the expanded fraction
|
111 |
|
|
localparam EX = FX + 1 + EMSB + 1 + 1 - 1;
|
112 |
|
|
localparam FXS = (FMSBS+2)*2-1; // the MSB of the expanded fraction
|
113 |
|
|
localparam EXS = FXS + 1 + EMSBS + 1 + 1 - 1;
|
114 |
|
|
|
115 |
|
|
input rst;
|
116 |
|
|
input clk;
|
117 |
|
|
input ce;
|
118 |
|
|
input [7:0] op;
|
119 |
|
|
input [5:0] fn;
|
120 |
|
|
input ld;
|
121 |
|
|
input [MSB:0] a;
|
122 |
|
|
input [MSB:0] b;
|
123 |
|
|
output tri [MSB:0] o;
|
124 |
|
|
output exception;
|
125 |
|
|
|
126 |
|
|
|
127 |
|
|
//------------------------------------------------------------
|
128 |
|
|
// constants
|
129 |
|
|
wire infXp = {11{1'b1}}; // value for infinite exponent / nan
|
130 |
|
|
wire infXps = {8{1'b1}};
|
131 |
|
|
|
132 |
|
|
// Variables
|
133 |
|
|
wire divByZero; // attempt to divide by zero
|
134 |
|
|
wire inf; // result is infinite (+ or -)
|
135 |
|
|
wire zero; // result is zero (+ or -)
|
136 |
|
|
wire ns; // nan sign
|
137 |
|
|
wire nss;
|
138 |
|
|
wire nso;
|
139 |
|
|
wire nsos;
|
140 |
|
|
wire isNan,isNans;
|
141 |
|
|
wire nanx,nanxs;
|
142 |
|
|
|
143 |
|
|
// Decode fp operation
|
144 |
|
|
wire fstat = op==`FLOAT && fn==`FSTAT; // get status
|
145 |
|
|
wire fdiv = op==`FLOAT && fn==`FDIV;
|
146 |
|
|
wire fdivs = op==`FLOAT && fn==`FDIVS;
|
147 |
|
|
wire ftx = op==`FLOAT && fn==`FTX; // trigger exception
|
148 |
|
|
wire fcx = op==`FLOAT && fn==`FCX; // clear exception
|
149 |
|
|
wire fex = op==`FLOAT && fn==`FEX; // enable exception
|
150 |
|
|
wire fdx = op==`FLOAT && fn==`FDX; // disable exception
|
151 |
|
|
wire fcmp = op==`FLOAT && (fn==`FCMP || fn==`FCMPS);
|
152 |
|
|
wire frm = op==`FLOAT && fn==`FRM; // set rounding mode
|
153 |
|
|
wire single = (op==`FLOAT && fn[5:4]==2'b01) || op==`SINGLE_R;
|
154 |
|
|
wire zl_op = (op==`DOUBLE_R && (fn==`FABS || fn==`FNABS || fn==`FMOV || fn==`FNEG || fn==`FSIGN || fn==`FMAN)) ||
|
155 |
|
|
(op==`FLOAT && fn==`FCMP) ||
|
156 |
|
|
(op==`SINGLE_R && (fn==`FABSS || fn==`FNABSS || fn==`FMOVS || fn==`FNEGS || fn==`FSIGNS || fn==`FMANS)) ||
|
157 |
|
|
(op==`FLOAT && (fn==`FCMPS))
|
158 |
|
|
;
|
159 |
|
|
wire loo_op = (op==`DOUBLE_R && (fn==`ITOF || fn==`FTOI)) ||
|
160 |
|
|
(op==`SINGLE_R && (fn==`FTOIS || op==`ITOFS));
|
161 |
|
|
wire loo_done;
|
162 |
|
|
|
163 |
|
|
wire subinf;
|
164 |
