1 |
2 |
dewhisna |
--------------------------------------------------------------------------------
|
2 |
|
|
-- File name : TimerOCD.vhd
|
3 |
|
|
--------------------------------------------------------------------------------
|
4 |
|
|
-- Copyright (C) 2015 Donna Whisnant/Dewtronics.
|
5 |
|
|
-- Contact: http://www.dewtronics.com/
|
6 |
|
|
--
|
7 |
|
|
-- This file may be used under the terms of the GNU Lesser General Public License
|
8 |
|
|
-- version 3.0 as published by the Free Software Foundation and appearing
|
9 |
|
|
-- in the files lgpl-3.0.txt/gpl-3.0.txt included in the packaging of this file.
|
10 |
|
|
-- Please review the following information to ensure the GNU Lesser General
|
11 |
|
|
-- Public License version 3.0 requirements will be met:
|
12 |
|
|
-- https://www.gnu.org/licenses/lgpl-3.0.html
|
13 |
|
|
-- Attribution requested, but not required.
|
14 |
|
|
--
|
15 |
|
|
-- Target Device: Xilinx Spartan-6 XC6SLX9-2-TQG144
|
16 |
|
|
-- Using Numato Mimas Spartan 6 FPGA Development Board
|
17 |
|
|
-- http://numato.com/mimas-spartan-6-fpga-development-board.html
|
18 |
|
|
--
|
19 |
|
|
--
|
20 |
|
|
-- Timer Output Compare Driver
|
21 |
|
|
--
|
22 |
|
|
-- This FPGA/CPLD code serves as a SPI Device and functions as a multichannel
|
23 |
|
|
-- Timer Output Compare driver for use in the DRSSTC (Dual Resonance Solid-State
|
24 |
|
|
-- Tesla Coil) MIDI Interrupter.
|
25 |
|
|
--
|
26 |
|
|
-- My original DRSSTC MIDI Interrupter used a series of Arduino ProMini boards,
|
27 |
|
|
-- each with a built-in limit of six timer output compare channels, to drive
|
28 |
|
|
-- the many note signal timing generation. But instead of cascading six to
|
29 |
|
|
-- eight of those processors per interrupter output, this is an attempt to do
|
30 |
|
|
-- it all in a single chip.
|
31 |
|
|
--
|
32 |
|
|
-- The SPI Interface functions as a slave device with the following stream:
|
33 |
|
|
-- Master must send MSbit First:
|
34 |
|
|
--
|
35 |
|
|
-- Input (9 bytes per data message transfer or 1 byte per command message transfer):
|
36 |
|
|
-- * 8-bit Command/Address Byte:
|
37 |
|
|
-- C7..C0 :
|
38 |
|
|
--
|
39 |
|
|
-- C7..C0 : Timer Address for Read and Write operations
|
40 |
|
|
-- C7 C6 C5 C4 C3 C2 C1 C0
|
41 |
|
|
-- -- -- -- -- -- -- -- --
|
42 |
|
|
-- | | | | | | | |
|
43 |
|
|
-- | | +--+--+--+--+--+----- Timer Address 0-63 0x00-0x3F (000000-111111) (For Data Mode)
|
44 |
|
|
-- | | Commands (for Command Mode):
|
45 |
|
|
-- | | 000000 = Reset (performs power-on reset equivalent) on Write (Read has no effect)
|
46 |
|
|
-- | | 000001 = RESERVED
|
47 |
|
|
-- | | 000010 = Switch to Note/Power/PitchBend Run mode (initial default) on Write (Read has no effect)
|
48 |
|
|
-- | | 000011 = Switch to Timer On/Off Compare Value Run mode on Write (Read has no effect)
|
49 |
|
|
-- | | 000100 = Bank Select 0 (Notes 0-63) for future transfers on Write (Read has no effect)
|
50 |
|
|
-- | | 000101 = Bank Select 1 (Notes 64-127) for future transfers on Write (Read has no effect)
|
51 |
|
|
-- | | 000110 = Bank Select 2 (Notes 128-191) for future transfers on Write (Read has no effect)
|
52 |
|
|
-- | | 000111 = Bank Select 3 (Notes 192-255) for future transfers on Write (Read has no effect)
|
53 |
|
|
-- | | 001xxx = TBD/RESERVED
|
54 |
|
|
-- | | Note: on 00xxxx Commands (above) and with Timer Address in the Data Mode the Concurrent
|
55 |
|
|
-- | | Read Nybble with the command send will be as follows:
|
56 |
|
|
-- | | 0 m b b
|
57 |
|
|
-- | | - - - -
|
58 |
|
|
-- | | | | | |
|
59 |
|
|
-- | | | | +-+-- Currently Selected Bank
|
60 |
|
|
-- | | | | 00 = Bank 0
|
61 |
|
|
-- | | | | 01 = Bank 1
|
62 |
|
|
-- | | | | 10 = Bank 2
|
63 |
|
|
-- | | | | 11 = Bank 3
|
64 |
|
|
-- | | | |
|
65 |
|
|
-- | | | +------ RunMode : 0 = Note/Power/PitchBend, 1 = Timer On/Off Compare Values
|
66 |
|
|
-- | | |
|
67 |
|
|
-- | | +-------- Reserved for 001xxx command, TBD, will be sent as 0
|
68 |
|
|
-- | |
|
69 |
|
|
-- | | 01xxxx = Read Push Button Switch 0-3 Status (Read Nybble is concurrent with sending command byte, Write has no effect)
|
70 |
|
|
-- | | 10xxxx = Read/Set LEDs 0-3 (Read Nybble is concurrent with sending command byte)
|
71 |
|
|
-- | | 11xxxx = Read/Set LEDs 4-7 (Read Nybble is concurrent with sending command byte)
|
72 |
|
|
-- | |
|
73 |
|
|
-- | +----------------------- Command/Data Select (0=Data, 1=Command)
|
74 |
|
|
-- |
|
75 |
|
|
-- +-------------------------- R/W Mode Select
|
76 |
|
|
-- 0 = Write new value to TimerOCD and concurrently Read present value from TimerOCD
|
77 |
|
|
-- 1 = Read present value from TimerOCD (Data received during read operation is ignored)
|
78 |
|
|
--
|
79 |
|
|
-- Note/Power/PitchBend Run Mode
|
80 |
|
|
-- -----------------------------
|
81 |
|
|
-- * 16-Bit : 7-Bit Note/Key and 7-Bit Power/Velocity for Left Channel: (Data Mode Only)
|
82 |
|
|
-- 0,N6..N0,0,P6..P0 :
|
83 |
|
|
--
|
84 |
|
|
-- 0 N6 N5 N4 N3 N2 N1 N0
|
85 |
|
|
-- -- -- -- -- -- -- -- --
|
86 |
|
|
-- | | | | | | | |
|
87 |
|
|
-- | +--+--+--+--+--+--+-- Note/Key 0-127 0x00-0x7F (0000000-1111111) - Left Channel
|
88 |
|
|
-- |
|
89 |
|
|
-- +----------------------- Unused
|
90 |
|
|
--
|
91 |
|
|
-- 0 P6 P5 P4 P3 P2 P1 P0
|
92 |
|
|
-- -- -- -- -- -- -- -- --
|
93 |
|
|
-- | | | | | | | |
|
94 |
|
|
-- | +--+--+--+--+--+--+-- Power/Velocity 0-127 0x00-0x7F (0000000-1111111) - Left Channel
|
95 |
|
|
-- |
|
96 |
|
|
-- +----------------------- Unused
|
97 |
|
|
--
|
98 |
|
|
-- * 16-Bit : 14-Bit Pitch Bend for Left Channel: (Data Mode Only)
|
99 |
|
|
-- 0,0,B13..B0 :
|
100 |
|
|
--
|
101 |
|
|
-- 0 0 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
|
102 |
|
|
-- -- -- --- --- --- --- -- -- -- -- -- -- -- -- -- --
|
103 |
|
|
-- | | | | | | | | | | | | | | | |
|
104 |
|
|
-- | | +---+---+---+---+--+--+--+--+--+--+--+--+--+-- Pitch Bend 0000/2000(NoBend)/3FFF - Left Channel
|
105 |
|
|
-- | |
|
106 |
|
|
-- +--+------------------------------------------------ Unused
|
107 |
|
|
--
|
108 |
|
|
--
|
109 |
|
|
-- * 16-Bit : 7-Bit Note/Key and 7-Bit Power/Velocity for Right Channel: (Data Mode Only)
|
110 |
|
|
-- 0,N6..N0,0,P6..P0 :
|
111 |
|
|
--
|
112 |
|
|
-- 0 N6 N5 N4 N3 N2 N1 N0
|
113 |
|
|
-- -- -- -- -- -- -- -- --
|
114 |
|
|
-- | | | | | | | |
|
115 |
|
|
-- | +--+--+--+--+--+--+-- Note/Key 0-127 0x00-0x7F (0000000-1111111) - Right Channel
|
116 |
|
|
-- |
|
117 |
|
|
-- +----------------------- Unused
|
118 |
|
|
--
|
119 |
|
|
-- 0 P6 P5 P4 P3 P2 P1 P0
|
120 |
|
|
-- -- -- -- -- -- -- -- --
|
121 |
|
|
-- | | | | | | | |
|
122 |
|
|
-- | +--+--+--+--+--+--+-- Power/Velocity 0-127 0x00-0x7F (0000000-1111111) - Right Channel
|
123 |
|
|
-- |
|
124 |
|
|
-- +----------------------- Unused
|
125 |
|
|
--
|
126 |
|
|
-- * 16-Bit : 14-Bit Pitch Bend for Right Channel: (Data Mode Only)
|
127 |
|
|
-- 0,0,B13..B0 :
|
128 |
|
|
--
|
129 |
|
|
-- 0 0 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
|
130 |
|
|
-- -- -- --- --- --- --- -- -- -- -- -- -- -- -- -- --
|
131 |
|
|
-- | | | | | | | | | | | | | | | |
|
132 |
|
|
-- | | +---+---+---+---+--+--+--+--+--+--+--+--+--+-- Pitch Bend 0000/2000(NoBend)/3FFF - Right Channel
|
133 |
|
|
-- | |
|
134 |
|
|
-- +--+------------------------------------------------ Unused
|
135 |
|
|
--
|
136 |
|
|
--
|
137 |
|
|
-- >> A Note Value of 0 or Power Level of 0 is considered "OFF" and will disable the timer compare channel
|
138 |
|
|
--
|
139 |
|
|
--
|
140 |
|
|
-- Timer On/Off Value Run Mode
|
141 |
|
|
-- ---------------------------
|
142 |
|
|
-- * 16-Bit : Timer ON Value for Left Channel: (Data Mode Only)
|
143 |
|
|
-- T15..T0 :
|
144 |
|
|
--
|
145 |
|
|
-- T15 T14 T13 T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1 T0
|
146 |
|
|
-- --- --- --- --- --- --- -- -- -- -- -- -- -- -- -- --
|
147 |
|
|
-- | | | | | | | | | | | | | | | |
|
148 |
|
|
-- +---+---+---+---+---+---+--+--+--+--+--+--+--+--+--+-- Timer ON Value 0x0000 - 0xFFFF - Left Channel
|
149 |
|
|
--
|
150 |
|
|
--
|
151 |
|
|
-- * 16-Bit : Timer OFF Value for Left Channel: (Data Mode Only)
|
152 |
|
|
-- T15..T0 :
|
153 |
|
|
--
|
154 |
|
|
-- T15 T14 T13 T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1 T0
|
155 |
|
|
-- --- --- --- --- --- --- -- -- -- -- -- -- -- -- -- --
|
156 |
|
|
-- | | | | | | | | | | | | | | | |
|
157 |
|
|
-- +---+---+---+---+---+---+--+--+--+--+--+--+--+--+--+-- Timer OFF Value 0x0000 - 0xFFFF - Left Channel
|
158 |
|
|
--
|
159 |
|
|
--
|
160 |
|
|
-- * 16-Bit : Timer ON Value for Right Channel: (Data Mode Only)
|
161 |
|
|
-- T15..T0 :
|
162 |
|
|
--
|
163 |
|
|
-- T15 T14 T13 T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1 T0
|
164 |
|
|
-- --- --- --- --- --- --- -- -- -- -- -- -- -- -- -- --
|
165 |
|
|
-- | | | | | | | | | | | | | | | |
|
166 |
|
|
-- +---+---+---+---+---+---+--+--+--+--+--+--+--+--+--+-- Timer ON Value 0x0000 - 0xFFFF - Right Channel
|
167 |
|
|
--
|
168 |
|
|
--
|
169 |
|
|
-- * 16-Bit : Timer OFF Value for Right Channel: (Data Mode Only)
|
170 |
|
|
-- T15..T0 :
|
171 |
|
|
--
|
172 |
|
|
-- T15 T14 T13 T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1 T0
|
173 |
|
|
-- --- --- --- --- --- --- -- -- -- -- -- -- -- -- -- --
|
174 |
|
|
-- | | | | | | | | | | | | | | | |
|
175 |
|
|
-- +---+---+---+---+---+---+--+--+--+--+--+--+--+--+--+-- Timer OFF Value 0x0000 - 0xFFFF - Right Channel
|
176 |
|
|
--
|
177 |
|
|
-- >> Writing either Timer On or Timer Off to 0 is considered "OFF" and will disable the timer compare channel
|
178 |
|
|
--
|
179 |
|
|
--
|
180 |
|
|
--------------------------------------------------------------------------------
|
181 |
|
|
--
|
182 |
|
|
-- tmrMemBlkLeftXX/tmrMemBlkRightXX Memory Mapping:
|
183 |
|
|
--
|
184 |
|
|
-- Each Configured as 256 x 16-bit True Dual-Port RAM Memory
|
185 |
|
|
-- Port A = All Read/Write processing (xferdataproc only)
|
186 |
|
|
-- Port B = All Read-Only processing (tmrupdproc only)
|
187 |
|
|
-- (Address is 8-bits)
|
188 |
|
|
--
|
189 |
|
|
-- A7 A6 A5 A4 A3 A2 A1 A0
|
190 |
|
|
-- -- -- -- -- -- -- -- --
|
191 |
|
|
-- | | | | | | | |
|
192 |
|
|
-- | | +--+--+--+--+--+------------ Subtimer Index (0-63) 0x00-0x3F
|
193 |
|
|
-- | |
|
194 |
|
|
-- +--+--+--------------------------- Entry Selection:
|
195 |
|
|
-- 00 = Note and Power Data (as sent/received to/from SPI) (Read/Written on SPI side) (Note in MSB, Power in LSB)
|
196 |
|
|
-- 01 = Pitch Bend Value (as sent/received to/from SPI) (Read/Written on SPI side) (right-justified)
|
197 |
|
|
-- 10 = Timer ON Compare Value (Calculated during SPI receive and written then, Read on signal generation timer processing)
|
198 |
|
|
-- 11 = Timer OFF Compare Value (Calculated during SPI receive and written then, Read on signal generation timer processing)
|
199 |
|
|
--
|
200 |
|
|
-- Block Mapping:
|
201 |
|
|
-- --------------
|
202 |
|
|
-- tmrMemBlkLeft00/tmrMemBlkRight00 - Holds notes 0-63
|
203 |
|
|
-- tmrMemBlkLeft01/tmrMemBlkRight01 - Holds notes 64-127
|
204 |
|
|
-- tmrMemBlkLeft02/tmrMemBlkRight02 - Holds notes 128-191
|
205 |
|
|
-- tmrMemBlkLeft03/tmrMemBlkRight03 - Holds notes 192-255
|
206 |
|
|
--
|
207 |
|
|
--
|
208 |
|
|
-- tmrCTMemBlkLeftXX/tmrCTMemBlkRightXX Memory Mapping:
|
209 |
|
|
--
|
210 |
|
|
-- Each Configured as 64 x 16-bit Simple Dual-Port RAM Memory
|
211 |
|
|
-- Port A = All Read/Write processing (used exclusively by tmrupdproc)
|
212 |
|
|
-- (Address is 6-bits)
|
213 |
|
|
--
|
214 |
|
|
-- A5 A4 A3 A2 A1 A0
|
215 |
|
|
-- -- -- -- -- -- --
|
216 |
|
|
-- | | | | | |
|
217 |
|
|
-- +--+--+--+--+--+------- Subtimer Index (0-63) 0x00-0x3F
|
218 |
|
|
--
|
219 |
|
|
--
|
220 |
|
|
-- tmrCTMemBlkLeft00/tmrCTMemBlkRight00 - Holds notes 0-63
|
221 |
|
|
-- tmrCTMemBlkLeft01/tmrCTMemBlkRight01 - Holds notes 64-127
|
222 |
|
|
-- tmrCTMemBlkLeft02/tmrCTMemBlkRight02 - Holds notes 128-191
|
223 |
|
|
-- tmrCTMemBlkLeft03/tmrCTMemBlkRight03 - Holds notes 192-255
|
224 |
|
|
--
|
225 |
|
|
--------------------------------------------------------------------------------
|
226 |
|
|
--
|
227 |
|
|
-- cmpFreqMemBlk Memory Mapping:
|
228 |
|
|
--
|
229 |
|
|
-- Timer Output Compare FREQ Values
|
230 |
|
|
-- (OFF Values) = (FREQ Value) - (ON Value)
|
231 |
|
|
--
|
232 |
|
|
-- Configured as 128 x 16-bit Dual Port ROM Memory
|
233 |
|
|
-- (Address is 7-bits)
|
234 |
|
|
--
|
235 |
|
|
-- A6 A5 A4 A3 A2 A1 A0
|
236 |
|
|
-- -- -- -- -- -- -- --
|
237 |
|
|
-- | | | | | | |
|
238 |
|
|
-- +--+--+--+--+--+--+------ Note Value 0-127 (0 is reserved for output disabled compare value of 0)
|
239 |
|
|
--
|
240 |
|
|
--
|
241 |
|
|
--------------------------------------------------------------------------------
|
242 |
|
|
--
|
243 |
|
|
-- cmpOnMemBlk Memory Mapping:
|
244 |
|
|
--
|
245 |
|
|
-- Timer Output Compare ON Values
|
246 |
|
|
--
|
247 |
|
|
-- Configured as 16384 x 16-bit Dual Port ROM Memory
|
248 |
|
|
-- (Address is 14-bits)
|
249 |
|
|
--
|
250 |
|
|
-- A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
|
251 |
|
|
-- --- --- --- --- -- -- -- -- -- -- -- -- -- --
|
252 |
|
|
-- | | | | | | | | | | | | | |
|
253 |
|
|
-- | | | | | | | +--+--+--+--+--+--+------ Note Value 0-127 (0 is reserved for output disabled compare value of 0)
|
254 |
|
|
-- | | | | | | |
|
255 |
|
|
-- +---+---+---+---+--+--+--------------------------- Power Value 0-127 (0 is reserved for output disabled compare value of 0)
|
256 |
|
|
--
|
257 |
|
|
--------------------------------------------------------------------------------
|
258 |
|
|
--
|
259 |
|
|
-- For PitchBend calculations, the top-two bits (bit B13 and B12) of the PitchBend determine which note
|
260 |
|
|
-- compare stores are used in the PitchBend calculation as follows:
|
261 |
|
|
--
|
262 |
|
|
-- B13 B12
|
263 |
|
|
-- --- ---
|
264 |
|
|
-- 0 0 -- Use Note-2 and Note-1
|
265 |
|
|
-- 0 1 -- Use Note-1 and Note
|
266 |
|
|
-- 1 0 -- Use Note and Note+1
|
267 |
|
|
-- 1 1 -- Use Note+1 and Note+2
|
268 |
|
|
--
|
269 |
|
|
-- Notes in the extremes of the Note values (i.e. outside of the meaningful
|
270 |
|
|
-- 88 note piano range where our compares wrap anyway) are excluded from
|
271 |
|
|
-- the pitch bend calculations
|
272 |
|
|
--
|
273 |
|
|
--
|
274 |
|
|
--------------------------------------------------------------------------------
|
275 |
|
|
|
276 |
|
|
library IEEE;
|
277 |
|
|
use IEEE.std_logic_1164.all;
|
278 |
|
|
use IEEE.std_logic_arith.all;
|
279 |
|
|
use IEEE.std_logic_unsigned.all;
|
280 |
|
|
|
281 |
|
|
library UNISIM;
|
282 |
|
|
use UNISIM.VCOMPONENTS.all;
|
283 |
|
|
|
284 |
|
|
--------------------------------------------------------------------------------
|
285 |
|
|
-- ENTITY DECLARATION
|
286 |
|
|
--------------------------------------------------------------------------------
|
287 |
|
|
entity TimerOCD is
|
288 |
|
|
port (
|
289 |
|
|
reset_n: in STD_LOGIC; -- Master reset (Active Low)
|
290 |
|
|
SPI_SS_n_in: in STD_LOGIC; -- SPI Slave Select In (Active Low)
|
291 |
|
|
SPI_CLK_in: in STD_LOGIC; -- SPI Clock In
|
292 |
|
|
SPI_MOSI_in: in STD_LOGIC; -- SPI Master Out, Slave In
|
293 |
|
|
