1 |
11 |
dinesha |
//////////////////////////////////////////////////////////////////////
|
2 |
|
|
//// ////
|
3 |
|
|
//// Tubo 8051 cores common library Module ////
|
4 |
|
|
//// ////
|
5 |
|
|
//// This file is part of the Turbo 8051 cores project ////
|
6 |
|
|
//// http://www.opencores.org/cores/turbo8051/ ////
|
7 |
|
|
//// ////
|
8 |
|
|
//// Description ////
|
9 |
|
|
//// Turbo 8051 definitions. ////
|
10 |
|
|
//// ////
|
11 |
|
|
//// To Do: ////
|
12 |
|
|
//// nothing ////
|
13 |
|
|
//// ////
|
14 |
|
|
//// Author(s): ////
|
15 |
|
|
//// - Dinesh Annayya, dinesha@opencores.org ////
|
16 |
|
|
//// ////
|
17 |
|
|
//////////////////////////////////////////////////////////////////////
|
18 |
|
|
//// ////
|
19 |
|
|
//// Copyright (C) 2000 Authors and OPENCORES.ORG ////
|
20 |
|
|
//// ////
|
21 |
|
|
//// This source file may be used and distributed without ////
|
22 |
|
|
//// restriction provided that this copyright statement is not ////
|
23 |
|
|
//// removed from the file and that any derivative work contains ////
|
24 |
|
|
//// the original copyright notice and the associated disclaimer. ////
|
25 |
|
|
//// ////
|
26 |
|
|
//// This source file is free software; you can redistribute it ////
|
27 |
|
|
//// and/or modify it under the terms of the GNU Lesser General ////
|
28 |
|
|
//// Public License as published by the Free Software Foundation; ////
|
29 |
|
|
//// either version 2.1 of the License, or (at your option) any ////
|
30 |
|
|
//// later version. ////
|
31 |
|
|
//// ////
|
32 |
|
|
//// This source is distributed in the hope that it will be ////
|
33 |
|
|
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
|
34 |
|
|
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
|
35 |
|
|
//// PURPOSE. See the GNU Lesser General Public License for more ////
|
36 |
|
|
//// details. ////
|
37 |
|
|
//// ////
|
38 |
|
|
//// You should have received a copy of the GNU Lesser General ////
|
39 |
|
|
//// Public License along with this source; if not, download it ////
|
40 |
|
|
//// from http://www.opencores.org/lgpl.shtml ////
|
41 |
|
|
//// ////
|
42 |
|
|
//////////////////////////////////////////////////////////////////////
|
43 |
|
|
|
44 |
|
|
/**********************************************
|
45 |
|
|
Web-bone cross bar M-Master By S-Slave
|
46 |
|
|
**********************************************/
|
47 |
|
|
|
48 |
|
|
module wb_crossbar (
|
49 |
|
|
|
50 |
|
|
rst_n ,
|
51 |
|
|
clk ,
|
52 |
|
|
|
53 |
|
|
|
54 |
|
|
// Master Interface Signal
|
55 |
|
|
wbd_taddr_master ,
|
56 |
|
|
wbd_din_master ,
|
57 |
|
|
wbd_dout_master ,
|
58 |
|
|
wbd_adr_master ,
|
59 |
|
|
wbd_be_master ,
|
60 |
|
|
wbd_we_master ,
|
61 |
|
|
wbd_ack_master ,
|
62 |
|
|
wbd_stb_master ,
|
63 |
|
|
wbd_cyc_master ,
|
64 |
|
|
wbd_err_master ,
|
65 |
|
|
wbd_rty_master ,
|
66 |
|
|
|
67 |
|
|
// Slave Interface Signal
|
68 |
|
|
wbd_din_slave ,
|
69 |
|
|
wbd_dout_slave ,
|
70 |
|
|
wbd_adr_slave ,
|
71 |
|
|
wbd_be_slave ,
|
72 |
|
|
wbd_we_slave ,
|
73 |
|
|
wbd_ack_slave ,
|
74 |
|
|
wbd_stb_slave ,
|
75 |
|
|
wbd_cyc_slave ,
|
76 |
|
|
wbd_err_slave ,
|
77 |
|
|
wbd_rty_slave
|
78 |
|
|
);
|
79 |
|
|
|
80 |
|
|
parameter WB_SLAVE = 4 ;
|
81 |
|
|
parameter WB_MASTER = 4 ;
|
82 |
|
|
|
83 |
|
|
parameter D_WD = 16; // Data Width
|
84 |
|
|
parameter BE_WD = 2; // Byte Enable
|
85 |
|
|
parameter ADR_WD = 28; // Address Width
|
86 |
|
|
parameter TAR_WD = 4; // Target Width
|
87 |
|
|
|
88 |
|
|
input clk; // CLK_I The clock input [CLK_I] coordinates all activities
|
89 |
|
|
// for the internal logic within the WISHBONE interconnect.