|
|
wire zerozero;
|
165 |
|
|
wire infzero;
|
166 |
|
|
wire infdiv;
|
167 |
|
|
|
168 |
|
|
// floating point control and status
|
169 |
|
|
reg [1:0] rm; // rounding mode
|
170 |
|
|
reg inexe; // inexact exception enable
|
171 |
|
|
reg dbzxe; // divide by zero exception enable
|
172 |
|
|
reg underxe; // underflow exception enable
|
173 |
|
|
reg overxe; // overflow exception enable
|
174 |
|
|
reg invopxe; // invalid operation exception enable
|
175 |
|
|
|
176 |
|
|
reg nsfp; // non-standard floating point indicator
|
177 |
|
|
|
178 |
|
|
reg fractie; // fraction inexact
|
179 |
|
|
reg raz; // rounded away from zero
|
180 |
|
|
|
181 |
|
|
reg inex; // inexact exception
|
182 |
|
|
reg dbzx; // divide by zero exception
|
183 |
|
|
reg underx; // underflow exception
|
184 |
|
|
reg overx; // overflow exception
|
185 |
|
|
reg giopx; // global invalid operation exception
|
186 |
|
|
reg sx; // summary exception
|
187 |
|
|
|
188 |
|
|
reg swtx; // software triggered exception indicator
|
189 |
|
|
|
190 |
|
|
wire gx = swtx|inex|dbzx|underx|overx|giopx; // global exception indicator
|
191 |
|
|
|
192 |
|
|
// breakdown of invalid operation exceptions
|
193 |
|
|
reg cvtx; // conversion exception
|
194 |
|
|
reg sqrtx; // squareroot exception
|
195 |
|
|
reg NaNCmpx; // NaN comparison exception
|
196 |
|
|
reg infzerox; // multiply infinity by zero
|
197 |
|
|
reg zerozerox; // division of zero by zero
|
198 |
|
|
reg infdivx; // division of infinities
|
199 |
|
|
reg subinfx; // subtraction of infinities
|
200 |
|
|
reg snanx; // signalling nan
|
201 |
|
|
|
202 |
|
|
wire divDone;
|
203 |
|
|
wire pipe_ce = ce & divDone; // divide must be done in order for pipe to clock
|
204 |
|
|
|
205 |
|
|
always @(posedge clk)
|
206 |
|
|
// reset: disable and clear all exceptions and status
|
207 |
|
|
if (rst) begin
|
208 |
|
|
rm <= 2'b0; // round nearest even - default rounding mode
|
209 |
|
|
inex <= 1'b0;
|
210 |
|
|
dbzx <= 1'b0;
|
211 |
|
|
underx <= 1'b0;
|
212 |
|
|
overx <= 1'b0;
|
213 |
|
|
giopx <= 1'b0;
|
214 |
|
|
swtx <= 1'b0;
|
215 |
|
|
sx <= 1'b0;
|
216 |
|
|
NaNCmpx <= 1'b0;
|
217 |
|
|
|
218 |
|
|
inexe <= 1'b0;
|
219 |
|
|
dbzxe <= 1'b0;
|
220 |
|
|
underxe <= 1'b0;
|
221 |
|
|
overxe <= 1'b0;
|
222 |
|
|
invopxe <= 1'b0;
|
223 |
|
|
|
224 |
|
|
nsfp <= 1'b0;