SPI_MISO: out STD_LOGIC := 'Z'; -- SPI Master In, Slave Out
|
294 |
|
|
FiberOut: out STD_LOGIC_VECTOR(1 downto 0) := (OTHERS => '0'); -- Fiber Optic Output Drive Left/Right Channels
|
295 |
|
|
---
|
296 |
|
|
--- Numato Mimas Spartan6 Module I/O Mapping:
|
297 |
|
|
GCLK_in: in STD_LOGIC; -- Master System Clock (GCLK)
|
298 |
|
|
SW0: in STD_LOGIC; -- Push-Button Switch 0
|
299 |
|
|
SW1: in STD_LOGIC; -- Push-Button Switch 1
|
300 |
|
|
SW2: in STD_LOGIC; -- Push-Button Switch 2
|
301 |
|
|
SW3: in STD_LOGIC; -- Push-Button Switch 3
|
302 |
|
|
LED: out STD_LOGIC_VECTOR(7 downto 0) -- LEDs 0 - 7
|
303 |
|
|
);
|
304 |
|
|
end TimerOCD;
|
305 |
|
|
|
306 |
|
|
--------------------------------------------------------------------------------
|
307 |
|
|
-- ARCHITECTURE DECLARATION
|
308 |
|
|
--------------------------------------------------------------------------------
|
309 |
|
|
architecture TimerOCD_arch of TimerOCD is
|
310 |
|
|
constant tmrclkPrescaler : INTEGER := 64; -- Output Timer Clock Prescaler (Based on incoming GCLK frequency) tmrclk = 1.5625MHz
|
311 |
|
|
constant LEDpostPrescaler : INTEGER := 6250000; -- 1/8th of a second pulse per LED with 100MHz GCLK
|
312 |
|
|
|
313 |
|
|
constant numTimers : INTEGER := 256; -- Number of Timers Supported
|
314 |
|
|
constant numTimerBits : INTEGER := 8; -- Number of Timer Address Bits
|
315 |
|
|
constant numSubTimers : INTEGER := 64; -- Number of Timers per Block
|
316 |
|
|
constant numSubTimerBits : INTEGER := 6; -- Number of SubTimer Address Bits
|
317 |
|
|
constant numTimerBlocks : INTEGER := 4; -- Number of Timer Blocks
|
318 |
|
|
constant numTimerBlockBits : INTEGER := 2; -- Number of Timer Block Address Bits
|
319 |
|
|
constant numCommandXferBits : INTEGER := 6; -- Number of Bit of Address Xfer is Command Bits
|
320 |
|
|
constant numXferBits : INTEGER := 64; -- Number of bits transmitted/received during SPI data exchange
|
321 |
|
|
constant numOutputs : INTEGER := 2; -- Number of Outputs Supported
|
322 |
|
|
constant LEFT_OUT_NDX : INTEGER := 0; -- Left Output Index for array processing
|
323 |
|
|
constant RIGHT_OUT_NDX : INTEGER := 1; -- Right Output Index for array processing
|
324 |
|
|
constant EVEN_NDX : STD_LOGIC := '0'; -- tmrupdproc Even-Half Index for array processing
|
325 |
|
|
constant ODD_NDX : STD_LOGIC := '1'; -- tmrupdproc Odd-Half Index for array processing
|
326 |
|
|
|
327 |
|
|
constant adrNotePower : STD_LOGIC_VECTOR := "00"; -- Note/Power address slots
|
328 |
|
|
constant adrPitchBend : STD_LOGIC_VECTOR := "01"; -- PitchBend address slots
|
329 |
|
|
constant adrTimeON : STD_LOGIC_VECTOR := "10"; -- Timer ON Compare address slots
|
330 |
|
|
constant adrTimeOFF : STD_LOGIC_VECTOR := "11"; -- Timer OFF Compare address slots
|
331 |
|
|
|
332 |
|
|
constant LOWERNOTE_INDEX : INTEGER := 21; -- First "Piano" note index (i.e. lowest one considered in pitchbend)
|
333 |
|
|
constant UPPERNOTE_INDEX : INTEGER := 108; -- Last "Piano" note index (i.e. highest one considered in pitchbend)
|
334 |
|
|
|
335 |
|
|
-- Conversion Functions:
|
336 |
|
|
function TmrBlock(constant nAddrBlock : STD_LOGIC_VECTOR(numTimerBlockBits-1 downto 0)) return INTEGER is
|
337 |
|
|
begin
|
338 |
|
|
return CONV_INTEGER(nAddrBlock);
|
339 |
|
|
end function TmrBlock;
|
340 |
|
|
|
341 |
|
|
function Tmr(constant nSubTimer : STD_LOGIC_VECTOR(numSubTimerBits-1 downto 0)) return INTEGER is
|
342 |
|
|
begin
|
343 |
|
|
return CONV_INTEGER(nSubTimer);
|
344 |
|
|
end function Tmr;
|
345 |
|
|
|
346 |
|
|
function Tmr(constant nOddEven : STD_LOGIC; constant nSubTimerUpd : STD_LOGIC_VECTOR(numSubTimerBits-2 downto 0)) return INTEGER is
|
347 |
|
|
begin
|
348 |
|
|
return CONV_INTEGER(nOddEven & nSubTimerUpd);
|
349 |
|
|
end function Tmr;
|
350 |
|
|
|
351 |
|
|
component BUFG is
|
352 |
|
|
port (
|
353 |
|
|
I : in STD_ULOGIC;
|
354 |
|
|
O : out STD_ULOGIC
|
355 |
|
|
);
|
356 |
|
|
end component;
|
357 |
|
|
|
358 |
|
|
component timer_memblk
|
359 |
|
|
port (
|
360 |
|
|
clka : in STD_LOGIC;
|
361 |
|
|
ena : in STD_LOGIC;
|
362 |
|
|
wea : in STD_LOGIC_VECTOR(0 downto 0);
|
363 |
|
|
addra : in STD_LOGIC_VECTOR(7 downto 0);
|
364 |
|
|
dina : in STD_LOGIC_VECTOR(15 downto 0);
|
365 |
|
|
douta : out STD_LOGIC_VECTOR(15 downto 0);
|
366 |
|
|
----
|
367 |
|
|
clkb : in STD_LOGIC;
|
368 |
|
|
enb : in STD_LOGIC;
|
369 |
|
|
web : in STD_LOGIC_VECTOR(0 downto 0);
|
370 |
|
|
addrb : in STD_LOGIC_VECTOR(7 downto 0);
|
371 |
|
|
dinb : in STD_LOGIC_VECTOR(15 downto 0);
|
372 |
|
|
doutb : out STD_LOGIC_VECTOR(15 downto 0)
|
373 |
|
|
);
|
374 |
|
|
end component;
|
375 |
|
|
|
376 |
|
|
component timerCT_memblk
|
377 |
|
|
port (
|
378 |
|
|
clka : in STD_LOGIC;
|
379 |
|
|
ena : in STD_LOGIC;
|
380 |
|
|
wea : in STD_LOGIC_VECTOR(0 downto 0);
|
381 |
|
|
addra : in STD_LOGIC_VECTOR(5 downto 0);
|
382 |
|
|
dina : in STD_LOGIC_VECTOR(15 downto 0);
|
383 |
|
|
clkb : in STD_LOGIC;
|
384 |
|
|
enb : in STD_LOGIC;
|
385 |
|
|
addrb : in STD_LOGIC_VECTOR(5 downto 0);
|
386 |
|
|
doutb : out STD_LOGIC_VECTOR(15 downto 0)
|
387 |
|
|
);
|
388 |
|
|
end component;
|
389 |
|
|
|
390 |
|
|
component cmpFreqData_memblk
|
391 |
|
|
port (
|
392 |
|
|
clka : in STD_LOGIC;
|
393 |
|
|
addra : in STD_LOGIC_VECTOR(6 downto 0);
|
394 |
|
|
douta : out STD_LOGIC_VECTOR(15 downto 0);
|
395 |
|
|
clkb : IN STD_LOGIC;
|
396 |
|
|
addrb : IN STD_LOGIC_VECTOR(6 downto 0);
|
397 |
|
|
doutb : OUT STD_LOGIC_VECTOR(15 downto 0)
|
398 |
|
|
);
|
399 |
|
|
end component;
|
400 |
|
|
|
401 |
|
|
component cmpOnData_memblk
|
402 |
|
|
port (
|
403 |
|
|
clka : in STD_LOGIC;
|
404 |
|
|
addra : in STD_LOGIC_VECTOR(13 downto 0);
|
405 |
|
|
douta : out STD_LOGIC_VECTOR(15 downto 0);
|
406 |
|
|
clkb : IN STD_LOGIC;
|
407 |
|
|
addrb : IN STD_LOGIC_VECTOR(13 downto 0);
|
408 |
|
|
doutb : OUT STD_LOGIC_VECTOR(15 downto 0)
|
409 |
|
|
);
|
410 |
|
|
end component;
|
411 |
|
|
|
412 |
|
|
component InterpolateMultAdd
|
413 |
|
|
port (
|
414 |
|
|
a : in STD_LOGIC_VECTOR(15 downto 0);
|
415 |
|
|
b : in STD_LOGIC_VECTOR(11 downto 0);
|
416 |
|
|
c : in STD_LOGIC_VECTOR(27 downto 0);
|
417 |
|
|
subtract : in STD_LOGIC;
|
418 |
|
|
p : out STD_LOGIC_VECTOR(27 downto 12);
|
419 |
|
|
pcout : out STD_LOGIC_VECTOR(47 downto 0)
|
420 |
|
|
);
|
421 |
|
|
end component;
|
422 |
|
|
|
423 |
|
|
-- Master Timer:
|
424 |
|
|
signal theTimer : STD_LOGIC_VECTOR(15 downto 0) := (OTHERS => '0');
|
425 |
|
|
|
426 |
|
|
-- The Outputs:
|
427 |
|
|
-- This is the value of all output signals and their corresponding "pseudo" outputs forming the combined output.
|
428 |
|
|
-- Each output will be generated by the 'OR' of all values for the numTimers associated with that output:
|
429 |
|
|
type TOutputBlockArray is array (0 to numTimerBlocks-1) of STD_LOGIC_VECTOR(numSubTimers-1 downto 0);
|
430 |
|
|
type TOutputArray is array (0 to numOutputs-1) of TOutputBlockArray;
|
431 |
|
|
signal outputLevels : TOutputArray; -- Toggles during On/Off transitions
|
432 |
|
|
signal outputEnables : TOutputArray; -- Set to '1' when timer loaded with valid compares and is enabled
|
433 |
|
|
signal outputEnablesNext : TOutputArray; -- Next state for outputEnables, set in xferdataproc and transferred to outputEnables in tmrupdproc when a timer compare occurs
|
434 |
|
|
signal outputForceLoad : TOutputArray; -- Toggled in the xferdataproc when receiving a timer value causing the tmrupdproc to force-load that timer during the next timer processing cycle
|
435 |
|
|
signal outputForceLoad_done : TOutputArray; -- Toggled when the tmrupdproc processes an OutputForceLoad flag
|
436 |
|
|
|
437 |
|
|
signal LEDenable : STD_LOGIC_VECTOR(7 downto 0); -- LED Outputs, set in RxData Processing
|
438 |
|
|
signal LEDSet : STD_LOGIC; -- Set to '1' whenever any LED value is written via SPI, used to switch from LEDpost to LEDenable mode
|
439 |
|
|
signal LEDpost : STD_LOGIC_VECTOR(7 downto 0); -- LED POST drive
|
440 |
|
|
signal LEDpostScalerCount : STD_LOGIC_VECTOR(31 downto 0); -- POST timer clock/counter
|
441 |
|
|
signal LEDpostPulse : STD_LOGIC; -- LED POST Pulse generated on scaler counter rollover, used to strobe LEDpost to the next state
|
442 |
|
|
|
443 |
|
|
signal runMode : STD_LOGIC := '0'; -- Run Mode : 0 = Note/Power/PitchBend, 1 = Timer On/Off (via SPI command)
|
444 |
|
|
constant rmodeNote : STD_LOGIC := '0';
|
445 |
|
|
constant rmodeTime : STD_LOGIC := '1';
|
446 |
|
|
|
447 |
|
|
-- SPI Connection:
|
448 |
|
|
signal SPI_SS_n : STD_LOGIC; -- Preprocessed SPI_SS
|
449 |
|
|
signal SPI_CLK : STD_LOGIC; -- Preprocessed SPI_CLK
|
450 |
|
|
signal SPI_MOSI : STD_LOGIC; -- Preprocessed SPI_MOSI
|
451 |
|
|
signal SPI_addr : STD_LOGIC_VECTOR(7 downto 0) := (OTHERS => '0'); -- Current Address for SPI Read/Write
|
452 |
|
|
signal SPI_addr_latch : STD_LOGIC := '0'; -- Address Latch enable from SPI
|
453 |
|
|
signal SPI_rx_data : STD_LOGIC_VECTOR(numXferBits-1 downto 0); -- Receive Data for On/Off Timer Values by Note/Velocity
|
454 |
|
|
signal SPI_tx_data : STD_LOGIC_VECTOR(numXferBits-1 downto 0); -- Transmit Data for On/Off Timer Values by Note/Velocity
|
455 |
|
|
signal SPI_rrdy : STD_LOGIC := '0'; -- Receive Data Ready (when new command is available)
|
456 |
|
|
signal SPI_cmd_addr : STD_LOGIC_VECTOR(2 downto 0) := (OTHERS => '0'); -- Command Address portion of Current Address for SPI Read/Write
|
457 |
|
|
signal SPI_txcmd_data : STD_LOGIC_VECTOR(3 downto 0); -- Transmit Command Data generated on SPI_cmd_data_latch synchronization logic in response to command byte
|
458 |
|
|
signal SPI_busy : STD_LOGIC; -- Cooked and Buffered (i.e. clock synchronized) SPI busy
|
459 |
|
|
|
460 |
|
|
-- Timer MemBlk Connections:
|
461 |
|
|
type TTimerAddrBus is array (0 to numTimerBlocks-1) of STD_LOGIC_VECTOR(7 downto 0);
|
462 |
|
|
type TTimerDataBus is array (0 to numTimerBlocks-1) of STD_LOGIC_VECTOR(15 downto 0);
|
463 |
|
|
-----------------------------------
|
464 |
|
|
signal tmrMemBlkLeft_CLKXfer : STD_LOGIC; -- PORT A : xferdataproc Processing (All Synchronous R/W)
|
465 |
|
|
signal tmrMemBlkLeft_ENXfer : STD_LOGIC;
|
466 |
|
|
signal tmrMemBlkLeft_WEXfer : STD_LOGIC_VECTOR(numTimerBlocks-1 downto 0);
|
467 |
|
|
signal tmrMemBlkLeft_ADDRXfer : STD_LOGIC_VECTOR(7 downto 0);
|
468 |
|
|
signal tmrMemBlkLeft_DINXfer : TTimerDataBus;
|
469 |
|
|
signal tmrMemBlkLeft_DOUTXfer : TTimerDataBus;
|
470 |
|
|
|
471 |
|
|
signal tmrMemBlkLeft_CLKTmr : STD_LOGIC; -- PORT B : tmrupdproc Processing (All Synchronous Read-Only)
|
472 |
|
|
signal tmrMemBlkLeft_ENTmr : STD_LOGIC;
|
473 |
|
|
signal tmrMemBlkLeft_ADDRTmr : TTimerAddrBus;
|
474 |
|
|
signal tmrMemBlkLeft_DOUTTmr : TTimerDataBus;
|
475 |
|
|
|
476 |
|
|
signal tmrMemBlkLeft_WE_GATE : STD_LOGIC_VECTOR(numTimerBlocks-1 downto 0); -- Port Write Enable Gate for xferdataproc processing
|
477 |
|
|
-----------------------------------
|
478 |
|
|
signal tmrMemBlkRight_CLKXfer : STD_LOGIC; -- PORT A : xferdataproc Processing (All Synchronous R/W)
|
479 |
|
|
signal tmrMemBlkRight_ENXfer : STD_LOGIC;
|
480 |
|
|
signal tmrMemBlkRight_WEXfer : STD_LOGIC_VECTOR(numTimerBlocks-1 downto 0);
|
481 |
|
|
signal tmrMemBlkRight_ADDRXfer : STD_LOGIC_VECTOR(7 downto 0);
|
482 |
|
|
signal tmrMemBlkRight_DINXfer : TTimerDataBus;
|
483 |
|
|
signal tmrMemBlkRight_DOUTXfer : TTimerDataBus;
|
484 |
|
|
|
485 |
|
|
signal tmrMemBlkRight_CLKTmr : STD_LOGIC; -- PORT B : tmrupdproc Processing (All Synchronous Read-Only)
|
486 |
|
|
signal tmrMemBlkRight_ENTmr : STD_LOGIC;
|
487 |
|
|
signal tmrMemBlkRight_ADDRTmr : TTimerAddrBus;
|
488 |
|
|
signal tmrMemBlkRight_DOUTTmr : TTimerDataBus;
|
489 |
|
|
|
490 |
|
|
signal tmrMemBlkRight_WE_GATE : STD_LOGIC_VECTOR(numTimerBlocks-1 downto 0); -- Port Write Enable Gate for xferdataproc processing
|
491 |
|
|
|
492 |
|
|
-- TimerCT MemBlk Connections:
|
493 |
|
|
signal tmrCTMemBlkLeft_CLKA : STD_LOGIC;
|
494 |
|
|
signal tmrCTMemBlkLeft_ENA : STD_LOGIC;
|
495 |
|
|
signal tmrCTMemBlkLeft_WEA : STD_LOGIC_VECTOR(numTimerBlocks-1 downto 0);
|
496 |
|
|
signal tmrCTMemBlkLeft_ADDRA : STD_LOGIC_VECTOR(5 downto 0);
|
497 |
|
|
signal tmrCTMemBlkLeft_DINA : TTimerDataBus;
|
498 |
|
|
signal tmrCTMemBlkLeft_CLKB : STD_LOGIC;
|
499 |
|
|
signal tmrCTMemBlkLeft_ENB : STD_LOGIC;
|
500 |
|
|
signal tmrCTMemBlkLeft_ADDRB : STD_LOGIC_VECTOR(5 downto 0);
|
501 |
|
|
signal tmrCTMemBlkLeft_DOUTB : TTimerDataBus;
|
502 |
|
|
|
503 |
|
|
signal tmrMemBlkLeft_DOUTBpTimer : TTimerDataBus; -- tmrMemBlkLeft_DOUTTmr Data plus timer from concurrent logic to load into tmrCTMemBlkLeft to reduce memory setup time in tmrupdproc
|
504 |
|
|
signal tmrMemBlkLeft_DINAmuxODD : TTimerDataBus; -- Multiplexer for tmrMemBlk Left ODD Data In Port A
|
505 |
|
|
signal tmrMemBlkLeft_DINAmuxEVEN : TTimerDataBus; -- Multiplexer for tmrMemBlk Left EVEN Data In Port A
|
506 |
|
|
signal tmrCTMemBlkLeft_eqTimer : STD_LOGIC_VECTOR(numTimerBlocks-1 downto 0); -- Comparison result of tmrCTMemBlkLeft == theTimer, used to reduce memory setup time in tmrupdproc
|
507 |
|
|
|
508 |
|
|
signal tmrCTMemBlkLeft_WE_GATE : STD_LOGIC_VECTOR(numTimerBlocks-1 downto 0); -- Port Write Enable Gate for tmrupdproc processing
|
509 |
|
|
-----------------------------------
|
510 |
|
|
signal tmrCTMemBlkRight_CLKA : STD_LOGIC;
|
511 |
|
|
signal tmrCTMemBlkRight_ENA : STD_LOGIC;
|
512 |
|
|
signal tmrCTMemBlkRight_WEA : STD_LOGIC_VECTOR(numTimerBlocks-1 downto 0);
|
513 |
|
|
signal tmrCTMemBlkRight_ADDRA : STD_LOGIC_VECTOR(5 downto 0);
|
514 |
|
|
signal tmrCTMemBlkRight_DINA : TTimerDataBus;
|
515 |
|
|
signal tmrCTMemBlkRight_CLKB : STD_LOGIC;
|
516 |
|
|
signal tmrCTMemBlkRight_ENB : STD_LOGIC;
|
517 |
|
|
signal tmrCTMemBlkRight_ADDRB : STD_LOGIC_VECTOR(5 downto 0);
|
518 |
|
|
signal tmrCTMemBlkRight_DOUTB : TTimerDataBus;
|
519 |
|
|
|
520 |
|
|
signal tmrMemBlkRight_DOUTBpTimer : TTimerDataBus; -- tmrMemBlkRight_DOUTTmr Data plus timer from concurrent logic to load into tmrCTMemBlkRight to reduce memory setup time in tmrupdproc
|
521 |
|
|
signal tmrMemBlkRight_DINAmuxODD : TTimerDataBus; -- Multiplexer for tmrMemBlk Right ODD Data In Port A
|
522 |
|
|
signal tmrMemBlkRight_DINAmuxEVEN : TTimerDataBus; -- Multiplexer for tmrMemBlk Right EVEN Data In Port A
|
523 |
|
|
signal tmrCTMemBlkRight_eqTimer : STD_LOGIC_VECTOR(numTimerBlocks-1 downto 0); -- Comparison result of tmrCTMemBlkRight == theTimer, used to reduce memory setup time in tmrupdproc
|
524 |
|
|
|
525 |
|
|
signal tmrCTMemBlkRight_WE_GATE : STD_LOGIC_VECTOR(numTimerBlocks-1 downto 0); -- Port Write Enable Gate for tmrupdproc processing
|
526 |
|
|
|
527 |
|
|
-- Compare Freq MemBlk Connection:
|
528 |
|
|
signal cmpFreqLeftMemBlk_CLK : STD_LOGIC; -- Port A used by Left Channel
|
529 |
|
|
signal cmpFreqLeftMemBlk_ADDR : STD_LOGIC_VECTOR(6 downto 0);
|
530 |
|
|
signal cmpFreqLeftMemBlk_DOUT : STD_LOGIC_VECTOR(15 downto 0);
|
531 |
|
|
----
|
532 |
|
|
signal cmpFreqRightMemBlk_CLK : STD_LOGIC; -- Port B used by Right Channel
|
533 |
|
|
signal cmpFreqRightMemBlk_ADDR : STD_LOGIC_VECTOR(6 downto 0);
|
534 |
|
|
signal cmpFreqRightMemBlk_DOUT : STD_LOGIC_VECTOR(15 downto 0);
|
535 |