|
225 |
|
|
|
226 |
|
|
end
|
227 |
|
|
else if (pipe_ce) begin
|
228 |
|
|
if (ftx) begin
|
229 |
|
|
inex <= inex | (a[4]|b[4]);
|
230 |
|
|
dbzx <= dbzx | (a[3]|b[3]);
|
231 |
|
|
underx <= underx | (a[2]|b[2]);
|
232 |
|
|
overx <= overx | (a[1]|b[1]);
|
233 |
|
|
giopx <= giopx | (a[0]|b[0]);
|
234 |
|
|
swtx <= 1'b1;
|
235 |
|
|
sx <= 1'b1;
|
236 |
|
|
end
|
237 |
|
|
else if (fcx) begin
|
238 |
|
|
sx <= sx & !(a[5]|b[5]);
|
239 |
|
|
inex <= inex & !(a[4]|b[4]);
|
240 |
|
|
dbzx <= dbzx & !(a[3]|b[3]);
|
241 |
|
|
underx <= underx & !(a[2]|b[2]);
|
242 |
|
|
overx <= overx & !(a[1]|b[1]);
|
243 |
|
|
giopx <= giopx & !(a[0]|b[0]);
|
244 |
|
|
// clear exception type when global invalid operation is cleared
|
245 |
|
|
infdivx <= infdivx & !(a[0]|b[0]);
|
246 |
|
|
zerozerox <= zerozerox & !(a[0]|b[0]);
|
247 |
|
|
subinfx <= subinfx & !(a[0]|b[0]);
|
248 |
|
|
infzerox <= infzerox & !(a[0]|b[0]);
|
249 |
|
|
NaNCmpx <= NaNCmpx & !(a[0]|b[0]);
|
250 |
|
|
dbzx <= dbzx & !(a[0]|b[0]);
|
251 |
|
|
swtx <= 1'b1;
|
252 |
|
|
end
|
253 |
|
|
else if (fex) begin
|
254 |
|
|
inexe <= inexe | (a[4]|b[4]);
|
255 |
|
|
dbzxe <= dbzxe | (a[3]|b[3]);
|
256 |
|
|
underxe <= underxe | (a[2]|b[2]);
|
257 |
|
|
overxe <= overxe | (a[1]|b[1]);
|
258 |
|
|
invopxe <= invopxe | (a[0]|b[0]);
|
259 |
|
|
end
|
260 |
|
|
else if (fdx) begin
|
261 |
|
|
inexe <= inexe & !(a[4]|b[4]);
|
262 |
|
|
dbzxe <= dbzxe & !(a[3]|b[3]);
|
263 |
|
|
underxe <= underxe & !(a[2]|b[2]);
|
264 |
|
|
overxe <= overxe & !(a[1]|b[1]);
|
265 |
|
|
invopxe <= invopxe & !(a[0]|b[0]);
|
266 |
|
|
end
|
267 |
|
|
else if (frm)
|
268 |
|
|
rm <= a[1:0]|b[1:0];
|
269 |
|
|
|
270 |
|
|
infzerox <= infzerox | (invopxe & infzero);
|
271 |
|
|
zerozerox <= zerozerox | (invopxe & zerozero);
|
272 |
|
|
subinfx <= subinfx | (invopxe & subinf);
|
273 |
|
|
infdivx <= infdivx | (invopxe & infdiv);
|
274 |
|
|
dbzx <= dbzx | (dbzxe & divByZero);
|
275 |
|
|
NaNCmpx <= NaNCmpx | (invopxe & nanx & fcmp); // must be a compare
|
276 |
|
|
sx <= sx |
|
277 |
|
|
(invopxe & nanx & fcmp) |
|
278 |
|
|
(invopxe & (infzero|zerozero|subinf|infdiv)) |
|
279 |
|
|
(dbzxe & divByZero);
|
280 |
|
|
end
|
281 |
|
|
|
282 |
|
|
// Decompose operands into sign,exponent,mantissa
|
283 |
|
|
wire sa, sb, sas, sbs;
|
284 |
|
|
wire [FMSB:0] ma, mb;