|
|
|
536 |
|
|
-- Compare On MemBlk Connection:
|
537 |
|
|
signal cmpOnLeftMemBlk_CLK : STD_LOGIC; -- Port A used by Left Channel
|
538 |
|
|
signal cmpOnLeftMemBlk_ADDR : STD_LOGIC_VECTOR(13 downto 0);
|
539 |
|
|
signal cmpOnLeftMemBlk_DOUT : STD_LOGIC_VECTOR(15 downto 0);
|
540 |
|
|
-----
|
541 |
|
|
signal cmpOnRightMemBlk_CLK : STD_LOGIC; -- Port B used by Right Channel
|
542 |
|
|
signal cmpOnRightMemBlk_ADDR : STD_LOGIC_VECTOR(13 downto 0);
|
543 |
|
|
signal cmpOnRightMemBlk_DOUT : STD_LOGIC_VECTOR(15 downto 0);
|
544 |
|
|
|
545 |
|
|
-- Calculations:
|
546 |
|
|
signal pitchBendLeftNoteAIndex : STD_LOGIC_VECTOR(6 downto 0) := (OTHERS => '0'); -- Lower note index for pitch bend (see comments at top)
|
547 |
|
|
signal pitchBendLeftNoteBIndex : STD_LOGIC_VECTOR(6 downto 0) := (OTHERS => '0'); -- Upper note index for pitch bend (see comments at top)
|
548 |
|
|
signal pitchBendLeftMagnitude : STD_LOGIC_VECTOR(11 downto 0) := (OTHERS => '0'); -- Absolute value of magnitude of pitch bend => DSP InterpolateMultAdd(B)
|
549 |
|
|
|
550 |
|
|
signal pitchBendLeftCalcFREQAlpha : STD_LOGIC_VECTOR(15 downto 0) := (OTHERS => '0'); -- NoteA Compare FREQ Value (lower) => DSP InterpolateMultAdd(C and delta)
|
551 |
|
|
signal pitchBendLeftCalcFREQAlphaLeft : STD_LOGIC_VECTOR(27 downto 0) := (OTHERS => '0'); -- Left Justified NoteA Compare FREQ Value (lower) => DSP InterpolateMultAdd(C), Needed for addition to be "Multiplied" by 2^12
|
552 |
|
|
signal pitchBendLeftCalcFreqBeta : STD_LOGIC_VECTOR(15 downto 0) := (OTHERS => '0'); -- NoteB Compare FREQ Value (upper) => DSP InterpolateMultAdd(delta)
|
553 |
|
|
signal pitchBendLeftCalcFREQDelta : STD_LOGIC_VECTOR(15 downto 0) := (OTHERS => '0'); -- Compare FREQ (NoteB-NoteA) => DSP InterpolateMultAdd(A)
|
554 |
|
|
signal pitchBendLeftCalcFREQResult : STD_LOGIC_VECTOR(15 downto 0); -- Compare FREQ Output from DSP InterpolateMultAdd
|
555 |
|
|
|
556 |
|
|
signal pitchBendLeftCalcONAlpha : STD_LOGIC_VECTOR(15 downto 0) := (OTHERS => '0'); -- NoteA Compare ON Value (lower) => DSP InterpolateMultAdd(C and delta)
|
557 |
|
|
signal pitchBendLeftCalcONAlphaLeft : STD_LOGIC_VECTOR(27 downto 0) := (OTHERS => '0'); -- Left Justified NoteA Compare ON Value (lower) => DSP InterpolateMultAdd(C), Needed for addition to be "Multiplied" by 2^12
|
558 |
|
|
signal pitchBendLeftCalcONBeta : STD_LOGIC_VECTOR(15 downto 0) := (OTHERS => '0'); -- NoteB Compare ON Value (upper) => DSP InterpolateMultAdd(delta)
|
559 |
|
|
signal pitchBendLeftCalcONDelta : STD_LOGIC_VECTOR(15 downto 0) := (OTHERS => '0'); -- Compare ON (NoteB-NoteA) => DSP InterpolateMultAdd(A)
|
560 |
|
|
signal pitchBendLeftCalcONResult : STD_LOGIC_VECTOR(15 downto 0); -- Compare ON Output from DSP InterpolateMultAdd
|
561 |
|
|
-----
|
562 |
|
|
signal pitchBendRightNoteAIndex : STD_LOGIC_VECTOR(6 downto 0) := (OTHERS => '0'); -- Lower note index for pitch bend (see comments at top)
|
563 |
|
|
signal pitchBendRightNoteBIndex : STD_LOGIC_VECTOR(6 downto 0) := (OTHERS => '0'); -- Upper note index for pitch bend (see comments at top)
|
564 |
|
|
signal pitchBendRightMagnitude : STD_LOGIC_VECTOR(11 downto 0) := (OTHERS => '0'); -- Absolute value of magnitude of pitch bend => DSP InterpolateMultAdd(B)
|
565 |
|
|
|
566 |
|
|
signal pitchBendRightCalcFREQAlpha : STD_LOGIC_VECTOR(15 downto 0) := (OTHERS => '0'); -- NoteA Compare FREQ Value (lower) => DSP InterpolateMultAdd(C and delta)
|
567 |
|
|
signal pitchBendRightCalcFREQAlphaLeft : STD_LOGIC_VECTOR(27 downto 0) := (OTHERS => '0'); -- Left Justified NoteA Compare FREQ Value (lower) => DSP InterpolateMultAdd(C), Needed for addition to be "Multiplied" by 2^12
|
568 |
|
|
signal pitchBendRightCalcFREQBeta : STD_LOGIC_VECTOR(15 downto 0) := (OTHERS => '0'); -- NoteB Compare FREQ Value (upper) => DSP InterpolateMultAdd(delta)
|
569 |
|
|
signal pitchBendRightCalcFREQDelta : STD_LOGIC_VECTOR(15 downto 0) := (OTHERS => '0'); -- Compare FREQ (NoteB-NoteA) => DSP InterpolateMultAdd(A)
|
570 |
|
|
signal pitchBendRightCalcFREQResult : STD_LOGIC_VECTOR(15 downto 0); -- Compare FREQ Output from DSP InterpolateMultAdd
|
571 |
|
|
|
572 |
|
|
signal pitchBendRightCalcONAlpha : STD_LOGIC_VECTOR(15 downto 0) := (OTHERS => '0'); -- NoteA Compare ON Value (lower) => DSP InterpolateMultAdd(C and delta)
|
573 |
|
|
signal pitchBendRightCalcONAlphaLeft : STD_LOGIC_VECTOR(27 downto 0) := (OTHERS => '0'); -- Left Justified NoteA Compare ON Value (lower) => DSP InterpolateMultAdd(C), Needed for addition to be "Multiplied" by 2^12
|
574 |
|
|
signal pitchBendRightCalcONBeta : STD_LOGIC_VECTOR(15 downto 0) := (OTHERS => '0'); -- NoteB Compare ON Value (upper) => DSP InterpolateMultAdd(delta)
|
575 |
|
|
signal pitchBendRightCalcONDelta : STD_LOGIC_VECTOR(15 downto 0) := (OTHERS => '0'); -- Compare ON (NoteB-NoteA) => DSP InterpolateMultAdd(A)
|
576 |
|
|
signal pitchBendRightCalcONResult : STD_LOGIC_VECTOR(15 downto 0); -- Compare ON Output from DSP InterpolateMultAdd
|
577 |
|
|
|
578 |
|
|
-- Clocks
|
579 |
|
|
signal GCLK : STD_LOGIC; -- Buffered GCLK input
|
580 |
|
|
signal tmrclk : STD_LOGIC; -- Buffered Timer Clock (derived from GCLK based on timer prescaler)
|
581 |
|
|
signal sysclk : STD_LOGIC; -- Buffered System processing clock (equivalent to GCLK with a separate name reserved for possible scaling)
|
582 |
|
|
signal xferdataclk : STD_LOGIC; -- Buffered System Clock divided from sysclk for xferdataproc to slow it down enough to meet timing constraints for calculations
|
583 |
|
|
|
584 |
|
|
signal tmrclk_in: STD_LOGIC; -- Timer Clock In (Derived from GCLK by dividing by prescaler)
|
585 |
|
|
signal tmrclk_prescaler_count: STD_LOGIC_VECTOR(15 downto 0); -- tmrclk generation prescaler counter
|
586 |
|
|
|
587 |
|
|
signal xferdataclk_in: STD_LOGIC := '0'; -- XferData Clock in (Derived from GCLK/sysclk by dividing it to meet timing constraints, currently a divide by 2)
|
588 |
|
|
|
589 |
|
|
-- Misc
|
590 |
|
|
signal syn_rrdy : STD_LOGIC; -- Synchronous SPI_rrdy signal
|
591 |
|
|
signal syn_rrdy_armed : STD_LOGIC; -- Arming for Synchronous SPI_rrdy signal generation. Used to extend the trigger period to at least one sysclk cycle
|
592 |
|
|
signal syn_rrdy_clr_n : STD_LOGIC; -- Synchronous rrdy clear signal (asserted when data has been read)
|
593 |
|
|
signal syn_rxdata_trigger_n : STD_LOGIC := '1'; -- Synchronous rxdata processing trigger (asserted to start the rxdata receive process)
|
594 |
|
|
signal syn_rxdata_processing_n : STD_LOGIC := '1'; -- Synchronous rxdata processing signal (asserted when we are processing incoming data)
|
595 |
|
|
signal syn_cmd_processing_n : STD_LOGIC := '1'; -- Synchronous cmd processing signal (asserted hwen rxdataproc is processing the incoming SPI command)
|
596 |
|
|
constant nRxSB : integer := 3; -- Number of RxData State Bits (used for conversions)
|
597 |
|
|
signal syn_rxdata_state : STD_LOGIC_VECTOR(nRxSB-1 downto 0) := (OTHERS => '0'); -- Synchronous rxdata processing state-machine state (See xferdataproc for details)
|
598 |
|
|
signal syn_rxdata : STD_LOGIC_VECTOR(numXferBits-1 downto 0); -- Synchronized received buffer to hold the SPI_rx_data before transferring to our internal logic
|
599 |
|
|
|
600 |
|
|
signal txdata_trigger_n : STD_LOGIC := '1'; -- txdata trigger, set upon the rising edge of SPI_addr_latch, meaning latch address is in progress, reset when txdata_processing_n becomes active or SPI_SS_n deasserts indicating xfer was aborted
|
601 |
|
|
signal txdata_processing_n : STD_LOGIC := '1'; -- txdata processing, set when xferdataproc starts transmitting data (to the buffer) to be sent out over SPI
|
602 |
|
|
constant nTxSB : integer := 2; -- Number of TxData State Bits (used for conversions)
|
603 |
|
|
signal txdata_state : STD_LOGIC_VECTOR(nTxSB-1 downto 0) := (OTHERS => '0'); -- Synchronous txdata processing state-machine state (See xferdataproc for details)
|
604 |
|
|
|
605 |
|
|
signal local_rst_n : STD_LOGIC := '1'; -- Local reset to process the reset command from SPI
|
606 |
|
|
signal reset_trigger_n : STD_LOGIC := '1'; -- Reset trigger -- initiated by either reset_n or local_reset_n during sysclk processing of rxproc
|
607 |
|
|
signal reset_in_progress_n : STD_LOGIC := '1'; -- Reset currently is progress -- initiated by reset_trigger_n, cleared when reset is complete
|
608 |
|
|
|
609 |
|
|
signal tmrproc_trigger_n : STD_LOGIC := '1'; -- Timer Process Trigger - Set by tmrclk event in timerproc, acted on by tmrupdproc
|
610 |
|
|
signal tmrproc_processing_n : STD_LOGIC := '1'; -- Timer Process Processing - Set in tmrupdproc in response to tmrclk to indicate tmrupdproc state-machine is running
|
611 |
|
|
signal tmrproc_tmrndxEVEN : STD_LOGIC_VECTOR(numSubTimerBits-2 downto 0) := (OTHERS => '0'); -- Even Timer Index during the Timer Update Processing loop
|
612 |
|
|
signal tmrproc_tmrndxODD : STD_LOGIC_VECTOR(numSubTimerBits-2 downto 0) := (OTHERS => '0'); -- Odd Timer Index during the Timer Update Processing loop
|
613 |
|
|
signal tmrproc_tmrndxEVENLock : STD_LOGIC_VECTOR(numSubTimerBits-2 downto 0) := (OTHERS => '0'); -- Even Timer Index Locked during the Timer Output Update Processing loop
|
614 |
|
|
signal tmrproc_tmrndxODDLock : STD_LOGIC_VECTOR(numSubTimerBits-2 downto 0) := (OTHERS => '0'); -- Odd Timer Index Locked during the Timer Output Update Processing loop
|
615 |
|
|
constant nTSB : integer := 1; -- Number of Timer State Bits (used for conversions)
|
616 |
|
|
signal tmrproc_state : STD_LOGIC_VECTOR(nTSB-1 downto 0) := (OTHERS => '0'); -- Timer Update Processing state machine (See tmrupdproc for details)
|
617 |
|
|
|
618 |
|
|
signal spi_xfer_mode : STD_LOGIC := '0'; -- Command/Data mode from SPI address (0=Data, 1=Command)
|
619 |
|
|
signal syn_xfer_mode : STD_LOGIC := '0'; -- Latched version of spi_xfer_mode. Latched at start of rxdata/xferdata proc in case new address starts transferring while we are still processing
|
620 |
|
|
constant xmodeData : STD_LOGIC := '0';
|
621 |
|
|
constant xmodeCmd : STD_LOGIC := '1';
|
622 |
|
|
signal addr_subtimer : STD_LOGIC_VECTOR(numSubTimerBits-1 downto 0) := (OTHERS => '0'); -- SubTimer portion of Address received from SPI
|
623 |
|
|
signal syn_addr_subtimer : STD_LOGIC_VECTOR(numSubTimerBits-1 downto 0) := (OTHERS => '0'); -- Latched version of addr_subtimer. Latched at start of rxdata/xferdata proc in case new address starts transferring while we are still processing
|
624 |
|
|
signal addr_block : STD_LOGIC_VECTOR(numTimerBlockBits-1 downto 0) := (OTHERS => '0'); -- Block address sent via Block Select Command
|
625 |
|
|
signal spi_command : STD_LOGIC_VECTOR(numCommandXferBits-1 downto 0) := (OTHERS => '0'); -- Command received from SPI (when xfer_mode = 1)
|
626 |
|
|
signal spi_rw : STD_LOGIC := '0'; -- SPI R/W Mode (0=Write, 1=Read)
|
627 |
|
|
signal syn_rw : STD_LOGIC := '0'; -- Latched version of spi_rw. Latched at start of rxdata/xferdata proc in case new address starts transferring while we are still processing
|
628 |
|
|
|
629 |
|
|
-- Receive Data clarity mapping (Populated with data from syn_rxdata to make the code read better rather than dealing with arbitrary bit numbers everywhere):
|
630 |
|
|
signal synrx_leftNote : STD_LOGIC_VECTOR(6 downto 0);
|
631 |
|
|
signal synrx_leftPower : STD_LOGIC_VECTOR(6 downto 0);
|
632 |
|
|
signal synrx_leftPitchBend : STD_LOGIC_VECTOR(13 downto 0);
|
633 |
|
|
signal synrx_rightNote : STD_LOGIC_VECTOR(6 downto 0);
|
634 |
|
|
signal synrx_rightPower : STD_LOGIC_VECTOR(6 downto 0);
|
635 |
|
|
signal synrx_rightPitchBend : STD_LOGIC_VECTOR(13 downto 0);
|
636 |
|
|
signal synrx_leftTimerON : STD_LOGIC_VECTOR(15 downto 0);
|
637 |
|
|
signal synrx_leftTimerOFF : STD_LOGIC_VECTOR(15 downto 0);
|
638 |
|
|
signal synrx_rightTimerON : STD_LOGIC_VECTOR(15 downto 0);
|
639 |
|
|
signal synrx_rightTimerOFF : STD_LOGIC_VECTOR(15 downto 0);
|
640 |
|
|
|
641 |
|
|
begin
|
642 |
|
|
-- Handle Clock Buffering:
|
643 |
|
|
bufg_tmrclk : BUFG
|
644 |
|
|
port map (
|
645 |
|
|
O => tmrclk,
|
646 |
|
|
I => tmrclk_in
|
647 |
|
|
);
|
648 |
|
|
-- tmrclk <= tmrclk_in;
|
649 |
|
|
|
650 |
|
|
bufg_xferdataclk : BUFG
|
651 |
|
|
port map (
|
652 |
|
|
O => xferdataclk,
|
653 |
|
|
I => xferdataclk_in
|
654 |
|
|
);
|
655 |
|
|
-- xferdataclk <= xferdataclk_in;
|
656 |
|
|
|
657 |
|
|
bufg_GCLK : BUFG
|
658 |
|
|
port map (
|
659 |
|
|
O => GCLK,
|
660 |
|
|
I => GCLK_in
|
661 |
|
|
);
|
662 |
|
|
-- GCLK <= GCLK_in;
|
663 |
|
|
|
664 |
|
|
-- System Clock doesn't use prescaler:
|
665 |
|
|
sysclk <= GCLK;
|
666 |
|
|
|
667 |
|
|
-- Incoming SPI Entity:
|
668 |
|
|
iSPI : entity work.spi_slave
|
669 |
|
|
generic map (
|
670 |
|
|
cpol => '0',
|
671 |
|
|
cpha => '0',
|
672 |
|
|
d_width => numXferBits
|
673 |
|
|
)
|
674 |
|
|
port map (
|
675 |
|
|
sync_clk => sysclk,
|
676 |
|
|
reset_n => reset_n,
|
677 |
|
|
ss_n => SPI_SS_n,
|
678 |
|
|
sclk => SPI_CLK,
|
679 |
|
|
mosi => SPI_MOSI,
|
680 |
|
|
miso => SPI_MISO,
|
681 |
|
|
rrdy => SPI_rrdy,
|
682 |
|
|
rx_data => SPI_rx_data,
|
683 |
|
|
tx_load_data => SPI_tx_data,
|
684 |
|
|
addr => SPI_addr,
|
685 |
|
|
addr_latch => SPI_addr_latch,
|
686 |
|
|
cmd_load_data => SPI_txcmd_data,
|
687 |
|
|
busy => SPI_busy
|
688 |
|
|
);
|
689 |
|
|
|
690 |
|
|
-- Timer MemBlk Entities:
|
691 |
|
|
tmrMemBlkLeft00 : timer_memblk
|
692 |
|
|
port map (
|
693 |
|
|
clka => tmrMemBlkLeft_CLKXfer,
|
694 |
|
|
ena => tmrMemBlkLeft_ENXfer,
|
695 |
|
|
wea => tmrMemBlkLeft_WEXfer(0 downto 0),
|
696 |
|
|
addra => tmrMemBlkLeft_ADDRXfer,
|
697 |
|
|
dina => tmrMemBlkLeft_DINXfer(0),
|
698 |
|
|
douta => tmrMemBlkLeft_DOUTXfer(0),
|
699 |
|
|
----
|
700 |
|
|
clkb => tmrMemBlkLeft_CLKTmr,
|
701 |
|
|
enb => tmrMemBlkLeft_ENTmr,
|
702 |
|
|
web => "0",
|
703 |
|
|
addrb => tmrMemBlkLeft_ADDRTmr(0),
|
704 |
|
|
dinb => "0000000000000000",
|
705 |
|
|
doutb => tmrMemBlkLeft_DOUTTmr(0)
|
706 |
|
|
);
|
707 |
|
|
|
708 |
|
|
tmrMemBlkRight00 : timer_memblk
|
709 |
|
|
port map (
|
710 |
|
|
clka => tmrMemBlkRight_CLKXfer,
|
711 |
|
|
ena => tmrMemBlkRight_ENXfer,
|
712 |
|
|
wea => tmrMemBlkRight_WEXfer(0 downto 0),
|
713 |
|
|
addra => tmrMemBlkRight_ADDRXfer,
|
714 |
|
|
dina => tmrMemBlkRight_DINXfer(0),
|
715 |
|
|
douta => tmrMemBlkRight_DOUTXfer(0),
|
716 |
|
|
----
|
717 |
|
|
clkb => tmrMemBlkRight_CLKTmr,
|
718 |
|
|
enb => tmrMemBlkRight_ENTmr,
|
719 |
|
|
web => "0",
|
720 |
|
|
addrb => tmrMemBlkRight_ADDRTmr(0),
|
721 |
|
|
dinb => "0000000000000000",
|
722 |
|
|
doutb => tmrMemBlkRight_DOUTTmr(0)
|
723 |
|
|
);
|
724 |
|
|
|
725 |
|
|
tmrMemBlkLeft01 : timer_memblk
|
726 |
|
|
port map (
|
727 |
|
|
clka => tmrMemBlkLeft_CLKXfer,
|
728 |
|
|
ena => tmrMemBlkLeft_ENXfer,
|
729 |
|
|
wea => tmrMemBlkLeft_WEXfer(1 downto 1),
|
730 |
|
|
addra => tmrMemBlkLeft_ADDRXfer,
|
731 |
|
|
dina => tmrMemBlkLeft_DINXfer(1),
|
732 |
|
|
douta => tmrMemBlkLeft_DOUTXfer(1),
|
733 |
|
|
----
|
734 |
|
|
clkb => tmrMemBlkLeft_CLKTmr,
|
735 |
|
|
enb => tmrMemBlkLeft_ENTmr,
|
736 |
|
|
web => "0",
|
737 |
|
|
addrb => tmrMemBlkLeft_ADDRTmr(1),
|
738 |
|
|
dinb => "0000000000000000",
|
739 |
|
|
doutb => tmrMemBlkLeft_DOUTTmr(1)