|
285 |
|
|
wire [22:0] mas, mbs;
|
286 |
|
|
|
287 |
|
|
wire aInf, bInf, aInfs, bInfs;
|
288 |
|
|
wire aNan, bNan, aNans, bNans;
|
289 |
|
|
wire az, bz, azs, bzs;
|
290 |
|
|
wire [1:0] rmd4; // 1st stage delayed
|
291 |
|
|
wire [7:0] op1, op2;
|
292 |
|
|
wire [5:0] fn1,fn2;
|
293 |
|
|
|
294 |
|
|
wire [MSB:0] zld_o,lood_o;
|
295 |
|
|
wire [31:0] zls_o,loos_o;
|
296 |
|
|
fpZLUnit #(64) u6 (.op(op), .fn(fn), .a(a), .b(b), .o(zld_o), .nanx(nanx) );
|
297 |
|
|
fpLOOUnit #(64) u7 (.clk(clk), .ce(pipe_ce), .rm(rm), .op(op), .fn(fn), .a(a), .o(loo_o), .done(loos_done) );
|
298 |
|
|
fpZLUnit #(32) u6s (.op(op), .fn(fn), .a(a[31:0]), .b(b[31:0]), .o(zls_o), .nanx(nanxs) );
|
299 |
|
|
fpLOOUnit #(32) u7s (.clk(clk), .ce(pipe_ce), .rm(rm), .op(op), .fn(fn), .a(a[31:0]), .o(loos_o), .done() );
|
300 |
|
|
assign loo_o = single ? loos_o : lood_o;
|
301 |
|
|
assign zl_o = single ? zls_o : zld_o;
|
302 |
|
|
fp_decomp #(64) u1 (.i(a), .sgn(sa), .man(ma), .vz(az), .inf(aInf), .nan(aNan) );
|
303 |
|
|
fp_decomp #(64) u2 (.i(b), .sgn(sb), .man(mb), .vz(bz), .inf(bInf), .nan(bNan) );
|
304 |
|
|
fp_decomp #(32) u1s (.i(a[31:0]), .sgn(sas), .man(mas), .vz(azs), .inf(aInfs), .nan(aNans) );
|
305 |
|
|
fp_decomp #(32) u2s (.i(b[31:0]), .sgn(sbs), .man(mbs), .vz(bzs), .inf(bInfs), .nan(bNans) );
|
306 |
|
|
|
307 |
|
|
delay4 #(2) u3 (.clk(clk), .ce(pipe_ce), .i(rmd), .o(rmd4) );
|
308 |
|
|
delay1 #(8) u4 (.clk(clk), .ce(pipe_ce), .i(op), .o(op1) );
|
309 |
|
|
delay2 #(8) u5 (.clk(clk), .ce(pipe_ce), .i(op), .o(op2) );
|
310 |
|
|
delay1 #(6) u5a (.clk(clk), .ce(pipe_ce), .i(fn), .o(fn1) );
|
311 |
|
|
delay2 #(6) u5b (.clk(clk), .ce(pipe_ce), .i(fn), .o(fn2) );
|
312 |
|
|
|
313 |
|
|
delay5 delay5_3(.clk(clk), .ce(pipe_ce), .i((bz & !aNan & fdiv)|(bzs & !aNans & fdivs)), .o(divByZero) );
|
314 |
|
|
|
315 |
|
|
// Compute NaN output sign
|
316 |
|
|
wire aob_nan = aNan|bNan; // one of the operands is a nan
|
317 |
|
|
wire bothNan = aNan&bNan; // both of the operands are nans
|
318 |
|
|
wire aob_nans = aNans|bNans; // one of the operands is a nan
|
319 |
|
|
wire bothNans = aNans&bNans; // both of the operands are nans
|
320 |
|
|
|
321 |
|
|
assign ns = bothNan ?
|
322 |
|
|
(ma==mb ? sa & sb : ma < mb ? sb : sa) :
|
323 |
|
|
aNan ? sa : sb;
|
324 |
|
|
assign nss = bothNans ?