|
740 |
|
|
);
|
741 |
|
|
|
742 |
|
|
tmrMemBlkRight01 : timer_memblk
|
743 |
|
|
port map (
|
744 |
|
|
clka => tmrMemBlkRight_CLKXfer,
|
745 |
|
|
ena => tmrMemBlkRight_ENXfer,
|
746 |
|
|
wea => tmrMemBlkRight_WEXfer(1 downto 1),
|
747 |
|
|
addra => tmrMemBlkRight_ADDRXfer,
|
748 |
|
|
dina => tmrMemBlkRight_DINXfer(1),
|
749 |
|
|
douta => tmrMemBlkRight_DOUTXfer(1),
|
750 |
|
|
----
|
751 |
|
|
clkb => tmrMemBlkRight_CLKTmr,
|
752 |
|
|
enb => tmrMemBlkRight_ENTmr,
|
753 |
|
|
web => "0",
|
754 |
|
|
addrb => tmrMemBlkRight_ADDRTmr(1),
|
755 |
|
|
dinb => "0000000000000000",
|
756 |
|
|
doutb => tmrMemBlkRight_DOUTTmr(1)
|
757 |
|
|
);
|
758 |
|
|
|
759 |
|
|
tmrMemBlkLeft02 : timer_memblk
|
760 |
|
|
port map (
|
761 |
|
|
clka => tmrMemBlkLeft_CLKXfer,
|
762 |
|
|
ena => tmrMemBlkLeft_ENXfer,
|
763 |
|
|
wea => tmrMemBlkLeft_WEXfer(2 downto 2),
|
764 |
|
|
addra => tmrMemBlkLeft_ADDRXfer,
|
765 |
|
|
dina => tmrMemBlkLeft_DINXfer(2),
|
766 |
|
|
douta => tmrMemBlkLeft_DOUTXfer(2),
|
767 |
|
|
----
|
768 |
|
|
clkb => tmrMemBlkLeft_CLKTmr,
|
769 |
|
|
enb => tmrMemBlkLeft_ENTmr,
|
770 |
|
|
web => "0",
|
771 |
|
|
addrb => tmrMemBlkLeft_ADDRTmr(2),
|
772 |
|
|
dinb => "0000000000000000",
|
773 |
|
|
doutb => tmrMemBlkLeft_DOUTTmr(2)
|
774 |
|
|
);
|
775 |
|
|
|
776 |
|
|
tmrMemBlkRight02 : timer_memblk
|
777 |
|
|
port map (
|
778 |
|
|
clka => tmrMemBlkRight_CLKXfer,
|
779 |
|
|
ena => tmrMemBlkRight_ENXfer,
|
780 |
|
|
wea => tmrMemBlkRight_WEXfer(2 downto 2),
|
781 |
|
|
addra => tmrMemBlkRight_ADDRXfer,
|
782 |
|
|
dina => tmrMemBlkRight_DINXfer(2),
|
783 |
|
|
douta => tmrMemBlkRight_DOUTXfer(2),
|
784 |
|
|
----
|
785 |
|
|
clkb => tmrMemBlkRight_CLKTmr,
|
786 |
|
|
enb => tmrMemBlkRight_ENTmr,
|
787 |
|
|
web => "0",
|
788 |
|
|
addrb => tmrMemBlkRight_ADDRTmr(2),
|
789 |
|
|
dinb => "0000000000000000",
|
790 |
|
|
doutb => tmrMemBlkRight_DOUTTmr(2)
|
791 |
|
|
);
|
792 |
|
|
|
793 |
|
|
tmrMemBlkLeft03 : timer_memblk
|
794 |
|
|
port map (
|
795 |
|
|
clka => tmrMemBlkLeft_CLKXfer,
|
796 |
|
|
ena => tmrMemBlkLeft_ENXfer,
|
797 |
|
|
wea => tmrMemBlkLeft_WEXfer(3 downto 3),
|
798 |
|
|
addra => tmrMemBlkLeft_ADDRXfer,
|
799 |
|
|
dina => tmrMemBlkLeft_DINXfer(3),
|
800 |
|
|
douta => tmrMemBlkLeft_DOUTXfer(3),
|
801 |
|
|
----
|
802 |
|
|
clkb => tmrMemBlkLeft_CLKTmr,
|
803 |
|
|
enb => tmrMemBlkLeft_ENTmr,
|
804 |
|
|
web => "0",
|
805 |
|
|
addrb => tmrMemBlkLeft_ADDRTmr(3),
|
806 |
|
|
dinb => "0000000000000000",
|
807 |
|
|
doutb => tmrMemBlkLeft_DOUTTmr(3)
|
808 |
|
|
);
|
809 |
|
|
|
810 |
|
|
tmrMemBlkRight03 : timer_memblk
|
811 |
|
|
port map (
|
812 |
|
|
clka => tmrMemBlkRight_CLKXfer,
|
813 |
|
|
ena => tmrMemBlkRight_ENXfer,
|
814 |
|
|
wea => tmrMemBlkRight_WEXfer(3 downto 3),
|
815 |
|
|
addra => tmrMemBlkRight_ADDRXfer,
|
816 |
|
|
dina => tmrMemBlkRight_DINXfer(3),
|
817 |
|
|
douta => tmrMemBlkRight_DOUTXfer(3),
|
818 |
|
|
----
|
819 |
|
|
clkb => tmrMemBlkRight_CLKTmr,
|
820 |
|
|
enb => tmrMemBlkRight_ENTmr,
|
821 |
|
|
web => "0",
|
822 |
|
|
addrb => tmrMemBlkRight_ADDRTmr(3),
|
823 |
|
|
dinb => "0000000000000000",
|
824 |
|
|
doutb => tmrMemBlkRight_DOUTTmr(3)
|
825 |
|
|
);
|
826 |
|
|
|
827 |
|
|
-- TimerCT MemBlk Entities:
|
828 |
|
|
tmrCTMemBlkLeft00 : timerCT_memblk
|
829 |
|
|
port map (
|
830 |
|
|
clka => tmrCTMemBlkLeft_CLKA,
|
831 |
|
|
ena => tmrCTMemBlkLeft_ENA,
|
832 |
|
|
wea => tmrCTMemBlkLeft_WEA(0 downto 0),
|
833 |
|
|
addra => tmrCTMemBlkLeft_ADDRA,
|
834 |
|
|
dina => tmrCTMemBlkLeft_DINA(0),
|
835 |
|
|
clkb => tmrCTMemBlkLeft_CLKB,
|
836 |
|
|
enb => tmrCTMemBlkLeft_ENB,
|
837 |
|
|
addrb => tmrCTMemBlkLeft_ADDRB,
|
838 |
|
|
doutb => tmrCTMemBlkLeft_DOUTB(0)
|
839 |
|
|
);
|
840 |
|
|
|
841 |
|
|
tmrCTMemBlkRight00 : timerCT_memblk
|
842 |
|
|
port map (
|
843 |
|
|
clka => tmrCTMemBlkRight_CLKA,
|
844 |
|
|
ena => tmrCTMemBlkRight_ENA,
|
845 |
|
|
wea => tmrCTMemBlkRight_WEA(0 downto 0),
|
846 |
|
|
addra => tmrCTMemBlkRight_ADDRA,
|
847 |
|
|
dina => tmrCTMemBlkRight_DINA(0),
|
848 |
|
|
clkb => tmrCTMemBlkRight_CLKB,
|
849 |
|
|
enb => tmrCTMemBlkRight_ENB,
|
850 |
|
|
addrb => tmrCTMemBlkRight_ADDRB,
|
851 |
|
|
doutb => tmrCTMemBlkRight_DOUTB(0)
|
852 |
|
|
);
|
853 |
|
|
|
854 |
|
|
tmrCTMemBlkLeft01 : timerCT_memblk
|
855 |
|
|
port map (
|
856 |
|
|
clka => tmrCTMemBlkLeft_CLKA,
|
857 |
|
|
ena => tmrCTMemBlkLeft_ENA,
|
858 |
|
|
wea => tmrCTMemBlkLeft_WEA(1 downto 1),
|
859 |
|
|
addra => tmrCTMemBlkLeft_ADDRA,
|
860 |
|
|
dina => tmrCTMemBlkLeft_DINA(1),
|
861 |
|
|
clkb => tmrCTMemBlkLeft_CLKB,
|
862 |
|
|
enb => tmrCTMemBlkLeft_ENB,
|
863 |
|
|
addrb => tmrCTMemBlkLeft_ADDRB,
|
864 |
|
|
doutb => tmrCTMemBlkLeft_DOUTB(1)
|
865 |
|
|
);
|
866 |
|
|
|
867 |
|
|
tmrCTMemBlkRight01 : timerCT_memblk
|
868 |
|
|
port map (
|
869 |
|
|
clka => tmrCTMemBlkRight_CLKA,
|
870 |
|
|
ena => tmrCTMemBlkRight_ENA,
|
871 |
|
|
wea => tmrCTMemBlkRight_WEA(1 downto 1),
|
872 |
|
|
addra => tmrCTMemBlkRight_ADDRA,
|
873 |
|
|
dina => tmrCTMemBlkRight_DINA(1),
|
874 |
|
|
clkb => tmrCTMemBlkRight_CLKB,
|
875 |
|
|
enb => tmrCTMemBlkRight_ENB,
|
876 |
|
|
addrb => tmrCTMemBlkRight_ADDRB,
|
877 |
|
|
doutb => tmrCTMemBlkRight_DOUTB(1)
|
878 |
|
|
);
|
879 |
|
|
|
880 |
|
|
tmrCTMemBlkLeft02 : timerCT_memblk
|
881 |
|
|
port map (
|
882 |
|
|
clka => tmrCTMemBlkLeft_CLKA,
|
883 |
|
|
ena => tmrCTMemBlkLeft_ENA,
|
884 |
|
|
wea => tmrCTMemBlkLeft_WEA(2 downto 2),
|
885 |
|
|
addra => tmrCTMemBlkLeft_ADDRA,
|
886 |
|
|
dina => tmrCTMemBlkLeft_DINA(2),
|
887 |
|
|
clkb => tmrCTMemBlkLeft_CLKB,
|
888 |
|
|
enb => tmrCTMemBlkLeft_ENB,
|
889 |
|
|
addrb => tmrCTMemBlkLeft_ADDRB,
|
890 |
|
|
doutb => tmrCTMemBlkLeft_DOUTB(2)
|
891 |
|
|
);
|
892 |
|
|
|
893 |
|
|
tmrCTMemBlkRight02 : timerCT_memblk
|
894 |
|
|
port map (
|
895 |
|
|
clka => tmrCTMemBlkRight_CLKA,
|
896 |
|
|
ena => tmrCTMemBlkRight_ENA,
|
897 |
|
|
wea => tmrCTMemBlkRight_WEA(2 downto 2),
|
898 |
|
|
addra => tmrCTMemBlkRight_ADDRA,
|
899 |
|
|
dina => tmrCTMemBlkRight_DINA(2),
|
900 |
|
|
clkb => tmrCTMemBlkRight_CLKB,
|
901 |
|
|
enb => tmrCTMemBlkRight_ENB,
|
902 |
|
|
addrb => tmrCTMemBlkRight_ADDRB,
|
903 |
|
|
doutb => tmrCTMemBlkRight_DOUTB(2)
|
904 |
|
|
);
|
905 |
|
|
|
906 |
|
|
tmrCTMemBlkLeft03 : timerCT_memblk
|
907 |
|
|
port map (
|
908 |
|
|
clka => tmrCTMemBlkLeft_CLKA,
|
909 |
|
|
ena => tmrCTMemBlkLeft_ENA,
|
910 |
|
|
wea => tmrCTMemBlkLeft_WEA(3 downto 3),
|
911 |
|
|
addra => tmrCTMemBlkLeft_ADDRA,
|
912 |
|
|
dina => tmrCTMemBlkLeft_DINA(3),
|
913 |
|
|
clkb => tmrCTMemBlkLeft_CLKB,
|
914 |
|
|
enb => tmrCTMemBlkLeft_ENB,
|
915 |
|
|
addrb => tmrCTMemBlkLeft_ADDRB,
|
916 |
|
|
doutb => tmrCTMemBlkLeft_DOUTB(3)
|
917 |
|
|
);
|
918 |
|
|
|
919 |
|
|
tmrCTMemBlkRight03 : timerCT_memblk
|
920 |
|
|
port map (
|
921 |
|
|
clka => tmrCTMemBlkRight_CLKA,
|
922 |
|
|
ena => tmrCTMemBlkRight_ENA,
|
923 |
|
|
wea => tmrCTMemBlkRight_WEA(3 downto 3),
|
924 |
|
|
addra => tmrCTMemBlkRight_ADDRA,
|
925 |
|
|
dina => tmrCTMemBlkRight_DINA(3),
|
926 |
|
|
clkb => tmrCTMemBlkRight_CLKB,
|
927 |
|
|
enb => tmrCTMemBlkRight_ENB,
|
928 |
|
|
addrb => tmrCTMemBlkRight_ADDRB,
|
929 |
|
|
doutb => tmrCTMemBlkRight_DOUTB(3)
|
930 |
|
|
);
|
931 |
|
|
|
932 |
|
|
-- Compare Off MemBlk Entity:
|
933 |
|
|
cmpFreqMemBlk : cmpFreqData_memblk
|
934 |
|
|
port map (
|
935 |
|
|
clka => cmpFreqLeftMemBlk_CLK,
|
936 |
|
|
addra => cmpFreqLeftMemBlk_ADDR,
|
937 |
|
|
douta => cmpFreqLeftMemBlk_DOUT,
|
938 |
|
|
-----
|
939 |
|
|
clkb => cmpFreqRightMemBlk_CLK,
|
940 |
|
|
addrb => cmpFreqRightMemBlk_ADDR,
|
941 |
|
|
doutb => cmpFreqRightMemBlk_DOUT
|
942 |
|
|
);
|
943 |
|
|
|
944 |
|
|
-- Compare On MemBlk Entity:
|
945 |
|
|
cmpOnMemBlk : cmpOnData_memblk
|
946 |
|
|
port map (
|
947 |
|
|
clka => cmpOnLeftMemBlk_CLK,
|
948 |
|
|
addra => cmpOnLeftMemBlk_ADDR,
|
949 |
|
|
douta => cmpOnLeftMemBlk_DOUT,
|
950 |
|
|
----
|
951 |
|
|
clkb => cmpOnRightMemBlk_CLK,
|
952 |
|
|
addrb => cmpOnRightMemBlk_ADDR,
|
953 |
|
|
doutb => cmpOnRightMemBlk_DOUT
|
954 |
|
|
);
|
955 |
|
|
|
956 |
|
|
-- DSP Interpolate MultAdd Entities:
|
957 |
|
|
pitchBendFREQLeftDSPInterpolate : InterpolateMultAdd
|
958 |
|
|
port map (
|
959 |
|
|
a => pitchBendLeftCalcFREQDelta,
|
960 |
|
|
b => pitchBendLeftMagnitude,
|
961 |
|
|
c => pitchBendLeftCalcFREQAlphaLeft,
|
962 |
|
|
subtract => '0',
|
963 |
|
|
p => pitchBendLeftCalcFREQResult,
|
964 |
|
|
pcout => open
|
965 |
|
|
);
|
966 |
|
|
|
967 |
|
|
pitchBendONLeftDSPInterpolate : InterpolateMultAdd
|
968 |
|
|
port map (
|
969 |
|
|
a => pitchBendLeftCalcONDelta,
|
970 |
|
|
b => pitchBendLeftMagnitude,
|
971 |
|
|
c => pitchBendLeftCalcONAlphaLeft,
|
972 |
|
|
subtract => '0',
|
973 |
|
|
p => pitchBendLeftCalcONResult,
|
974 |
|
|
pcout => open
|
975 |
|
|
);
|
976 |
|
|
-----------------------------------
|
977 |
|
|
pitchBendFREQRightDSPInterpolate : InterpolateMultAdd
|
978 |
|
|
port map (
|
979 |
|
|
a => pitchBendRightCalcFREQDelta,
|
980 |
|
|
b => pitchBendRightMagnitude,
|
981 |
|
|
c => pitchBendRightCalcFREQAlphaLeft,
|
982 |
|
|
subtract => '0',
|
983 |
|
|
p => pitchBendRightCalcFREQResult,
|
984 |
|
|
pcout => open
|
985 |
|
|
);
|
986 |
|
|
|
987 |
|
|
pitchBendONRightDSPInterpolate : InterpolateMultAdd
|
988 |
|
|
port map (
|
989 |
|
|
a => pitchBendRightCalcONDelta,
|
990 |
|
|
b => pitchBendRightMagnitude,
|
991 |
|
|
c => pitchBendRightCalcONAlphaLeft,
|
992 |
|
|
subtract => '0',
|
993 |
|
|
p => pitchBendRightCalcONResult,
|
994 |
|
|
pcout => open
|
995 |
|
|
);
|
996 |
|
|
|
997 |
|
|
-- Create Left Justified version of the pitchBendCalcOFFAlpha and pitchBendCalcONAlpha values.
|
998 |
|
|
-- This will effectively multiply them by 2^12 since they get added before the divide by
|
999 |
|
|
-- 2^12 instead of after it. This eliminates having additional math steps and hopefully
|
1000 |
|
|
-- the synthesizer and fitter will optimize it:
|
1001 |
|
|
pitchBendLeftCalcFREQAlphaLeft <= pitchBendLeftCalcFREQAlpha & "000000000000";
|
1002 |
|
|
pitchBendLeftCalcONAlphaLeft <= pitchBendLeftCalcONAlpha & "000000000000";
|
1003 |
|
|
----
|
1004 |
|
|
pitchBendRightCalcFREQAlphaLeft <= pitchBendRightCalcFREQAlpha & "000000000000";
|
1005 |
|
|
pitchBendRightCalcONAlphaLeft <= pitchBendRightCalcONAlpha & "000000000000";
|
1006 |
|
|
|
1007 |
|
|
-- DSP Delta Input Calculation as concurrent logic:
|
1008 |
|
|
pitchBendLeftCalcONDelta <= pitchBendLeftCalcONBeta - pitchBendLeftCalcONAlpha; -- On: Delta = Beta-Alpha
|
1009 |
|
|
pitchBendLeftCalcFREQDelta <= pitchBendLeftCalcFREQBeta - pitchBendLeftCalcFREQAlpha; -- Freq: Delta = Beta-Alpha
|
1010 |
|
|
|
1011 |
|
|
pitchBendRightCalcONDelta <= pitchBendRightCalcONBeta - pitchBendRightCalcONAlpha; -- On: Delta = Beta-Alpha
|
1012 |
|
|
pitchBendRightCalcFREQDelta <= pitchBendRightCalcFREQBeta - pitchBendRightCalcFREQAlpha; -- Freq: Delta = Beta-Alpha
|
1013 |
|
|
|
1014 |
|
|
-- Receive Data clarity mapping (Populated with data from syn_rxdata to make the code read better rather than dealing with arbitrary bit numbers everywhere):
|
1015 |
|
|
synrx_leftNote <= syn_rxdata(62 downto 56);
|
1016 |
|
|
synrx_leftPower <= syn_rxdata(54 downto 48);
|
1017 |
|
|
synrx_leftPitchBend <= syn_rxdata(45 downto 32);
|
1018 |
|
|
synrx_rightNote <= syn_rxdata(30 downto 24);
|
1019 |
|
|
synrx_rightPower <= syn_rxdata(22 downto 16);
|
1020 |
|
|
synrx_rightPitchBend <= syn_rxdata(13 downto 0);
|
1021 |
|
|
synrx_leftTimerON <= syn_rxdata(63 downto 48);
|
1022 |
|
|
synrx_leftTimerOFF <= syn_rxdata(47 downto 32);
|
1023 |
|
|
synrx_rightTimerON <= syn_rxdata(31 downto 16);
|
1024 |
|
|
synrx_rightTimerOFF <= syn_rxdata(15 downto 0);
|
1025 |
|
|
|
1026 |
|
|
-- Memory Block Clocking/Enable Logic:
|
1027 |
|
|
tmrMemBlkLeft_ENXfer <= reset_n; -- Enable Port A (R/W) accesses during xferdataproc
|
1028 |
|
|
tmrMemBlkLeft_CLKXfer <= xferdataclk;
|
1029 |
|
|
tmrMemBlkLeft_WEXfer <= tmrMemBlkLeft_WE_GATE;
|
1030 |
|
|
tmrMemBlkLeft_ENTmr <= reset_n; -- Enable Port B (R) accesses during tmrproc
|
1031 |
|
|
tmrMemBlkLeft_CLKTmr <= sysclk;
|
1032 |
|
|
-----
|
1033 |
|
|
tmrMemBlkRight_ENXfer <= reset_n; -- Enable Port A (R/W) accesses during xferdataproc
|
1034 |
|
|
tmrMemBlkRight_CLKXfer <= xferdataclk;
|
1035 |
|
|
tmrMemBlkRight_WEXfer <= tmrMemBlkRight_WE_GATE;
|
1036 |
|
|
tmrMemBlkRight_ENTmr <= reset_n; -- Enable Port B (R) accesses during tmrproc
|
1037 |
|
|
tmrMemBlkRight_CLKTmr <= sysclk;
|
1038 |
|
|
-----
|
1039 |
|
|
tmrCTMemBlkLeft_ENA <= reset_n and NOT tmrproc_processing_n; -- Enable Port A (R/W) accesses during tmrproc
|
1040 |
|
|
tmrCTMemBlkLeft_ENB <= reset_n and NOT tmrproc_processing_n;
|
1041 |
|
|
tmrCTMemBlkLeft_CLKA <= sysclk;
|
1042 |
|
|
tmrCTMemBlkLeft_CLKB <= sysclk;
|
1043 |
|
|
tmrCTMemBlkLeft_WEA <= tmrCTMemBlkLeft_WE_GATE;
|
1044 |
|
|
-----
|
1045 |
|
|
tmrCTMemBlkRight_ENA <= reset_n and NOT tmrproc_processing_n; -- Enable Port A (R/W) accesses during tmrproc
|
1046 |
|
|
tmrCTMemBlkRight_ENB <= reset_n and NOT tmrproc_processing_n;
|
1047 |
|
|
tmrCTMemBlkRight_CLKA <= sysclk;
|
1048 |
|
|
tmrCTMemBlkRight_CLKB <= sysclk;
|
1049 |
|
|
tmrCTMemBlkRight_WEA <= tmrCTMemBlkRight_WE_GATE;
|
1050 |
|
|
-----
|
1051 |
|
|
cmpOnLeftMemBlk_CLK <= sysclk;
|
1052 |
|
|
cmpFreqLeftMemBlk_CLK <= sysclk;
|
1053 |
|
|
cmpOnRightMemBlk_CLK <= sysclk;
|
1054 |
|
|
cmpFreqRightMemBlk_CLK <= sysclk;
|
1055 |
|
|
|
1056 |
|
|
-- tmrCTMemBlk Precalc code:
|
1057 |
|
|
-- The tmrCTMemBlkPreCalc code asynchronously takes the Timer On/Off
|
1058 |
|
|
-- counts being outputted on the tmrMemBlk and adds it to theTimer
|
1059 |
|
|
-- to find the time of the next event, making it available to the
|
1060 |
|
|
-- tmrCTMemBlkxxx_DOUTBpTimer register which can be loaded if a
|
1061 |
|
|
-- compare event for the current timer cycle is detected. It also
|
1062 |
|
|
-- compares the current tmrCTMemBlk memory output (i.e. the last
|
1063 |
|
|
-- event calculation) against theTimer to see if this cycle is an
|
1064 |
|
|
-- occurrence match. Done asynchronously from the tmrupdproc
|
1065 |
|
|
-- state-machine logic in order to meet setup timing conditions
|
1066 |
|
|
-- for the RAM, etc, with the propagation delay of the logic:
|
1067 |
|
|
tmrCTMemBlkPreCalc:for i in 0 to numTimerBlocks-1 generate
|
1068 |
|
|
begin
|
1069 |
|
|
tmrMemBlkLeft_DOUTBpTimer(i) <= tmrMemBlkLeft_DOUTTmr(i) + theTimer;
|
1070 |
|
|
with (tmrCTMemBlkLeft_DOUTB(i) = theTimer) select
|
1071 |
|
|
tmrCTMemBlkLeft_eqTimer(i) <= '1' when true, '0' when OTHERS;
|
1072 |
|
|
tmrMemBlkRight_DOUTBpTimer(i) <= tmrMemBlkRight_DOUTTmr(i) + theTimer;
|
1073 |
|
|
with (tmrCTMemBlkRight_DOUTB(i) = theTimer) select
|
1074 |
|
|
tmrCTMemBlkRight_eqTimer(i) <= '1' when true, '0' when OTHERS;
|
1075 |
|
|
end generate tmrCTMemBlkPreCalc;
|
1076 |
|
|
|
1077 |
|
|
-- tmrCTMemBlk Data Multiplexer code:
|
1078 |
|
|
-- The Odd/Even multiplexer code blocks asynchronously determine if the
|
1079 |
|
|
-- particular timer needs to get updated on the current timer cycle
|
1080 |
|
|
-- or not and loads either the next computed event time or the current
|
1081 |
|
|
-- event time accordingly.