|
325 |
|
|
(mas==mbs ? sas & sbs : mas < mbs ? sbs : sas) :
|
326 |
|
|
aNans ? sas : sbs;
|
327 |
|
|
|
328 |
|
|
delay5 u8(.clk(clk), .ce(ce), .i(ns), .o(nso) );
|
329 |
|
|
delay5 u9(.clk(clk), .ce(ce), .i(aob_nan), .o(isNan) );
|
330 |
|
|
delay5 u8s(.clk(clk), .ce(ce), .i(nss), .o(nsos) );
|
331 |
|
|
delay5 u9s(.clk(clk), .ce(ce), .i(aob_nans), .o(isNans) );
|
332 |
|
|
|
333 |
|
|
wire [MSB:0] fpu_o;
|
334 |
|
|
wire [MSB+3:0] fpn_o;
|
335 |
|
|
wire [EX:0] fdiv_o;
|
336 |
|
|
wire [EX:0] fmul_o;
|
337 |
|
|
wire [EX:0] fas_o;
|
338 |
|
|
reg [EX:0] fres;
|
339 |
|
|
wire [31:0] fpus_o;
|
340 |
|
|
wire [31+3:0] fpns_o;
|
341 |
|
|
wire [EXS:0] fdivs_o;
|
342 |
|
|
wire [EXS:0] fmuls_o;
|
343 |
|
|
wire [EXS:0] fass_o;
|
344 |
|
|
reg [EXS:0] fress;
|
345 |
|
|
wire divUnder,divUnders;
|
346 |
|
|
wire mulUnder,mulUnders;
|
347 |
|
|
reg under,unders;
|
348 |
|
|
|
349 |
|
|
// These units have a two clock cycle latency
|
350 |
|
|
fpAddsub #(64) u10(.clk(clk), .ce(pipe_ce), .rm(rm), .op(op[0]), .a(a), .b(b), .o(fas_o) );
|
351 |
|
|
fpDiv #(64) u11(.clk(clk), .ce(pipe_ce), .ld(ld), .a(a), .b(b), .o(fdiv_o), .sign_exe(), .underflow(divUnder), .done(divDone) );
|
352 |
|
|
fpMul #(64) u12(.clk(clk), .ce(pipe_ce), .a(a), .b(b), .o(fmul_o), .sign_exe(), .inf(), .underflow(mulUnder) );
|
353 |
|
|
fpAddsub #(32) u10s(.clk(clk), .ce(pipe_ce), .rm(rm), .op(op[0]), .a(a[31:0]), .b(b[31:0]), .o(fass_o) );
|
354 |
|
|
fpDiv #(32) u11s(.clk(clk), .ce(pipe_ce), .ld(ld), .a(a[31:0]), .b(b[31:0]), .o(fdivs_o), .sign_exe(), .underflow(divUnders), .done() );
|
355 |
|
|
fpMul #(32) u12s(.clk(clk), .ce(pipe_ce), .a(a[31:0]), .b(b[31:0]), .o(fmuls_o), .sign_exe(), .inf(), .underflow(mulUnders) );
|
356 |
|
|
|
357 |
|
|
always @(op2,fn2,mulUnder,divUnder,mulUnders,divUnders)
|
358 |
|
|
case (op2)
|
359 |
|
|
`FLOAT:
|
360 |
|
|
case (fn2)
|
361 |
|
|
`FMUL: under = mulUnder;
|
362 |
|
|
`FDIV: under = divUnder;
|
363 |
|
|
`FMULS: unders = mulUnders;
|
364 |
|
|
`FDIVS: unders = divUnders;
|
365 |
|
|
default: begin under = 0; unders = 0; end
|
366 |
|
|
endcase
|
367 |
|
|
default: begin under = 0; unders = 0; end
|
368 |
|
|
endcase
|
369 |
|
|
|
370 |
|
|
always @(op2,fn2,fas_o,fmul_o,fdiv_o,fass_o,fmuls_o,fdivs_o)
|
371 |
|
|
case (op2)
|
372 |
|
|
`FLOAT:
|
373 |
|
|
case(fn2)
|
374 |
|
|
`FADD: fres <= fas_o;
|
375 |
|
|
`FSUB: fres <= fas_o;
|
376 |
|
|
`FMUL: fres <= fmul_o;
|
377 |
|
|
`FDIV: fres <= fdiv_o;
|
378 |
|
|
`FADDS: fress <= fass_o;
|
379 |
|
|
`FSUBS: fress <= fass_o;
|
380 |
|
|
`FMULS: fress <= fmuls_o;
|