|
1082 |
|
|
-- The final multiplexer code stage selects either the Odd or the Even
|
1083 |
|
|
-- data to send to the memory data input depending on which half-cycle
|
1084 |
|
|
-- of the state-machine logic we're on, making it available prior to
|
1085 |
|
|
-- the rising-edge of the clock which will clock it into the RAM:
|
1086 |
|
|
tmrCTMemBlkMuxODD:for i in 0 to numTimerBlocks-1 generate
|
1087 |
|
|
begin
|
1088 |
|
|
with (((outputEnables(LEFT_OUT_NDX)(i)(Tmr(ODD_NDX, tmrproc_tmrndxODDLock)) = '0') AND
|
1089 |
|
|
(outputForceLoad(LEFT_OUT_NDX)(i)(Tmr(ODD_NDX, tmrproc_tmrndxODDLock)) /= outputForceLoad_done(LEFT_OUT_NDX)(i)(Tmr(ODD_NDX, tmrproc_tmrndxODDLock)))) OR
|
1090 |
|
|
(tmrCTMemBlkLeft_eqTimer(i) = '1')) select
|
1091 |
|
|
tmrMemBlkLeft_DINAmuxODD(i) <= tmrMemBlkLeft_DOUTBpTimer(i) when true, tmrCTMemBlkLeft_DOUTB(i) when OTHERS;
|
1092 |
|
|
with (((outputEnables(RIGHT_OUT_NDX)(i)(Tmr(ODD_NDX, tmrproc_tmrndxODDLock)) = '0') AND
|
1093 |
|
|
(outputForceLoad(RIGHT_OUT_NDX)(i)(Tmr(ODD_NDX, tmrproc_tmrndxODDLock)) /= outputForceLoad_done(RIGHT_OUT_NDX)(i)(Tmr(ODD_NDX, tmrproc_tmrndxODDLock)))) OR
|
1094 |
|
|
(tmrCTMemBlkRight_eqTimer(i) = '1')) select
|
1095 |
|
|
tmrMemBlkRight_DINAmuxODD(i) <= tmrMemBlkRight_DOUTBpTimer(i) when true, tmrCTMemBlkRight_DOUTB(i) when OTHERS;
|
1096 |
|
|
end generate tmrCTMemBlkMuxODD;
|
1097 |
|
|
|
1098 |
|
|
tmrCTMemBlkMuxEVEN:for i in 0 to numTimerBlocks-1 generate
|
1099 |
|
|
begin
|
1100 |
|
|
with (((outputEnables(LEFT_OUT_NDX)(i)(Tmr(EVEN_NDX, tmrproc_tmrndxEVENLock)) = '0') AND
|
1101 |
|
|
(outputForceLoad(LEFT_OUT_NDX)(i)(Tmr(EVEN_NDX, tmrproc_tmrndxEVENLock)) /= outputForceLoad_done(LEFT_OUT_NDX)(i)(Tmr(EVEN_NDX, tmrproc_tmrndxEVENLock)))) OR
|
1102 |
|
|
(tmrCTMemBlkLeft_eqTimer(i) = '1')) select
|
1103 |
|
|
tmrMemBlkLeft_DINAmuxEVEN(i) <= tmrMemBlkLeft_DOUTBpTimer(i) when true, tmrCTMemBlkLeft_DOUTB(i) when OTHERS;
|
1104 |
|
|
with (((outputEnables(RIGHT_OUT_NDX)(i)(Tmr(EVEN_NDX, tmrproc_tmrndxEVENLock)) = '0') AND
|
1105 |
|
|
(outputForceLoad(RIGHT_OUT_NDX)(i)(Tmr(EVEN_NDX, tmrproc_tmrndxEVENLock)) /= outputForceLoad_done(RIGHT_OUT_NDX)(i)(Tmr(EVEN_NDX, tmrproc_tmrndxEVENLock)))) OR
|
1106 |
|
|
(tmrCTMemBlkRight_eqTimer(i) = '1')) select
|
1107 |
|
|
tmrMemBlkRight_DINAmuxEVEN(i) <= tmrMemBlkRight_DOUTBpTimer(i) when true, tmrCTMemBlkRight_DOUTB(i) when OTHERS;
|
1108 |
|
|
end generate tmrCTMemBlkMuxEVEN;
|
1109 |
|
|
|
1110 |
|
|
tmrCTMemBlkMux:for i in 0 to numTimerBlocks-1 generate
|
1111 |
|
|
begin
|
1112 |
|
|
-- NOTE: tmrproc_state values here are backwards from tmrupdproc state-machine because these
|
1113 |
|
|
-- calculations are AFTER the state transistion has happened and the rest of the state
|
1114 |
|
|
-- processing is occurring:
|
1115 |
|
|
with (CONV_INTEGER(tmrproc_state)) select
|
1116 |
|
|
tmrCTMemBlkLeft_DINA(i) <= tmrMemBlkLeft_DINAmuxODD(i) when 1, tmrMemBlkLeft_DINAmuxEVEN(i) when OTHERS;
|
1117 |
|
|
with (CONV_INTEGER(tmrproc_state)) select
|
1118 |
|
|
tmrCTMemBlkRight_DINA(i) <= tmrMemBlkRight_DINAmuxODD(i) when 1, tmrMemBlkRight_DINAmuxEVEN(i) when OTHERS;
|
1119 |
|
|
end generate tmrCTMemBlkMux;
|
1120 |
|
|
|
1121 |
|
|
-- LED Outputs
|
1122 |
|
|
with (LEDSet) select
|
1123 |
|
|
LED <= LEDenable when '1', LEDpost when OTHERS;
|
1124 |
|
|
|
1125 |
|
|
-- --------------------------------------------------------------------
|
1126 |
|
|
-- xferdataclkproc:
|
1127 |
|
|
-- This process handles prescaling of xferdataclk (simple divide by two):
|
1128 |
|
|
-- --------------------------------------------------------------------
|
1129 |
|
|
xferdataclkproc:process(sysclk)
|
1130 |
|
|
begin
|
1131 |
|
|
if (rising_edge(sysclk)) then
|
1132 |
|
|
xferdataclk_in <= not xferdataclk_in;
|
1133 |
|
|
end if;
|
1134 |
|
|
end process xferdataclkproc;
|
1135 |
|
|
-- --------------------------------------------------------------------
|
1136 |
|
|
|
1137 |
|
|
|
1138 |
|
|
-- These provide a hook into the incoming SPI signals for an easy connection
|
1139 |
|
|
-- point for testing and experimenting without code changes to alter
|
1140 |
|
|
-- their naming:
|
1141 |
|
|
SPI_CLK <= SPI_CLK_in;
|
1142 |
|
|
SPI_MOSI <= SPI_MOSI_in;
|
1143 |
|
|
SPI_SS_n <= SPI_SS_n_in;
|
1144 |
|
|
|
1145 |
|
|
|
1146 |
|
|
-- --------------------------------------------------------------------
|
1147 |
|
|
-- tmrclkproc:
|
1148 |
|
|
-- This process handles prescaling of tmrclk
|
1149 |
|
|
-- Counts and toggles tmrclk when prescaler value is reached:
|
1150 |
|
|
-- --------------------------------------------------------------------
|
1151 |
|
|
tmrclkproc:process(GCLK, reset_n)
|
1152 |
|
|
begin
|
1153 |
|
|
if (reset_n = '0') then
|
1154 |
|
|
tmrclk_prescaler_count <= (OTHERS => '0');
|
1155 |
|
|
tmrclk_in <= '0';
|
1156 |
|
|
elsif (rising_edge(GCLK)) then
|
1157 |
|
|
tmrclk_prescaler_count <= tmrclk_prescaler_count + 1;
|
1158 |
|
|
if (CONV_INTEGER(tmrclk_prescaler_count) = (tmrclkPrescaler/2-1)) then
|
1159 |
|
|
tmrclk_prescaler_count <= (OTHERS => '0');
|
1160 |
|
|
tmrclk_in <= not tmrclk_in;
|
1161 |
|
|
end if;
|
1162 |
|
|
end if;
|
1163 |
|
|
end process tmrclkproc;
|
1164 |
|
|
-- --------------------------------------------------------------------
|
1165 |
|
|
|
1166 |
|
|
|
1167 |
|
|
-- --------------------------------------------------------------------
|
1168 |
|
|
-- LEDpostclkproc:
|
1169 |
|
|
-- This process handles prescaling of the LEDpostPulse used to
|
1170 |
|
|
-- drive the LEDpost output pattern:
|
1171 |
|
|
-- --------------------------------------------------------------------
|
1172 |
|
|
LEDpostclkproc:process(GCLK, reset_n)
|
1173 |
|
|
begin
|
1174 |
|
|
if (reset_n = '0') then
|
1175 |
|
|
LEDpostScalerCount <= (OTHERS => '0');
|
1176 |
|
|
LEDpostPulse <= '0';
|
1177 |
|
|
elsif (rising_edge(GCLK)) then
|
1178 |
|
|
LEDpostScalerCount <= LEDpostScalerCount + 1;
|
1179 |
|
|
if (CONV_INTEGER(LEDpostScalerCount) = LEDpostPrescaler) then
|
1180 |
|
|
LEDpostScalerCount <= (OTHERS => '0');
|
1181 |
|
|
LEDpostPulse <= not LEDpostPulse;
|
1182 |
|
|
end if;
|
1183 |
|
|
end if;
|
1184 |
|
|
end process LEDpostclkproc;
|
1185 |
|
|
-- --------------------------------------------------------------------
|
1186 |
|
|
|
1187 |
|
|
|
1188 |
|
|
-- --------------------------------------------------------------------
|
1189 |
|
|
-- LEDpostproc:
|
1190 |
|
|
-- This process handles outputting the LEDpost pattern:
|
1191 |
|
|
-- --------------------------------------------------------------------
|
1192 |
|
|
LEDpostproc:process(LEDpostPulse, reset_n)
|
1193 |
|
|
begin
|
1194 |
|
|
if (reset_n = '0') then
|
1195 |
|
|
LEDpost <= (OTHERS => '0');
|
1196 |
|
|
elsif (rising_edge(LEDpostPulse)) then
|
1197 |
|
|
LEDpost <= LEDpost(LEDpost'HIGH-1 downto LEDpost'LOW) & not LEDpost(LEDpost'HIGH);
|
1198 |
|
|
end if;
|
1199 |
|
|
end process LEDpostproc;
|
1200 |
|
|
-- --------------------------------------------------------------------
|
1201 |
|
|
|
1202 |
|
|
|
1203 |
|
|
-- --------------------------------------------------------------------
|
1204 |
|
|
-- txcmddata:
|
1205 |
|
|
-- This combinatorial logic handles Command Nybble transfer data:
|
1206 |
|
|
-- --------------------------------------------------------------------
|
1207 |
|
|
with SPI_cmd_addr select SPI_txcmd_data <=
|
1208 |
|
|
"0" & runMode & addr_block when "100" | "000" | "001" | "010" | "011",
|
1209 |
|
|
-- Send the Bank/Mode data on either Command Mode 00 or Data Xfer
|
1210 |
|
|
-- Set SPI_txcmd_data to:
|
1211 |
|
|
-- 0 m b b
|
1212 |
|
|
-- - - - -
|
1213 |
|
|
-- | | | |
|
1214 |
|
|
-- | | +-+-- Currently Selected Bank
|
1215 |
|
|
-- | |
|
1216 |
|
|
-- | +------ RunMode : 0 = Note/Power/PitchBend, 1 = Timer On/Off Compare Values
|
1217 |
|
|
-- |
|
1218 |
|
|
-- +-------- Reserved for 001xxx command, TBD, will be sent as 0
|
1219 |
|
|
|
1220 |
|
|
SW3 & SW2 & SW1 & SW0 when "101",
|
1221 |
|
|
-- Switches are on Command Mode 01
|
1222 |
|
|
-- Set SPI_txcmd_data to Switch Status
|
1223 |
|
|
|
1224 |
|
|
LEDenable(3 downto 0) when "110",
|
1225 |
|
|
-- Low LEDs are on Command Mode 10
|
1226 |
|
|
-- Set SPI_txcmd_data to LEDs 0-3
|
1227 |
|
|
|
1228 |
|
|
LEDenable(7 downto 4) when "111",
|
1229 |
|
|
-- High LEDs are on Command Mode 11
|
1230 |
|
|
-- Set SPI_txcmd_data to LEDs 4-7
|
1231 |
|
|
|
1232 |
|
|
"0000" when OTHERS; -- Not needed except to keep ghdl compiler happy
|
1233 |
|
|
-- --------------------------------------------------------------------
|
1234 |
|
|
|
1235 |
|
|
|
1236 |
|
|
-- --------------------------------------------------------------------
|
1237 |
|
|
-- txdataproc:
|
1238 |
|
|
-- This process handles the coordinating of sending our transmit data
|
1239 |
|
|
-- and latching of the transfer address logic for ALL modes.
|
1240 |
|
|
-- It triggers txdata_trigger_n on the rising edge of SPI_addr_latch.
|
1241 |
|
|
-- It resets when txdata_processing_n has begun or SPI_SS_n goes
|
1242 |
|
|
-- high indicating the transfer was aborted.
|
1243 |
|
|
-- --------------------------------------------------------------------
|
1244 |
|
|
txdataproc:process(reset_n, txdata_processing_n, SPI_addr_latch)
|
1245 |
|
|
begin
|
1246 |
|
|
if ((reset_n = '0') OR (txdata_processing_n = '0')) then
|
1247 |
|
|
txdata_trigger_n <= '1';
|
1248 |
|
|
elsif (rising_edge(SPI_addr_latch)) then
|
1249 |
|
|
txdata_trigger_n <= '0';
|
1250 |
|
|
end if;
|
1251 |
|
|
end process txdataproc;
|
1252 |
|
|
-- --------------------------------------------------------------------
|
1253 |
|
|
|
1254 |
|
|
|
1255 |
|
|
-- Handle SPI Addr Processing, mapping to our local signals:
|
1256 |
|
|
spi_rw <= SPI_addr(7);
|
1257 |
|
|
spi_xfer_mode <= SPI_addr(6);
|
1258 |
|
|
addr_subtimer <= SPI_addr(numSubTimerBits-1 downto 0);
|
1259 |
|
|
spi_command <= SPI_addr(numCommandXferBits-1 downto 0);
|
1260 |
|
|
SPI_cmd_addr <= SPI_addr(6 downto 4);
|
1261 |
|
|
|
1262 |
|
|
|
1263 |
|
|
-- --------------------------------------------------------------------
|
1264 |
|
|
-- rrdysynproc:
|
1265 |
|
|
-- This process synchronizes the rrdy signal:
|
1266 |
|
|
-- --------------------------------------------------------------------
|
1267 |
|
|
rrdysynproc:process(reset_n, syn_rrdy_clr_n, sysclk)
|
1268 |
|
|
begin
|
1269 |
|
|
if ((reset_n = '0') or (syn_rrdy_clr_n = '0')) then
|
1270 |
|
|
syn_rrdy <= '0';
|
1271 |
|
|
syn_rrdy_armed <= '0';
|
1272 |
|
|
elsif (rising_edge(sysclk)) then
|
1273 |
|
|
-- Capture the data as soon as it's available and arm the trigger to get ready for processing it:
|
1274 |
|
|
if ((syn_rrdy_armed = '0') AND (SPI_rrdy = '1')) then
|
1275 |
|
|
syn_rrdy_armed <= '1';
|
1276 |
|
|
syn_rw <= spi_rw;
|
1277 |
|
|
syn_xfer_mode <= spi_xfer_mode;
|
1278 |
|
|
syn_rxdata <= SPI_rx_data;
|
1279 |
|
|
syn_addr_subtimer <= addr_subtimer;
|
1280 |
|
|
elsif ((syn_rrdy_armed = '1') AND (txdata_processing_n = '1') AND (txdata_trigger_n = '1') AND (SPI_busy = '0')) then
|
1281 |
|
|
-- Keep it armed, but not running, until we have a rising sysclk after finishing any current txdata processing
|
1282 |
|
|
-- and the SPI is finished:
|
1283 |
|
|
syn_rrdy <= '1';
|
1284 |
|
|
end if;
|
1285 |
|
|
end if;
|
1286 |
|
|
end process rrdysynproc;
|
1287 |
|
|
-- --------------------------------------------------------------------
|
1288 |
|
|
|
1289 |
|
|
|
1290 |
|
|
-- --------------------------------------------------------------------
|
1291 |
|
|
-- rxproc:
|
1292 |
|
|
-- This process handles initial synchronous receive from SPI. It
|
1293 |
|
|
-- processes Command Bytes received and triggers rxdata and/or
|
1294 |
|
|
-- the reset state-machines of xferdataproc as appropriate:
|
1295 |
|
|
-- --------------------------------------------------------------------
|
1296 |
|
|
rxproc:process(sysclk, reset_n, local_rst_n)
|
1297 |
|
|
begin
|
1298 |
|
|
if ((reset_n = '0') OR
|
1299 |
|
|
(local_rst_n = '0')) then
|
1300 |
|
|
syn_rrdy_clr_n <= '1';
|
1301 |
|
|
syn_cmd_processing_n <= '1';
|
1302 |
|
|
syn_rxdata_trigger_n <= '1';
|
1303 |
|
|
runMode <= rmodeNote;
|
1304 |
|
|
addr_block <= (OTHERS => '0');
|
1305 |
|
|
LEDenable <= (OTHERS => '0');
|
1306 |
|
|
LEDSet <= '0';
|
1307 |
|
|
local_rst_n <= '1';
|
1308 |
|
|
reset_trigger_n <= '0'; -- Trigger a reset process
|
1309 |
|
|
elsif (falling_edge(sysclk)) then
|
1310 |
|
|
if (reset_trigger_n = '0') then
|
1311 |
|
|
if (reset_in_progress_n = '0') then
|
1312 |
|
|
reset_trigger_n <= '1'; -- Release trigger once xferdataproc starts reset
|
1313 |
|
|
end if;
|
1314 |
|
|
elsif (reset_in_progress_n = '1') then -- Don't process incoming data while xferdataproc is resetting
|
1315 |
|
|
if ((syn_rrdy = '1') AND (syn_cmd_processing_n = '1')) then
|
1316 |
|
|
if (syn_xfer_mode = xmodeCmd) then
|
1317 |
|
|
if (syn_rw = '0') then
|
1318 |
|
|
-- Start Command receive:xferdataproc
|
1319 |
|
|
case spi_command(5 downto 4) is
|
1320 |
|
|
when "00" => -- Control Logic
|
1321 |
|
|
case spi_command(3 downto 0) is
|
1322 |
|
|
when "0000" =>
|
1323 |
|
|
local_rst_n <= '0';
|
1324 |
|
|
when "0010" =>
|
1325 |
|
|
runMode <= rmodeNote;
|
1326 |
|
|
when "0011" =>
|
1327 |
|
|
runMode <= rmodeTime;
|
1328 |
|
|
when "0100" =>
|
1329 |
|
|
addr_block <= "00";
|
1330 |
|
|
when "0101" =>
|
1331 |
|
|
addr_block <= "01";
|
1332 |
|
|
when "0110" =>
|
1333 |
|
|
addr_block <= "10";
|
1334 |
|
|
when "0111" =>
|
1335 |
|
|
addr_block <= "11";
|
1336 |
|
|
when OTHERS =>
|
1337 |
|
|
end case;
|
1338 |
|
|
|
1339 |
|
|
when "01" => -- Switches (does nothing here on write)
|
1340 |
|
|
|
1341 |
|
|
when "10" => -- Set LEDs 0-3
|
1342 |
|
|
LEDenable(3 downto 0) <= spi_command(3 downto 0);
|
1343 |
|
|
LEDSet <= '1';
|
1344 |
|
|
|
1345 |
|
|
when "11" => -- Set LEDs 4-7
|
1346 |
|
|
LEDenable(7 downto 4) <= spi_command(3 downto 0);
|
1347 |
|
|
LEDSet <= '1';
|
1348 |
|
|
|
1349 |
|
|
when OTHERS => -- Can't happen but ghdl complains without it
|
1350 |
|
|
end case;
|
1351 |
|
|
end if; -- end syn_rw='0'
|
1352 |
|
|
|
1353 |
|
|
syn_rxdata_trigger_n <= '1';
|
1354 |
|
|
else
|
1355 |
|
|
-- Start Data receive:
|
1356 |
|
|
syn_rxdata_trigger_n <= '0';
|
1357 |
|
|
end if; -- end syn_xfer_mode=xmodeCmd
|
1358 |
|
|
|
1359 |
|
|
syn_cmd_processing_n <= '0';
|
1360 |
|
|
elsif (syn_cmd_processing_n = '0') then
|
1361 |
|
|
if (syn_rrdy_clr_n = '0') then
|
1362 |
|
|
if (syn_rrdy = '0') then
|
1363 |
|
|
syn_rrdy_clr_n <= '1';
|
1364 |
|
|
syn_cmd_processing_n <= '1';
|
1365 |
|
|
end if;
|
1366 |
|
|
elsif (syn_rxdata_trigger_n = '1') then
|
1367 |
|
|
-- If this was just a command recept, release syn_rrdy here, since
|
1368 |
|
|
-- the command was processed above
|
1369 |
|
|
syn_rrdy_clr_n <= '0';
|
1370 |
|
|
elsif (syn_rxdata_processing_n = '0') then
|
1371 |
|
|
-- But, if this was a data recept, keep syn_rrdy active and
|
1372 |
|
|
-- syn_rxdata_trigger_n enabled until xferdataproc gets around
|
1373 |
|
|
-- to processing the received data, which should happen
|
1374 |
|
|
-- just as soon as any in-process tmrupdproc processes finish:
|
1375 |
|
|
syn_rxdata_trigger_n <= '1';
|
1376 |
|
|
syn_rrdy_clr_n <= '0';
|
1377 |
|
|
end if;
|
1378 |
|
|
end if;
|
1379 |
|
|
end if;
|
1380 |
|
|
end if;
|
1381 |
|
|
end process rxproc;
|
1382 |
|
|
-- --------------------------------------------------------------------
|
1383 |
|
|
|
1384 |
|
|
|
1385 |
|
|
-- --------------------------------------------------------------------
|
1386 |
|
|
-- xferdataproc:
|
1387 |
|
|
-- This process handles synchronous data transfer of data to set
|
1388 |
|
|
-- the timer memory. It also handles resetting of the timer
|
1389 |
|
|
-- data and queuing of Transmit data. This process runs at
|
1390 |
|
|
-- the xferdataclk clock rate.
|
1391 |
|
|
-- --------------------------------------------------------------------
|
1392 |
|
|
xferdataproc:process(xferdataclk, reset_n, local_rst_n, reset_trigger_n)
|
1393 |
|
|
begin
|
1394 |
|
|
if (reset_trigger_n = '0') then
|
1395 |
|
|
SPI_tx_data <= (OTHERS => '0');
|
1396 |
|
|
txdata_processing_n <= '1';
|
1397 |
|
|
syn_rxdata_processing_n <= '1';
|
1398 |
|
|
cmpOnLeftMemBlk_ADDR <= (OTHERS => '0');
|
1399 |
|
|
cmpFreqLeftMemBlk_ADDR <= (OTHERS => '0');
|
1400 |
|
|
----
|
1401 |
|
|
cmpOnRightMemBlk_ADDR <= (OTHERS => '0');
|
1402 |
|
|
cmpFreqRightMemBlk_ADDR <= (OTHERS => '0');
|
1403 |
|
|
----
|
1404 |
|
|
tmrMemBlkLeft_ADDRXfer <= (OTHERS => '0');
|
1405 |
|
|
tmrMemBlkRight_ADDRXfer <= (OTHERS => '0');
|
1406 |
|
|
----
|
1407 |
|
|
reset_in_progress_n <= '0'; -- Set the reset in progress flag so other rxproc knows we're working on it, otherwise remain in reset state
|
1408 |
|
|
-- For resetting, our "state" is the tmrMemBlk address and each cycle is a write of data to it, so enable write gate and set initial data and address:
|
1409 |
|
|
for i in 0 to numTimerBlocks-1 loop
|
1410 |
|
|
tmrMemBlkLeft_DINXfer(i) <= (OTHERS => '0');
|
1411 |
|
|
tmrMemBlkRight_DINXfer(i) <= (OTHERS => '0');
|
1412 |
|
|
end loop;
|
1413 |
|
|
tmrMemBlkLeft_WE_GATE <= (OTHERS => '1'); -- Note: Enabling this here won't engage memory writes until reset_n is deasserted and our reset_in_progress state machine starts (see the concurrent logic)
|
1414 |
|
|
tmrMemBlkRight_WE_GATE <= (OTHERS => '1');
|
1415 |
|
|
----
|
1416 |
|
|
for i in 0 to numOutputs-1 loop
|
1417 |
|
|
for j in 0 to numTimerBlocks-1 loop
|
1418 |
|
|
outputEnablesNext(i)(j) <= (OTHERS => '0');
|
1419 |
|
|
outputForceLoad(i)(j) <= (OTHERS => '0');
|
1420 |
|
|
end loop;
|
1421 |
|
|
end loop;
|
1422 |
|
|
else
|
1423 |
|
|
if (falling_edge(xferdataclk)) then
|
1424 |
|
|
if (reset_in_progress_n = '0') then
|
1425 |
|
|
-- If we are resetting, run the Reset State-Machine to clear
|
1426 |
|
|
-- out the Timer Data:
|
1427 |
|
|
-- Note: The addresses here are current-state for setting up the "next" value:
|
1428 |
|
|
if (tmrMemBlkLeft_ADDRXfer = "11111111") then
|
1429 |
|
|
-- When we are done, clear memory write and stop state-machine:
|
1430 |
|
|
tmrMemBlkLeft_WE_GATE <= (OTHERS => '0');
|
1431 |
|
|
tmrMemBlkRight_WE_GATE <= (OTHERS => '0');
|
1432 |
|
|
reset_in_progress_n <= '1';
|
1433 |
|
|
elsif (tmrMemBlkLeft_ADDRXfer = "00111111") then
|
1434 |
|
|
-- If entering into PitchBend memory, set the defaults to 0x2000 which is midi value for "no bend":
|
1435 |
|
|
for i in 0 to numTimerBlocks-1 loop
|
1436 |
|
|
tmrMemBlkLeft_DINXfer(i) <= "0010000000000000";
|
1437 |
|
|
tmrMemBlkRight_DINXfer(i) <= "0010000000000000";
|
1438 |
|
|
end loop;
|
1439 |
|
|
elsif (tmrMemBlkLeft_ADDRXfer = "01111111") then
|
1440 |
|
|
-- If leaving PitchBend memory, return to zeroing everything:
|
1441 |
|
|
for i in 0 to numTimerBlocks-1 loop
|
1442 |
|
|
tmrMemBlkLeft_DINXfer(i) <= (OTHERS => '0');
|
1443 |
|
|
tmrMemBlkRight_DINXfer(i) <= (OTHERS => '0');
|
1444 |
|
|
end loop;
|
1445 |
|
|
end if;
|
1446 |
|
|
tmrMemBlkLeft_ADDRXfer <= tmrMemBlkLeft_ADDRXfer + 1;
|
1447 |
|
|
tmrMemBlkRight_ADDRXfer <= tmrMemBlkRight_ADDRXfer + 1;
|
1448 |
|
|
elsif ((txdata_trigger_n = '0') OR (txdata_processing_n = '0')) then
|
1449 |
|
|
if ((txdata_trigger_n = '0') AND (txdata_processing_n = '1')) then -- If we aren't in reset, do normal TxData processing
|
1450 |
|
|
-- Start transmit state-machine:
|
1451 |
|
|
txdata_processing_n <= '0';
|
1452 |
|
|
txdata_state <= (OTHERS => '0');
|
1453 |
|
|
|
1454 |
|
|
-- State -1:
|
1455 |
|
|
-- Select Note/Power or Timer ON data
|
1456 |
|
|
tmrMemBlkLeft_ADDRXfer <= runMode & "0" & addr_subtimer; -- Select Note/Power or Timer ON data store for Left Channel
|
1457 |
|
|
tmrMemBlkRight_ADDRXfer <= runMode & "0" & addr_subtimer; -- Select Note/Power or Timer ON data store for Right Channel
|
1458 |
|
|
|
1459 |
|
|
elsif (txdata_processing_n = '0') then
|
1460 |
|
|
|
1461 |
|
|
-- Handle transmit -- give it a higher priority that receive processing so we don't collide with memory accesses and this needs to be asynchronous when the SPI needs it
|
1462 |
|
|
case CONV_INTEGER(txdata_state) is
|
1463 |
|
|
|
1464 |
|
|
-- State 0:
|
1465 |
|
|
-- Save Note/Power or Timer ON data
|
1466 |
|
|
-- Select PitchBend or Timer OFF data
|
1467 |
|
|
when 0 =>
|
1468 |
|
|
txdata_state <= CONV_STD_LOGIC_VECTOR(1, nTxSB); -- Goto state 1
|
1469 |
|
|
|
1470 |
|
|
SPI_tx_data(63 downto 48) <= tmrMemBlkLeft_DOUTXfer(TmrBlock(addr_block)); -- Save Note/Power or Timer ON data for Left Channel
|
1471 |
|
|
SPI_tx_data(31 downto 16) <= tmrMemBlkRight_DOUTXfer(TmrBlock(addr_block)); -- Save Note/Power or Timer ON data for Right Channel
|
1472 |
|
|
tmrMemBlkLeft_ADDRXfer <= runMode & "1" & addr_subtimer; -- Select PitchBend or Timer OFF data store for Left Channel
|
1473 |
|
|
tmrMemBlkRight_ADDRXfer <= runMode & "1" & addr_subtimer; -- Select PitchBend or Timer OFF data store for Right Channel
|
1474 |
|
|
|
1475 |
|
|
|
1476 |
|
|
-- State 1 :
|
1477 |
|
|
-- Save PitchBend or Timer OFF data
|
1478 |
|
|
when 1 =>
|
1479 |
|
|
txdata_state <= CONV_STD_LOGIC_VECTOR(3, nTxSB); -- Goto state 3
|
1480 |
|
|
|
1481 |
|
|
SPI_tx_data(47 downto 32) <= tmrMemBlkLeft_DOUTXfer(TmrBlock(addr_block)); -- Save PitchBend or Timer OFF data for Left Channel
|
1482 |
|
|
SPI_tx_data(15 downto 0) <= tmrMemBlkRight_DOUTXfer(TmrBlock(addr_block)); -- Save PitchBend or Timer OFF data for Right Channel
|
1483 |
|
|
|
1484 |
|
|
|
1485 |
|
|
-- State 3 : (Gray-Code Numbered to minimize transition logic)
|
1486 |
|
|
-- Transition to done
|
1487 |
|
|
when 3 =>
|
1488 |
|
|
txdata_processing_n <= '1'; -- Done
|
1489 |
|
|
|
1490 |
|
|
|
1491 |
|
|
-- No other states should happen, but as safeguard, disable TX Processing:
|
1492 |
|
|
when OTHERS =>
|
1493 |
|
|
txdata_processing_n <= '1';
|
1494 |
|
|
|
1495 |
|
|
end case;
|
1496 |
|
|
end if;
|
1497 |
|
|
|
1498 |
|
|
elsif ((syn_rxdata_trigger_n = '0') AND (syn_rxdata_processing_n = '1')) then -- If not queuing transmit data, process queued receive data:
|
1499 |
|
|
-- Start receive state-machine:
|
1500 |
|
|
syn_rxdata_processing_n <= '0';
|
1501 |
|
|
syn_rxdata_state <= (OTHERS => '0');
|
1502 |
|
|
|
1503 |
|
|
if (runMode = rmodeNote) then
|
1504 |
|
|
|
1505 |
|
|
-- Pre-Process receive state-machine for Note/Power/PitchBend Run Mode:
|
1506 |
|
|
-- State -1 :
|
1507 |
|
|
-- Calculate PitchBend Note Indexes
|
1508 |
|
|
-- Set tmrMemBlk Address and DataIn to Store the Note/Power Data
|
1509 |
|
|
-- Enable tmrMemBlk WEB Gate to write the Timer Memory Block on the next several states
|
1510 |
|
|
if ((CONV_INTEGER(synrx_leftNote) < (LOWERNOTE_INDEX+2)) OR
|
1511 |
|
|
(CONV_INTEGER(synrx_leftNote) > (UPPERNOTE_INDEX-2))) then
|
1512 |
|
|
-- Here if we cannot do pitch bend, so interpolate on same value to keep the same calc paths:
|
1513 |
|
|
pitchBendLeftNoteAIndex <= synrx_leftNote;
|
1514 |
|
|
pitchBendLeftNoteBIndex <= synrx_leftNote;
|
1515 |
|
|
else
|
1516 |
|
|
-- Here if we can pitch bend
|
1517 |
|
|
pitchBendLeftMagnitude <= synrx_leftPitchBend(11 downto 0);
|
1518 |
|
|
case synrx_leftPitchBend(13 downto 12) is
|
1519 |
|
|
when "00" =>
|
1520 |
|
|
pitchBendLeftNoteAIndex <= synrx_leftNote - 2;
|
1521 |
|
|
pitchBendLeftNoteBIndex <= synrx_leftNote - 1;
|
1522 |
|
|
when "01" =>
|
1523 |
|
|
pitchBendLeftNoteAIndex <= synrx_leftNote - 1;
|
1524 |
|
|
pitchBendLeftNoteBIndex <= synrx_leftNote;
|
1525 |
|
|
when "10" =>
|
1526 |
|
|
pitchBendLeftNoteAIndex <= synrx_leftNote;
|
1527 |
|
|
pitchBendLeftNoteBIndex <= synrx_leftNote + 1;
|
1528 |
|
|
when "11" =>
|
1529 |
|
|
pitchBendLeftNoteAIndex <= synrx_leftNote + 1;
|
1530 |
|
|
pitchBendLeftNoteBIndex <= synrx_leftNote + 2;
|
1531 |
|
|
when OTHERS => -- Shouldn't be needed in real logic, but needs to account for 'U','X', etc in simulation as needed by ghdl compiler
|
1532 |
|
|
end case;
|
1533 |
|
|
end if;
|
1534 |
|
|
|
1535 |
|
|
if ((CONV_INTEGER(synrx_rightNote) < (LOWERNOTE_INDEX+2)) OR
|
1536 |
|
|
(CONV_INTEGER(synrx_rightNote) > (UPPERNOTE_INDEX-2))) then
|
1537 |
|
|
-- Here if we cannot do pitch bend, so interpolate on same value to keep the same calc paths:
|
1538 |
|
|
pitchBendRightNoteAIndex <= synrx_rightNote;
|
1539 |
|
|
pitchBendRightNoteBIndex <= synrx_rightNote;
|
1540 |
|
|
else
|
1541 |
|
|
-- Here if we can pitch bend
|
1542 |
|
|
pitchBendRightMagnitude <= synrx_rightPitchBend(11 downto 0);
|
1543 |
|
|
case synrx_rightPitchBend(13 downto 12) is
|
1544 |
|
|
when "00" =>
|
1545 |
|
|
pitchBendRightNoteAIndex <= synrx_rightNote - 2;
|
1546 |
|
|
pitchBendRightNoteBIndex <= synrx_rightNote - 1;
|
1547 |
|
|
when "01" =>
|
1548 |
|
|
pitchBendRightNoteAIndex <= synrx_rightNote - 1;
|
1549 |
|
|
pitchBendRightNoteBIndex <= synrx_rightNote;
|
1550 |
|
|
when "10" =>
|
1551 |
|
|
pitchBendRightNoteAIndex <= synrx_rightNote;
|
1552 |
|
|
pitchBendRightNoteBIndex <= synrx_rightNote + 1;
|
1553 |
|
|
when "11" =>
|
1554 |
|
|
pitchBendRightNoteAIndex <= synrx_rightNote + 1;
|
1555 |
|
|
pitchBendRightNoteBIndex <= synrx_rightNote + 2;
|
1556 |
|
|
when OTHERS => -- Shouldn't be needed in real logic, but needs to account for 'U','X', etc in simulation as needed by ghdl compiler
|
1557 |
|
|
end case;
|
1558 |
|
|
end if;
|
1559 |
|
|
|
1560 |
|
|
tmrMemBlkLeft_ADDRXfer <= adrNotePower & syn_addr_subtimer; -- Select Note/Power data store for Left Channel
|
1561 |
|
|
tmrMemBlkLeft_DINXfer(TmrBlock(addr_block)) <= "0" & synrx_leftNote & "0" & synrx_leftPower; -- Save given Note (MSB) and Power (LSB)
|
1562 |
|
|
tmrMemBlkLeft_WE_GATE(TmrBlock(addr_block)) <= '1'; -- Enable writing to the Timer Memory Block during upcoming rising clock edges
|
1563 |
|
|
|
1564 |
|
|
tmrMemBlkRight_ADDRXfer <= adrNotePower & syn_addr_subtimer; -- Select Note/Power data store for Right Channel
|
1565 |
|
|
tmrMemBlkRight_DINXfer(TmrBlock(addr_block)) <= "0" & synrx_rightNote & "0" & synrx_rightPower; -- Save given Note (MSB) and Power (LSB)
|
1566 |
|
|
tmrMemBlkRight_WE_GATE(TmrBlock(addr_block)) <= '1'; -- Enable writing to the Timer Memory Block during upcoming rising clock edges
|
1567 |
|
|
|
1568 |
|
|
else
|
1569 |
|
|
|
1570 |
|
|
-- Pre-Process receive state-machine for Direct Timer On/Off Values Run Mode:
|
1571 |
|
|
-- State -1 :
|
1572 |
|
|
-- Set tmrMemBlk Address and DataIn to Store the Timer ON Value
|
1573 |
|
|
-- Enable tmrMemBlk WEB Gate to write the Timer Memory Block on the next several states
|
1574 |
|
|
tmrMemBlkLeft_ADDRXfer <= adrTimeON & syn_addr_subtimer; -- Select Timer ON data for Left Channel
|
1575 |
|
|
tmrMemBlkLeft_DINXfer(TmrBlock(addr_block)) <= synrx_leftTimerON;
|
1576 |
|
|
tmrMemBlkLeft_WE_GATE(TmrBlock(addr_block)) <= '1'; -- Enable writing to the Timer Memory Block during upcoming rising clock edges
|
1577 |
|
|
|
1578 |
|
|
tmrMemBlkRight_ADDRXfer <= adrTimeON & syn_addr_subtimer; -- Select Timer ON data for Right Channel
|
1579 |
|
|
tmrMemBlkRight_DINXfer(TmrBlock(addr_block)) <= synrx_RightTimerON;
|
1580 |
|
|
tmrMemBlkRight_WE_GATE(TmrBlock(addr_block)) <= '1'; -- Enable writing to the Timer Memory Block during upcoming rising clock edges
|
1581 |
|
|
|
1582 |
|
|
end if;
|
1583 |
|
|
|
1584 |
|
|
elsif (syn_rxdata_processing_n = '0') then
|
1585 |
|
|
if (runMode = rmodeNote) then
|
1586 |
|
|
-- Process receive state-machine for Note/Power/PitchBend Run Mode:
|
1587 |
|
|
case CONV_INTEGER(syn_rxdata_state) is
|
1588 |
|
|
|
1589 |
|
|
-- State 0 :
|
1590 |
|
|
-- Set Compare On and Freq addresses for Lower Note Read (This will cause their DOUT to be the compare values next time)
|
1591 |
|
|
-- Set tmrMemBlk Address and DataIn to Store the PitchBend on next clock edge
|
1592 |
|
|
when 0 =>
|
1593 |
|
|
cmpOnLeftMemBlk_ADDR <= synrx_leftPower & pitchBendLeftNoteAIndex; -- Power in upper 7-bits, Note in lower 7-bits of Address
|
1594 |
|
|
cmpFreqLeftMemBlk_ADDR <= pitchBendLeftNoteAIndex;
|
1595 |
|
|
tmrMemBlkLeft_ADDRXfer <= adrPitchBend & syn_addr_subtimer; -- Select PitchBend data store for Left Channel
|
1596 |
|
|
tmrMemBlkLeft_DINXfer(TmrBlock(addr_block)) <= "00" & synrx_leftPitchBend; -- Save given Pitchbend
|
1597 |
|
|
-- Note tmrMemBlk_WEB_GATE already '1' to enable storing
|
1598 |
|
|
|
1599 |
|
|
cmpOnRightMemBlk_ADDR <= synrx_rightPower & pitchBendRightNoteAIndex; -- Power in upper 7-bits, Note in lower 7-bits of Address
|
1600 |
|
|
cmpFreqRightMemBlk_ADDR <= pitchBendRightNoteAIndex;
|
1601 |
|
|
tmrMemBlkRight_ADDRXfer <= adrPitchBend & syn_addr_subtimer; -- Select PitchBend data store for Right Channel
|
1602 |
|
|
tmrMemBlkRight_DINXfer(TmrBlock(addr_block)) <= "00" & synrx_rightPitchBend; -- Save given PitchBend
|
1603 |
|
|
-- Note tmrMemBlk_WEB_GATE already '1' to enable storing
|
1604 |
|
|
|
1605 |
|
|
syn_rxdata_state <= CONV_STD_LOGIC_VECTOR(1, nRxSB); -- Goto state 1
|
1606 |
|
|
|
1607 |
|
|
-- State 1 :
|
1608 |
|
|
-- Save Compare On and Freq Values for Lower Note (Alpha)
|
1609 |
|
|
-- Set Compare On and Freq addresses for Upper Note Read (This will cause their DOUT to be the compare values next time)
|
1610 |
|
|
-- Disable tmrMemBlk WEB Gate to write the Timer Memory Block on the next several states
|
1611 |
|
|
--
|
1612 |
|
|
-- Note: Since Off is Freq-On, subtracting the two during the pitchbend cancels out the "on" portion,
|
1613 |
|
|
-- meaning we only need to do that operation on the final interpolated "on" value.