381 |
|
|
`FDIVS: fress <= fdivs_o;
|
382 |
|
|
default: begin fres <= fas_o; fress <= fass_o; end
|
383 |
|
|
endcase
|
384 |
|
|
default: begin fres <= fas_o; fress <= fass_o; end
|
385 |
|
|
endcase
|
386 |
|
|
|
387 |
|
|
// pipeline stage
|
388 |
|
|
// one cycle latency
|
389 |
|
|
fpNormalize #(64) fpn0(.clk(clk), .ce(pipe_ce), .under(under), .i(fres), .o(fpn_o) );
|
390 |
|
|
fpNormalize #(32) fpns(.clk(clk), .ce(pipe_ce), .under(unders), .i(fress), .o(fpns_o) );
|
391 |
|
|
|
392 |
|
|
// pipeline stage
|
393 |
|
|
// one cycle latency
|
394 |
|
|
fpRoundReg #(64) fpr0(.clk(clk), .ce(pipe_ce), .rm(rm4), .i(fpn_o), .o(fpu_o) );
|
395 |
|
|
fpRoundReg #(32) fprs(.clk(clk), .ce(pipe_ce), .rm(rm4), .i(fpns_o), .o(fpus_o) );
|
396 |
|
|
|
397 |
|
|
wire so = single ? (isNans?nsos:fpus_o[31]): (isNan?nso:fpu_o[63]);
|
398 |
|
|
|
399 |
|
|
//fix: status should be registered
|
400 |
|
|
assign o = fstat ? {
|
401 |
|
|
rm,
|
402 |
|
|
inexe,
|
403 |
|
|
dbzxe,
|
404 |
|
|
underxe,
|
405 |
|
|
overxe,
|
406 |
|
|
invopxe,
|
407 |
|
|
nsfp,
|
408 |
|
|
|
409 |
|
|
fractie,
|
410 |
|
|
raz,
|
411 |
|
|
1'b0,
|
412 |
|
|
so & !zero,
|
413 |
|
|
!so & !zero,
|
414 |
|
|
zero,
|
415 |
|
|
inf,
|
416 |
|
|
|
417 |
|
|
swtx,
|
418 |
|
|
inex,
|
419 |
|
|
dbzx,
|
420 |
|
|
underx,
|
421 |
|
|
overx,
|
422 |
|
|
giopx,
|
423 |
|
|
gx,
|
424 |
|
|
sx,
|
425 |
|
|
|
426 |
|
|
cvtx,
|
427 |
|
|
sqrtx,
|
428 |
|
|
NaNCmpx,
|
429 |
|
|
infzerox,
|
430 |
|
|
zerozerox,
|
431 |
|
|
infdivx,
|
432 |
|
|
subinfx,
|
433 |
|
|
snanx
|
434 |
|
|
} : 'bz;
|
435 |
|
|
|
436 |
|
|
assign o = (!fstat & !single) ?
|
437 |
|
|
zl_op ? zld_o :
|
438 |
|
|
loo_op ? lood_o :
|
439 |
|
|
{so,fpu_o[MSB-1:0]} : 'bz;
|
440 |
|
|
assign o = (!fstat & single)?
|
441 |
|
|
zl_op ? zls_o :
|
442 |
|
|
loo_op ? loos_o :
|
443 |
|
|
{so,fpus_o[MSB-1:0]} : 'bz;
|
444 |
|
|
assign zero = single ? fpus_o[30:0]==0 : WID==64 ? fpu_o[62:0]==0 : 0;
|
445 |
|
|
assign inf = single ? &fpus_o[31:23] && fpus_o[22:0]==0 : WID==64 ? &fpu_o[62:52] && fpu_o[51:0]==0 : 0;
|
446 |
|
|
|
447 |
|
|
assign subinf = single ? fpus_o[31:0]==`QSUBINFS : WID==64 ? fpu_o[63:0]==`QSUBINF : 0;
|
448 |
|
|
assign infdiv = single ? fpus_o[31:0]==`QINFDIVS : WID==64 ? fpu_o[63:0]==`QINFDIV : 0;
|
449 |
|
|
assign zerozero = single ? fpus_o[31:0]==`QZEROZEROS : WID==64 ? fpu_o[63:0]==`QZEROZERO : 0;
|
450 |
|
|
assign infzero = single ? fpus_o[31:0]==`QINFZEROS : WID==64 ? fpu_o[31:0]==`QINFZERO : 0;
|
451 |
|
|
|
452 |
|
|
assign exception = gx;
|
453 |
|
|
|
454 |
|
|
endmodule
|
455 |
|
|
|