|
1614 |
|
|
when 1 =>
|
1615 |
|
|
pitchBendLeftCalcONAlpha <= cmpOnLeftMemBlk_DOUT;
|
1616 |
|
|
pitchBendLeftCalcFREQAlpha <= cmpFreqLeftMemBlk_DOUT;
|
1617 |
|
|
cmpOnLeftMemBlk_ADDR <= synrx_leftPower & pitchBendLeftNoteBIndex; -- Power in upper 7-bits, Note in lower 7-bits of Address
|
1618 |
|
|
cmpFreqLeftMemBlk_ADDR <= pitchBendLeftNoteBIndex;
|
1619 |
|
|
--tmrMemBlkLeft_WE_GATE(TmrBlock(addr_block)) <= '0';
|
1620 |
|
|
tmrMemBlkLeft_WE_GATE <= (OTHERS => '0');
|
1621 |
|
|
|
1622 |
|
|
pitchBendRightCalcONAlpha <= cmpOnRightMemBlk_DOUT;
|
1623 |
|
|
pitchBendRightCalcFREQAlpha <= cmpFreqRightMemBlk_DOUT;
|
1624 |
|
|
cmpOnRightMemBlk_ADDR <= synrx_rightPower & pitchBendRightNoteBIndex; -- Power in upper 7-bits, Note in lower 7-bits of Address
|
1625 |
|
|
cmpFreqRightMemBlk_ADDR <= pitchBendRightNoteBIndex;
|
1626 |
|
|
--tmrMemBlkRight_WE_GATE(TmrBlock(addr_block)) <= '0';
|
1627 |
|
|
tmrMemBlkRight_WE_GATE <= (OTHERS => '0');
|
1628 |
|
|
|
1629 |
|
|
syn_rxdata_state <= CONV_STD_LOGIC_VECTOR(3, nRxSB); -- Goto state 3
|
1630 |
|
|
|
1631 |
|
|
-- State 3 :
|
1632 |
|
|
-- Save Compare On and Freq Values for Upper Note (Beta)
|
1633 |
|
|
-- Calculate Compare On and Freq Delta Values (done as part of concurrent logic)
|
1634 |
|
|
when 3 =>
|
1635 |
|
|
pitchBendLeftCalcONBeta <= cmpOnLeftMemBlk_DOUT;
|
1636 |
|
|
pitchBendLeftCalcFREQBeta <= cmpFreqLeftMemBlk_DOUT;
|
1637 |
|
|
|
1638 |
|
|
pitchBendRightCalcONBeta <= cmpOnRightMemBlk_DOUT;
|
1639 |
|
|
pitchBendRightCalcFREQBeta <= cmpFreqRightMemBlk_DOUT;
|
1640 |
|
|
|
1641 |
|
|
-- Note: At this step, the following concurrent calculations will be evaluated
|
1642 |
|
|
-- independently of this state-machine. Results will be clocked after
|
1643 |
|
|
-- NOP states below, allowing DSP operations to complete.
|
1644 |
|
|
--
|
1645 |
|
|
-- pitchBendLeftCalcONDelta <= pitchBendLeftCalcONBeta - pitchBendLeftCalcONAlpha;
|
1646 |
|
|
-- pitchBendLeftCalcFREQDelta <= pitchBendLeftCalcFREQBeta - pitchBendLeftCalcFREQAlpha;
|
1647 |
|
|
-- pitchBendRightCalcONDelta <= pitchBendRightCalcONBeta - pitchBendRightCalcONAlpha;
|
1648 |
|
|
-- pitchBendRightCalcFREQDelta <= pitchBendRightCalcFREQBeta - pitchBendRightCalcFREQAlpha;
|
1649 |
|
|
|
1650 |
|
|
syn_rxdata_state <= CONV_STD_LOGIC_VECTOR(2, nRxSB); -- Goto state 2
|
1651 |
|
|
|
1652 |
|
|
-- State 2 :
|
1653 |
|
|
-- NOP -- needed to allow DSP slices to finish calculations as the subtraction
|
1654 |
|
|
-- for the delta in the above step doesn't stabilize in time to satisfy
|
1655 |
|
|
-- the setup required for the DSP multiply to complete. The result
|
1656 |
|
|
-- takes 13-21nS depending on path, according to the simulation models,
|
1657 |
|
|
-- and might cause us to miss the calculation.
|
1658 |
|
|
--
|
1659 |
|
|
when 2 =>
|
1660 |
|
|
syn_rxdata_state <= CONV_STD_LOGIC_VECTOR(6, nRxSB); -- Goto state 6
|
1661 |
|
|
|
1662 |
|
|
-- State 6 :
|
1663 |
|
|
-- NOP -- needed to allow DSP slices to finish calculations as the subtraction
|
1664 |
|
|
-- for the delta in the above step doesn't stabilize in time to satisfy
|
1665 |
|
|
-- the setup required for the DSP multiply to complete. The result
|
1666 |
|
|
-- takes 13-21nS depending on path, according to the simulation models,
|
1667 |
|
|
-- and might cause us to miss the calculation.
|
1668 |
|
|
when 6 =>
|
1669 |
|
|
syn_rxdata_state <= CONV_STD_LOGIC_VECTOR(7, nRxSB); -- Goto state 7
|
1670 |
|
|
|
1671 |
|
|
-- State 7 :
|
1672 |
|
|
-- Set tmrMemBlk Address and DataIn to Store the Compare ON Value (so we can save the DSP result)
|
1673 |
|
|
-- Enable tmrMemBlk WEB Gate to write the Timer Memory Block on the next several states
|
1674 |
|
|
when 7 =>
|
1675 |
|
|
tmrMemBlkLeft_ADDRXfer <= adrTimeON & syn_addr_subtimer; -- Select Compare ON data store for Left Channel
|
1676 |
|
|
tmrMemBlkLeft_DINXfer(TmrBlock(addr_block)) <= pitchBendLeftCalcONResult; -- Save the Compare ON Result for Left Channel
|
1677 |
|
|
tmrMemBlkLeft_WE_GATE(TmrBlock(addr_block)) <= '1'; -- Enable writing to the Timer Memory Block during upcoming rising clock edges
|
1678 |
|
|
|
1679 |
|
|
tmrMemBlkRight_ADDRXfer <= adrTimeON & syn_addr_subtimer; -- Select Compare ON data store for Right Channel
|
1680 |
|
|
tmrMemBlkRight_DINXfer(TmrBlock(addr_block)) <= pitchBendRightCalcONResult; -- Save the Compare ON Result for Right Channel
|
1681 |
|
|
tmrMemBlkRight_WE_GATE(TmrBlock(addr_block)) <= '1'; -- Enable writing to the Timer Memory Block during upcoming rising clock edges
|
1682 |
|
|
|
1683 |
|
|
syn_rxdata_state <= CONV_STD_LOGIC_VECTOR(5, nRxSB); -- Goto state 5
|
1684 |
|
|
|
1685 |
|
|
-- State 5 :
|
1686 |
|
|
-- Calculate the Compare OFF value by subtracting the ON value from the interpolated Freq value
|
1687 |
|
|
-- Set tmrMemBlk Address and DataIn to Store the Compare OFF Value (so we can save the DSP result)
|
1688 |
|
|
-- Enable/Disable Outputs based on results and force tmrproc reload if result wasn't 0
|
1689 |
|
|
when 5 =>
|
1690 |
|
|
tmrMemBlkLeft_ADDRXfer <= adrTimeOFF & syn_addr_subtimer; -- Select Compare OFF data store for Left Channel
|
1691 |
|
|
tmrMemBlkLeft_DINXfer(TmrBlock(addr_block)) <= pitchBendLeftCalcFREQResult - pitchBendLeftCalcONResult; -- Calculate and Save the Compare OFF Result for Left Channel
|
1692 |
|
|
-- Note tmrMemBlk_WEB_GATE already '1' to enable storing
|
1693 |
|
|
|
1694 |
|
|
tmrMemBlkRight_ADDRXfer <= adrTimeOFF & syn_addr_subtimer; -- Select Compare OFF data store for Right Channel
|
1695 |
|
|
tmrMemBlkRight_DINXfer(TmrBlock(addr_block)) <= pitchBendRightCalcFREQResult - pitchBendRightCalcONResult; -- Calculate and Save the Compare OFF Result for Right Channel
|
1696 |
|
|
-- Note tmrMemBlk_WEB_GATE already '1' to enable storing
|
1697 |
|
|
|
1698 |
|
|
if ((pitchBendLeftCalcONResult /= "0000000000000000") AND
|
1699 |
|
|
(pitchBendLeftCalcFREQResult /= "0000000000000000")) then
|
1700 |
|
|
outputEnablesNext(LEFT_OUT_NDX)(TmrBlock(addr_block))(Tmr(syn_addr_subtimer)) <= '1';
|
1701 |
|
|
else
|
1702 |
|
|
outputEnablesNext(LEFT_OUT_NDX)(TmrBlock(addr_block))(Tmr(syn_addr_subtimer)) <= '0';
|
1703 |
|
|
end if;
|
1704 |
|
|
outputForceLoad(LEFT_OUT_NDX)(TmrBlock(addr_block))(Tmr(syn_addr_subtimer)) <= NOT outputForceLoad(LEFT_OUT_NDX)(TmrBlock(addr_block))(Tmr(syn_addr_subtimer));
|
1705 |
|
|
|
1706 |
|
|
if ((pitchBendRightCalcONResult /= "0000000000000000") AND
|
1707 |
|
|
(pitchBendRightCalcFREQResult /= "0000000000000000")) then
|
1708 |
|
|
outputEnablesNext(RIGHT_OUT_NDX)(TmrBlock(addr_block))(Tmr(syn_addr_subtimer)) <= '1';
|
1709 |
|
|
else
|
1710 |
|
|
outputEnablesNext(RIGHT_OUT_NDX)(TmrBlock(addr_block))(Tmr(syn_addr_subtimer)) <= '0';
|
1711 |
|
|
end if;
|
1712 |
|
|
outputForceLoad(RIGHT_OUT_NDX)(TmrBlock(addr_block))(Tmr(syn_addr_subtimer)) <= NOT outputForceLoad(RIGHT_OUT_NDX)(TmrBlock(addr_block))(Tmr(syn_addr_subtimer));
|
1713 |
|
|
|
1714 |
|
|
syn_rxdata_state <= CONV_STD_LOGIC_VECTOR(4, nRxSB); -- Goto state 4
|
1715 |
|
|
|
1716 |
|
|
-- State 4 :
|
1717 |
|
|
-- Disable tmrMemBlk WEB Gate (we're done with it)
|
1718 |
|
|
-- Done -- Disable RX Processing
|
1719 |
|
|
when 4 =>
|
1720 |
|
|
tmrMemBlkLeft_WE_GATE <= (OTHERS => '0'); -- Disable writing to the Timer Memory Block (we're done)
|
1721 |
|
|
tmrMemBlkRight_WE_GATE <= (OTHERS => '0'); -- Disable writing to the Timer Memory Block (we're done)
|
1722 |
|
|
syn_rxdata_processing_n <= '1';
|
1723 |
|
|
|
1724 |
|
|
-- No other states should happen, but as safeguard, disable RX Processing: (plus this is needed by ghdl compiler)
|
1725 |
|
|
when OTHERS =>
|
1726 |
|
|
syn_rxdata_processing_n <= '1';
|
1727 |
|
|
end case;
|
1728 |
|
|
else -- End Note/Power/PitchBend RxData State-Machine
|
1729 |
|
|
-- Process receive state-machine for Direct Timer On/Off Values Run Mode:
|
1730 |
|
|
case CONV_INTEGER(syn_rxdata_state) is
|
1731 |
|
|
|
1732 |
|
|
-- State 0 :
|
1733 |
|
|
-- Set tmrMemBlk Address and DataIn to Store the Timer OFF Value
|
1734 |
|
|
when 0 =>
|
1735 |
|
|
tmrMemBlkLeft_ADDRXfer <= adrTimeOFF & syn_addr_subtimer; -- Select Timer OFF data for Left Channel
|
1736 |
|
|
tmrMemBlkLeft_DINXfer(TmrBlock(addr_block)) <= synrx_leftTimerOFF;
|
1737 |
|
|
-- Note tmrMemBlk_WEB_GATE already '1' to enable storing
|
1738 |
|
|
|
1739 |
|
|
tmrMemBlkRight_ADDRXfer <= adrTimeOFF & syn_addr_subtimer; -- Select Timer OFF data for Right Channel
|
1740 |
|
|
tmrMemBlkRight_DINXfer(TmrBlock(addr_block)) <= synrx_rightTimerOFF;
|
1741 |
|
|
-- Note tmrMemBlk_WEB_GATE already '1' to enable storing
|
1742 |
|
|
|
1743 |
|
|
syn_rxdata_state <= CONV_STD_LOGIC_VECTOR(1, nRxSB); -- Goto state 1
|
1744 |
|
|
|
1745 |
|
|
-- State 1 :
|
1746 |
|
|
-- Set tmrMemBlk Address and DataIn to clear Note/Power:
|
1747 |
|
|
when 1 =>
|
1748 |
|
|
tmrMemBlkLeft_ADDRXfer <= adrNotePower & syn_addr_subtimer; -- Select Note/Power for Left Channel
|
1749 |
|
|
tmrMemBlkLeft_DINXfer(TmrBlock(addr_block)) <= (OTHERS => '0'); -- Clear it
|
1750 |
|
|
-- Note tmrMemBlk_WEB_GATE already '1' to enable storing
|
1751 |
|
|
|
1752 |
|
|
tmrMemBlkRight_ADDRXfer <= adrNotePower & syn_addr_subtimer; -- Select Note/Power for Right Channel
|
1753 |
|
|
tmrMemBlkRight_DINXfer(TmrBlock(addr_block)) <= (OTHERS => '0'); -- Clear it
|
1754 |
|
|
-- Note tmrMemBlk_WEB_GATE already '1' to enable storing
|
1755 |
|
|
|
1756 |
|
|
syn_rxdata_state <= CONV_STD_LOGIC_VECTOR(3, nRxSB); -- Goto state 3
|
1757 |
|
|
|
1758 |
|
|
-- State 3 :
|
1759 |
|
|
-- Set tmrMemBlk Address and DataIn to clear PitchBend:
|
1760 |
|
|
when 3 =>
|
1761 |
|
|
tmrMemBlkLeft_ADDRXfer <= adrPitchBend & syn_addr_subtimer; -- Select PitchBend for Left Channel
|
1762 |
|
|
tmrMemBlkLeft_DINXfer(TmrBlock(addr_block)) <= "0010000000000000"; -- Clear it
|
1763 |
|
|
-- Note tmrMemBlk_WEB_GATE already '1' to enable storing
|
1764 |
|
|
|
1765 |
|
|
tmrMemBlkRight_ADDRXfer <= adrPitchBend & syn_addr_subtimer; -- Select PitchBend for Right Channel
|
1766 |
|
|
tmrMemBlkRight_DINXfer(TmrBlock(addr_block)) <= "0010000000000000"; -- Clear it
|
1767 |
|
|
-- Note tmrMemBlk_WEB_GATE already '1' to enable storing
|
1768 |
|
|
|
1769 |
|
|
syn_rxdata_state <= CONV_STD_LOGIC_VECTOR(2, nRxSB); -- Goto state 2
|
1770 |
|
|
|
1771 |
|
|
-- State 2 :
|
1772 |
|
|
-- Enable Channel Outputs if corresponding On/Off wasn't 0
|
1773 |
|
|
-- Disable tmrMemBlk WEB Gate (we're done with it)
|
1774 |
|
|
-- Done -- Disable RX Processing
|
1775 |
|
|
when 2 =>
|
1776 |
|
|
if ((synrx_leftTimerON /= "0000000000000000") AND
|
1777 |
|
|
(synrx_leftTimerOFF /= "0000000000000000")) then
|
1778 |
|
|
outputEnablesNext(LEFT_OUT_NDX)(TmrBlock(addr_block))(Tmr(syn_addr_subtimer)) <= '1';
|
1779 |
|
|
else
|
1780 |
|
|
outputEnablesNext(LEFT_OUT_NDX)(TmrBlock(addr_block))(Tmr(syn_addr_subtimer)) <= '0';
|
1781 |
|
|
end if;
|
1782 |
|
|
outputForceLoad(LEFT_OUT_NDX)(TmrBlock(addr_block))(Tmr(syn_addr_subtimer)) <= NOT outputForceLoad(LEFT_OUT_NDX)(TmrBlock(addr_block))(Tmr(syn_addr_subtimer));
|
1783 |
|
|
|
1784 |
|
|
if ((synrx_rightTimerON /= "0000000000000000") AND
|
1785 |
|
|
(synrx_rightTimerOFF /= "0000000000000000")) then
|
1786 |
|
|
outputEnablesNext(RIGHT_OUT_NDX)(TmrBlock(addr_block))(Tmr(syn_addr_subtimer)) <= '1';
|
1787 |
|
|
else
|
1788 |
|
|
outputEnablesNext(RIGHT_OUT_NDX)(TmrBlock(addr_block))(Tmr(syn_addr_subtimer)) <= '0';
|
1789 |
|
|
end if;
|
1790 |
|
|
outputForceLoad(RIGHT_OUT_NDX)(TmrBlock(addr_block))(Tmr(syn_addr_subtimer)) <= NOT outputForceLoad(RIGHT_OUT_NDX)(TmrBlock(addr_block))(Tmr(syn_addr_subtimer));
|
1791 |
|
|
|
1792 |
|
|
tmrMemBlkLeft_WE_GATE <= (OTHERS => '0'); -- Disable writing to the Timer Memory Block (we're done)
|
1793 |
|
|
tmrMemBlkRight_WE_GATE <= (OTHERS => '0'); -- Disable writing to the Timer Memory Block (we're done)
|
1794 |
|
|
syn_rxdata_processing_n <= '1';
|
1795 |
|
|
|
1796 |
|
|
-- Note: State 6 would be next with this Gray-Code encoding
|
1797 |
|
|
|
1798 |
|
|
-- No other states should happen, but as safeguard, disable RX Processing:
|
1799 |
|
|
when OTHERS =>
|
1800 |
|
|
syn_rxdata_processing_n <= '1';
|
1801 |
|
|
end case;
|
1802 |
|
|
|
1803 |
|
|
end if; -- End Direct Timer On/Off RxData State-Machine
|
1804 |
|
|
end if; -- syn_rxdata Processing
|
1805 |
|
|
end if; -- Clock Edge
|
1806 |
|
|
end if; -- Reset
|
1807 |
|
|
end process xferdataproc;
|
1808 |
|
|
-- --------------------------------------------------------------------
|
1809 |
|
|
|
1810 |
|
|
|
1811 |
|
|
-- --------------------------------------------------------------------
|
1812 |
|
|
-- outproc:
|
1813 |
|
|
-- This process generates the outputs:
|
1814 |
|
|
-- --------------------------------------------------------------------
|
1815 |
|
|
outproc:process(sysclk, reset_n)
|
1816 |
|
|
variable outputs : STD_LOGIC_VECTOR(numSubTimers-1 downto 0);
|
1817 |
|
|
variable out_val : STD_LOGIC;
|
1818 |
|
|
begin
|
1819 |
|
|
if (reset_n = '0') then
|
1820 |
|
|
for i in 0 to numOutputs-1 loop
|
1821 |
|
|
FiberOut(i) <= '0';
|
1822 |
|
|
end loop;
|
1823 |
|
|
elsif (rising_edge(sysclk)) then
|
1824 |
|
|
for i in 0 to numOutputs-1 loop
|
1825 |
|
|
out_val := '0';
|
1826 |
|
|
for j in 0 to numTimerBlocks-1 loop
|
1827 |
|
|
outputs := (outputEnables(i)(j) AND outputLevels(i)(j));
|
1828 |
|
|
for k in 0 to numSubTimers-1 loop
|
1829 |
|
|
out_val := out_val OR outputs(k);
|
1830 |
|
|
end loop;
|
1831 |
|
|
end loop;
|
1832 |
|
|
FiberOut(i) <= out_val;
|
1833 |
|
|
end loop;
|
1834 |
|
|
end if;
|
1835 |
|
|
end process outproc;
|
1836 |
|
|
-- --------------------------------------------------------------------
|
1837 |
|
|
|
1838 |
|
|
|
1839 |
|
|
-- --------------------------------------------------------------------
|
1840 |
|
|
-- tmroutproc:
|
1841 |
|
|
-- This process handles the second-half of doing a round-robin update
|
1842 |
|
|
-- of all of the timers checking timer data and toggling outputs
|
1843 |
|
|
-- accrodingly. This process is triggered by the main timerproc
|
1844 |
|
|
-- (which runs at the tmrclk clock rate) and this process runs at
|
1845 |
|
|
-- the sysclk clock rate (processing speed).
|
1846 |
|
|
--
|
1847 |
|
|
-- This process handles the output driving/toggling instigated by
|
1848 |
|
|
-- tmrupdproc. This process runs on the rising edge of sysclk,
|
1849 |
|
|
-- whereas tmrupdproc runs on the falling eddge of sysclk. This
|
1850 |
|
|
-- allows us an extra 5nS for the output results and timer data
|
1851 |
|
|
-- (selected via concurrent logic) to get setup before the clock,
|
1852 |
|
|
-- otherwise we wouldn't have enough setup time.
|
1853 |
|
|
-- --------------------------------------------------------------------
|
1854 |
|
|
tmroutproc:process(sysclk, reset_n, local_rst_n, reset_in_progress_n)
|
1855 |
|
|
begin
|
1856 |
|
|
if ((reset_n = '0') OR
|
1857 |
|
|
(local_rst_n = '0') OR
|
1858 |
|
|
(reset_in_progress_n = '0')) then
|
1859 |
|
|
----
|
1860 |
|
|
for i in 0 to numOutputs-1 loop
|
1861 |
|
|
for j in 0 to numTimerBlocks-1 loop
|
1862 |
|
|
outputEnables(i)(j) <= (OTHERS => '0');
|
1863 |
|
|
outputLevels(i)(j) <= (OTHERS => '0');
|
1864 |
|
|
outputForceLoad_done(i)(j) <= (OTHERS => '0');
|
1865 |
|
|
end loop;
|
1866 |
|
|
end loop;
|
1867 |
|
|
elsif (rising_edge(sysclk)) then
|
1868 |
|
|
if (tmrproc_processing_n = '0') then
|
1869 |
|
|
case CONV_INTEGER(tmrproc_state) is
|
1870 |
|
|
-- State 1:
|
1871 |
|
|
-- ODD-TRANSITION, EVEN-SETUP (Note state-numbers are flip-flopped because other state-machine already transitioned them at the falling edge)
|
1872 |
|
|
when 1 =>
|
1873 |
|
|
for i in 0 to numTimerBlocks-1 loop
|
1874 |
|
|
if (((outputEnables(LEFT_OUT_NDX)(i)(Tmr(ODD_NDX, tmrproc_tmrndxODDLock)) = '0') AND
|
1875 |
|
|
(outputForceLoad(LEFT_OUT_NDX)(i)(Tmr(ODD_NDX, tmrproc_tmrndxODDLock)) /= outputForceLoad_done(LEFT_OUT_NDX)(i)(Tmr(ODD_NDX, tmrproc_tmrndxODDLock)))) OR
|
1876 |
|
|
(tmrCTMemBlkLeft_eqTimer(i) = '1')) then -- If this Timer Left Channel matches our timer or wasn't enabled and becoming enabled, process toggle
|
1877 |
|
|
outputLevels(LEFT_OUT_NDX)(i)(Tmr(ODD_NDX, tmrproc_tmrndxODDLock)) <= NOT outputLevels(LEFT_OUT_NDX)(i)(Tmr(ODD_NDX, tmrproc_tmrndxODDLock)); -- Toggle
|
1878 |
|
|
outputForceLoad_done(LEFT_OUT_NDX)(i)(Tmr(ODD_NDX, tmrproc_tmrndxODDLock)) <= NOT outputForceLoad_done(LEFT_OUT_NDX)(i)(Tmr(ODD_NDX, tmrproc_tmrndxODDLock));
|
1879 |
|
|
outputEnables(LEFT_OUT_NDX)(i)(Tmr(ODD_NDX, tmrproc_tmrndxODDLock)) <= outputEnablesNext(LEFT_OUT_NDX)(i)(Tmr(ODD_NDX, tmrproc_tmrndxODDLock));
|
1880 |
|
|
end if;
|
1881 |
|
|
|
1882 |
|
|
if (((outputEnables(RIGHT_OUT_NDX)(i)(Tmr(ODD_NDX, tmrproc_tmrndxODDLock)) = '0') AND
|
1883 |
|
|
(outputForceLoad(RIGHT_OUT_NDX)(i)(Tmr(ODD_NDX, tmrproc_tmrndxODDLock)) /= outputForceLoad_done(RIGHT_OUT_NDX)(i)(Tmr(ODD_NDX, tmrproc_tmrndxODDLock)))) OR
|
1884 |
|
|
(tmrCTMemBlkRight_eqTimer(i) = '1')) then -- If this Timer Right Channel matches our timer or wasn't enabled and becoming enabled, process toggle
|
1885 |
|
|
outputLevels(RIGHT_OUT_NDX)(i)(Tmr(ODD_NDX, tmrproc_tmrndxODDLock)) <= NOT outputLevels(RIGHT_OUT_NDX)(i)(Tmr(ODD_NDX, tmrproc_tmrndxODDLock)); -- Toggle
|
1886 |
|
|
outputForceLoad_done(RIGHT_OUT_NDX)(i)(Tmr(ODD_NDX, tmrproc_tmrndxODDLock)) <= NOT outputForceLoad_done(RIGHT_OUT_NDX)(i)(Tmr(ODD_NDX, tmrproc_tmrndxODDLock));
|
1887 |
|
|
outputEnables(RIGHT_OUT_NDX)(i)(Tmr(ODD_NDX, tmrproc_tmrndxODDLock)) <= outputEnablesNext(RIGHT_OUT_NDX)(i)(Tmr(ODD_NDX, tmrproc_tmrndxODDLock));
|
1888 |
|
|
end if;
|
1889 |
|
|
end loop;
|
1890 |
|
|
|
1891 |
|
|
tmrproc_tmrndxEVENLock <= tmrproc_tmrndxEVEN; -- Lock EVEN Timer Index for EVEN-Setup
|
1892 |
|
|
|
1893 |
|
|
-- State 0:
|
1894 |
|
|
-- EVEN-TRANSITION, ODD-SETUP (Note state-numbers are flip-flopped because other state-machine already transitioned them at the falling edge)
|
1895 |
|
|
when 0 =>
|
1896 |
|
|
for i in 0 to numTimerBlocks-1 loop
|
1897 |
|
|
if (((outputEnables(LEFT_OUT_NDX)(i)(Tmr(EVEN_NDX, tmrproc_tmrndxEVENLock)) = '0') AND
|
1898 |
|
|
(outputForceLoad(LEFT_OUT_NDX)(i)(Tmr(EVEN_NDX, tmrproc_tmrndxEVENLock)) /= outputForceLoad_done(LEFT_OUT_NDX)(i)(Tmr(EVEN_NDX, tmrproc_tmrndxEVENLock)))) OR
|
1899 |
|
|
(tmrCTMemBlkLeft_eqTimer(i) = '1')) then -- If this Timer Left Channel matches our timer or wasn't enabled and becoming enabled, process toggle
|
1900 |
|
|
outputLevels(LEFT_OUT_NDX)(i)(Tmr(EVEN_NDX, tmrproc_tmrndxEVENLock)) <= NOT outputLevels(LEFT_OUT_NDX)(i)(Tmr(EVEN_NDX, tmrproc_tmrndxEVENLock)); -- Toggle
|
1901 |
|
|
outputForceLoad_done(LEFT_OUT_NDX)(i)(Tmr(EVEN_NDX, tmrproc_tmrndxEVENLock)) <= NOT outputForceLoad_done(LEFT_OUT_NDX)(i)(Tmr(EVEN_NDX, tmrproc_tmrndxEVENLock));
|
1902 |
|
|
outputEnables(LEFT_OUT_NDX)(i)(Tmr(EVEN_NDX, tmrproc_tmrndxEVENLock)) <= outputEnablesNext(LEFT_OUT_NDX)(i)(Tmr(EVEN_NDX, tmrproc_tmrndxEVENLock));
|
1903 |
|
|
end if;
|
1904 |
|
|
|
1905 |
|
|
if (((outputEnables(RIGHT_OUT_NDX)(i)(Tmr(EVEN_NDX, tmrproc_tmrndxEVENLock)) = '0') AND
|
1906 |
|
|
(outputForceLoad(RIGHT_OUT_NDX)(i)(Tmr(EVEN_NDX, tmrproc_tmrndxEVENLock)) /= outputForceLoad_done(RIGHT_OUT_NDX)(i)(Tmr(EVEN_NDX, tmrproc_tmrndxEVENLock)))) OR
|
1907 |
|
|
(tmrCTMemBlkRight_eqTimer(i) = '1')) then -- If this Timer Right Channel matches our timer or wasn't enabled and becoming enabled, process toggle
|
1908 |
|
|
outputLevels(RIGHT_OUT_NDX)(i)(Tmr(EVEN_NDX, tmrproc_tmrndxEVENLock)) <= NOT outputLevels(RIGHT_OUT_NDX)(i)(Tmr(EVEN_NDX, tmrproc_tmrndxEVENLock)); -- Toggle
|
1909 |
|
|
outputForceLoad_done(RIGHT_OUT_NDX)(i)(Tmr(EVEN_NDX, tmrproc_tmrndxEVENLock)) <= NOT outputForceLoad_done(RIGHT_OUT_NDX)(i)(Tmr(EVEN_NDX, tmrproc_tmrndxEVENLock));
|
1910 |
|
|
outputEnables(RIGHT_OUT_NDX)(i)(Tmr(EVEN_NDX, tmrproc_tmrndxEVENLock)) <= outputEnablesNext(RIGHT_OUT_NDX)(i)(Tmr(EVEN_NDX, tmrproc_tmrndxEVENLock));
|
1911 |
|
|
end if;
|
1912 |
|
|
end loop;
|
1913 |
|
|
|
1914 |
|
|
tmrproc_tmrndxODDLock <= tmrproc_tmrndxODD; -- Lock ODD Timer Index for ODD-Setup
|
1915 |
|
|
|
1916 |
|
|
when OTHERS => -- There are no other cases, but keep ghdl compiler happy...
|
1917 |
|
|
end case;
|
1918 |
|
|
end if;
|
1919 |
|
|
end if;
|
1920 |
|
|
end process tmroutproc;
|
1921 |
|
|
-- --------------------------------------------------------------------
|
1922 |
|
|
|
1923 |
|
|
|
1924 |
|
|
-- --------------------------------------------------------------------
|
1925 |
|
|
-- tmrupdproc:
|
1926 |
|
|
-- This process handles the primary-half of doing a round-robin update
|
1927 |
|
|
-- of all of the timers checking timer data and toggling outputs
|
1928 |
|
|
-- accrodingly. This process is triggered by the main timerproc
|
1929 |
|
|
-- (which runs at the tmrclk clock rate) and this process runs at
|
1930 |
|
|
-- the sysclk clock rate (processing speed).
|
1931 |
|
|
--
|
1932 |
|
|
-- This process sets up the timer memory read addressing and handles
|
1933 |
|
|
-- the round-robin indexing logic and instigating what values
|
1934 |
|
|
-- come next, but doesn't handle the output driving/toggling,
|
1935 |
|
|
-- which is done by tmroutproc.
|
1936 |
|
|
-- --------------------------------------------------------------------
|
1937 |
|
|
tmrupdproc:process(sysclk, reset_n, local_rst_n, reset_in_progress_n)
|
1938 |
|
|
begin
|
1939 |
|
|
if ((reset_n = '0') OR
|
1940 |
|
|
(local_rst_n = '0') OR
|
1941 |
|
|
(reset_in_progress_n = '0')) then
|
1942 |
|
|
----
|
1943 |
|
|
tmrCTMemBlkLeft_ADDRA <= (OTHERS => '0');
|
1944 |
|
|
tmrCTMemBlkLeft_ADDRB <= (OTHERS => '0');
|
1945 |
|
|
tmrCTMemBlkLeft_WE_GATE <= (OTHERS => '0');
|
1946 |
|
|
----
|
1947 |
|
|
tmrCTMemBlkRight_ADDRA <= (OTHERS => '0');
|
1948 |
|
|
tmrCTMemBlkRight_ADDRB <= (OTHERS => '0');
|
1949 |
|
|
tmrCTMemBlkRight_WE_GATE <= (OTHERS => '0');
|
1950 |
|
|
----
|
1951 |
|
|
for i in 0 to numTimerBlocks-1 loop
|
1952 |
|
|
tmrMemBlkLeft_ADDRTmr(i) <= (OTHERS => '0');
|
1953 |
|
|
tmrMemBlkRight_ADDRTmr(i) <= (OTHERS => '0');
|
1954 |
|
|
end loop;
|
1955 |
|
|
----
|
1956 |
|
|
tmrproc_tmrndxEVEN <= "00000";
|
1957 |
|
|
tmrproc_tmrndxODD <= "00000";
|
1958 |
|
|
tmrproc_processing_n <= '1';
|
1959 |
|
|
elsif (falling_edge(sysclk)) then
|
1960 |
|
|
if ((tmrproc_trigger_n = '0') AND (tmrproc_processing_n = '1')) then -- Handle setup coming out of reset:
|
1961 |
|
|
-- Start timer processing state-machine:
|
1962 |
|
|
tmrproc_processing_n <= '0';
|
1963 |
|
|
----
|
1964 |
|
|
-- Note : tmrCTMemBlkXXXX addresses set in reset to first state
|
1965 |
|
|
|
1966 |
|
|
---- SETUP FOR EVEN TIMER ---
|
1967 |
|
|
|
1968 |
|
|
for i in 0 to numTimerBlocks-1 loop
|
1969 |
|
|
if (outputLevels(LEFT_OUT_NDX)(i)(Tmr(EVEN_NDX, "00000")) = '1') then
|
1970 |
|
|
tmrMemBlkLeft_ADDRTmr(i) <= adrTimeOFF & EVEN_NDX & "00000"; -- Get amount of time to be off
|
1971 |
|
|
else
|
1972 |
|
|
tmrMemBlkLeft_ADDRTmr(i) <= adrTimeON & EVEN_NDX & "00000"; -- Get amount of time to be on
|
1973 |
|
|
end if;
|
1974 |
|
|
|
1975 |
|
|
if (outputLevels(RIGHT_OUT_NDX)(i)(Tmr(EVEN_NDX, "00000")) = '1') then
|
1976 |
|
|
tmrMemBlkRight_ADDRTmr(i) <= adrTimeOFF & EVEN_NDX & "00000"; -- Get amount of time to be off
|
1977 |
|
|
else
|
1978 |
|
|
tmrMemBlkRight_ADDRTmr(i) <= adrTimeON & EVEN_NDX & "00000"; -- Get amount of time to be on
|
1979 |
|
|
end if;
|
1980 |
|
|
end loop;
|
1981 |
|
|
|
1982 |
|
|
tmrproc_state <= CONV_STD_LOGIC_VECTOR(1, nTSB); -- Goto State 1 to start
|
1983 |
|
|
elsif (tmrproc_processing_n = '0') then
|
1984 |
|
|
-- Loop through timers processing compare logic:
|
1985 |
|
|
|
1986 |
|
|
case CONV_INTEGER(tmrproc_state) is
|
1987 |
|
|
-- State 0:
|
1988 |
|
|
-- ODD-TRANSITION, EVEN-SETUP
|
1989 |
|
|
when 0 =>
|
1990 |
|
|
-- Enable ALL writes (for speed). If a timer doesn't need updating, we'll
|
1991 |
|
|
-- simply write it back with the same value. We have to do this here
|
1992 |
|
|
-- and on both paths so we don't accidentally write the first transition
|
1993 |
|
|
-- coming into this state-machine. Likewise for disabling it, it has
|
1994 |
|
|
-- to be disabled in the exit/done state:
|
1995 |
|
|
tmrCTMemBlkLeft_WE_GATE <= (OTHERS => '1');
|
1996 |
|
|
tmrCTMemBlkRight_WE_GATE <= (OTHERS => '1');
|
1997 |
|
|
|
1998 |
|
|
---- TRANSITION FOR ODD TIMER ----
|
1999 |
|
|
|
2000 |
|
|
tmrCTMemBlkLeft_ADDRA <= ODD_NDX & tmrproc_tmrndxODD; -- Setup to write the Timer Compare value for this timer Left Channel
|
2001 |
|
|
tmrCTMemBlkRight_ADDRA <= ODD_NDX & tmrproc_tmrndxODD; -- Setup to write the Timer Compare value for this timer Right Channel
|
2002 |
|
|
|
2003 |
|
|
tmrproc_state <= CONV_STD_LOGIC_VECTOR(1, nTSB); -- Keep looping
|
2004 |
|
|
tmrproc_tmrndxODD <= tmrproc_tmrndxODD + 1;
|
2005 |
|
|
|
2006 |
|
|
-------------------------------------------------------------------------------
|
2007 |
|
|
|
2008 |
|
|
---- SETUP FOR EVEN TIMER ----
|
2009 |
|
|
|
2010 |
|
|
tmrCTMemBlkLeft_ADDRB <= EVEN_NDX & tmrproc_tmrndxEVEN; -- Setup to read the Timer Compare value for this timer Left Channel
|
2011 |
|
|
tmrCTMemBlkRight_ADDRB <= EVEN_NDX & tmrproc_tmrndxEVEN; -- Setup to read the Timer Compare value for this timer Right Channel
|
2012 |
|
|
|
2013 |
|
|
for i in 0 to numTimerBlocks-1 loop
|
2014 |
|
|
if (outputLevels(LEFT_OUT_NDX)(i)(Tmr(EVEN_NDX, tmrproc_tmrndxEVEN)) = '1') then
|
2015 |
|
|
tmrMemBlkLeft_ADDRTmr(i) <= adrTimeOFF & EVEN_NDX & tmrproc_tmrndxEVEN; -- Get amount of time to be off
|
2016 |
|
|
else
|
2017 |
|
|
tmrMemBlkLeft_ADDRTmr(i) <= adrTimeON & EVEN_NDX & tmrproc_tmrndxEVEN; -- Get amount of time to be on
|
2018 |
|
|
end if;
|
2019 |
|
|
|
2020 |
|
|
if (outputLevels(RIGHT_OUT_NDX)(i)(Tmr(EVEN_NDX, tmrproc_tmrndxEVEN)) = '1') then
|
2021 |
|
|
tmrMemBlkRight_ADDRTmr(i) <= adrTimeOFF & EVEN_NDX & tmrproc_tmrndxEVEN; -- Get amount of time to be off
|
2022 |
|
|
else
|
2023 |
|
|
tmrMemBlkRight_ADDRTmr(i) <= adrTimeON & EVEN_NDX & tmrproc_tmrndxEVEN; -- Get amount of time to be on
|
2024 |
|
|
end if;
|
2025 |
|
|
end loop;
|
2026 |
|
|
|
2027 |
|
|
-- State 1:
|
2028 |
|
|
-- EVEN-TRANSITION, ODD-SETUP
|
2029 |
|
|
when 1 =>
|
2030 |
|
|
-- Enable ALL writes (for speed). If a timer doesn't need updating, we'll
|
2031 |
|
|
-- simply write it back with the same value. We have to do this here
|
2032 |
|
|
-- and on both paths so we don't accidentally write the first transition
|
2033 |
|
|
-- coming into this state-machine. Likewise for disabling it, it has
|
2034 |
|
|
-- to be disabled in the exit/done state:
|
2035 |
|
|
tmrCTMemBlkLeft_WE_GATE <= (OTHERS => '1');
|
2036 |
|
|
tmrCTMemBlkRight_WE_GATE <= (OTHERS => '1');
|
2037 |
|
|
|
2038 |
|
|
---- TRANSITION FOR EVEN TIMER ----
|
2039 |
|
|
|
2040 |
|
|
tmrCTMemBlkLeft_ADDRA <= EVEN_NDX & tmrproc_tmrndxEVEN; -- Setup to write the Timer Compare value for this timer Left Channel
|
2041 |
|
|
tmrCTMemBlkRight_ADDRA <= EVEN_NDX & tmrproc_tmrndxEVEN; -- Setup to write the Timer Compare value for this timer Right Channel
|
2042 |
|
|
|
2043 |
|
|
tmrproc_state <= CONV_STD_LOGIC_VECTOR(0, nTSB); -- Keep looping
|
2044 |
|
|
tmrproc_tmrndxEVEN <= tmrproc_tmrndxEVEN + 1;
|
2045 |
|
|
|
2046 |
|
|
-------------------------------------------------------------------------------
|
2047 |
|
|
|
2048 |
|
|
---- SETUP FOR ODD TIMER ----
|
2049 |
|
|
|
2050 |
|
|
tmrCTMemBlkLeft_ADDRB <= ODD_NDX & tmrproc_tmrndxODD; -- Setup to read the Timer Compare value for this timer Left Channel
|
2051 |
|
|
tmrCTMemBlkRight_ADDRB <= ODD_NDX & tmrproc_tmrndxODD; -- Setup to read the Timer Compare value for this timer Right Channel
|
2052 |
|
|
|
2053 |
|
|
for i in 0 to numTimerBlocks-1 loop
|
2054 |
|
|
if (outputLevels(LEFT_OUT_NDX)(i)(Tmr(ODD_NDX, tmrproc_tmrndxODD)) = '1') then
|
2055 |
|
|
tmrMemBlkLeft_ADDRTmr(i) <= adrTimeOFF & ODD_NDX & tmrproc_tmrndxODD; -- Get amount of time to be off
|
2056 |
|
|
else
|
2057 |
|
|
tmrMemBlkLeft_ADDRTmr(i) <= adrTimeON & ODD_NDX & tmrproc_tmrndxODD; -- Get amount of time to be on
|
2058 |
|
|
end if;
|
2059 |
|
|
|
2060 |
|
|
if (outputLevels(RIGHT_OUT_NDX)(i)(Tmr(ODD_NDX, tmrproc_tmrndxODD)) = '1') then
|
2061 |
|
|
tmrMemBlkRight_ADDRTmr(i) <= adrTimeOFF & ODD_NDX & tmrproc_tmrndxODD; -- Get amount of time to be off
|
2062 |
|
|
else
|
2063 |
|
|
tmrMemBlkRight_ADDRTmr(i) <= adrTimeON & ODD_NDX & tmrproc_tmrndxODD; -- Get amount of time to be on
|
2064 |
|
|
end if;
|
2065 |
|
|
end loop;
|
2066 |
|
|
|
2067 |
|
|
-- No other states should happen, but as safeguard, disable Timer Processing and make sure write gate is off as something bad happened:
|
2068 |
|
|
when OTHERS =>
|
2069 |
|
|
tmrCTMemBlkLeft_WE_GATE <= (OTHERS => '0');
|
2070 |
|
|
tmrCTMemBlkRight_WE_GATE <= (OTHERS => '0');
|
2071 |
|
|
tmrproc_processing_n <= '1';
|
2072 |
|
|
end case;
|
2073 |
|
|
end if; -- End of Timer Processing
|
2074 |
|
|
end if;
|
2075 |
|
|
end process tmrupdproc;
|
2076 |
|
|
-- --------------------------------------------------------------------
|
2077 |
|
|
|
2078 |
|
|
|
2079 |
|
|
-- --------------------------------------------------------------------
|
2080 |
|
|
-- timerproc:
|
2081 |
|
|
-- This process is the main Timer Tick processing. It handles updating
|
2082 |
|
|
-- the main timer and triggering processing synchronous logic
|
2083 |
|
|
-- in tmrupdproc.
|
2084 |
|
|
-- --------------------------------------------------------------------
|
2085 |
|
|
timerproc:process(tmrclk, tmrproc_processing_n, reset_n, local_rst_n)
|
2086 |
|
|
begin
|
2087 |
|
|
if ((reset_n='0') OR
|
2088 |
|
|
(local_rst_n='0')) then
|
2089 |
|
|
tmrproc_trigger_n <= '1';
|
2090 |
|
|
theTimer <= (OTHERS => '0');
|
2091 |
|
|
elsif (rising_edge(tmrclk)) then
|
2092 |
|
|
if (reset_in_progress_n = '1') then
|
2093 |
|
|
theTimer <= theTimer + 1;
|
2094 |
|
|
tmrproc_trigger_n <= '0'; -- Used to synchronize tmrupdproc to rising tmrclk edge
|
2095 |
|
|
end if;
|
2096 |
|
|
end if;
|
2097 |
|
|
end process timerproc;
|
2098 |
|
|
-- --------------------------------------------------------------------
|
2099 |
|
|
|
2100 |
|
|
end TimerOCD_arch;
|
2101 |
|
|
|