|
90 |
|
|
// All WISHBONE output signals are registered at the
|
91 |
|
|
// rising edge of [CLK_I].
|
92 |
|
|
// All WISHBONE input signals must be stable before the
|
93 |
|
|
// rising edge of [CLK_I].
|
94 |
|
|
input rst_n; // RST_I The reset input [RST_I] forces the WISHBONE interface
|
95 |
|
|
// to restart. Furthermore, all internal self-starting state
|
96 |
|
|
// machines will be forced into an initial state.
|
97 |
|
|
|
98 |
|
|
input [(WB_MASTER *TAR_WD)-1:0] wbd_taddr_master; // target address from master
|
99 |
|
|
input [WB_MASTER-1:0] wbd_stb_master;
|
100 |
|
|
// STB_O The strobe output [STB_O] indicates a valid data
|
101 |
|
|
// transfer cycle. It is used to qualify various other signals
|
102 |
|
|
// on the interface such as [SEL_O(7..0)]. The SLAVE must
|
103 |
|
|
// assert either the [ACK_I], [ERR_I] or [RTY_I] signals in
|
104 |
|
|
// response to every assertion of the [STB_O] signal.
|
105 |
|
|
output [WB_SLAVE-1:0] wbd_stb_slave;
|
106 |
|
|
// STB_O The strobe output [STB_O] indicates a valid data
|
107 |
|
|
// transfer cycle. It is used to qualify various other signals
|
108 |
|
|
// on the interface such as [SEL_O(7..0)]. The SLAVE must
|
109 |
|
|
// assert either the [ACK_I], [ERR_I] or [RTY_I] signals in
|
110 |
|
|
// response to every assertion of the [STB_O] signal.
|
111 |
|
|
|
112 |
|
|
input [WB_MASTER-1:0] wbd_we_master;
|
113 |
|
|
// WE_O The write enable output [WE_O] indicates whether the
|
114 |
|
|
// current local bus cycle is a READ or WRITE cycle. The
|
115 |
|
|
// signal is negated during READ cycles, and is asserted
|
116 |
|
|
// during WRITE cycles.
|
117 |
|
|
output [WB_SLAVE-1:0] wbd_we_slave;
|
118 |
|
|
// WE_O The write enable output [WE_O] indicates whether the
|
119 |
|
|
// current local bus cycle is a READ or WRITE cycle. The
|
120 |
|
|
// signal is negated during READ cycles, and is asserted
|
121 |
|
|
// during WRITE cycles.
|
122 |
|
|
|
123 |
|
|
output [WB_MASTER-1:0] wbd_ack_master;
|
124 |
|
|
// The acknowledge input [ACK_I], when asserted,
|
125 |
|
|
// indicates the termination of a normal bus cycle.
|
126 |
|
|
// Also see the [ERR_I] and [RTY_I] signal descriptions.
|
127 |
|
|
input [WB_SLAVE-1:0] wbd_ack_slave;
|
128 |
|
|
// The acknowledge input [ACK_I], when asserted,
|
129 |
|
|
// indicates the termination of a normal bus cycle.
|
130 |
|
|
// Also see the [ERR_I] and [RTY_I] signal descriptions.
|
131 |
|
|
|
132 |
|
|
input [(WB_MASTER *ADR_WD)-1:0] wbd_adr_master;
|
133 |
|
|
// The address output array [ADR_O(63..0)] is used
|
134 |
|
|
// to pass a binary address, with the most significant
|
135 |
|
|
// address bit at the higher numbered end of the signal array.
|
136 |
|
|
// The lower array boundary is specific to the data port size.
|
137 |
|
|
// The higher array boundary is core-specific.
|
138 |
|
|
// In some cases (such as FIFO interfaces)
|
139 |
|
|
// the array may not be present on the interface.
|
140 |
|
|
|
141 |
|
|
output [(WB_SLAVE *ADR_WD)-1:0] wbd_adr_slave;
|
142 |
|
|
// The address output array [ADR_O(63..0)] is used
|
143 |
|
|
// to pass a binary address, with the most significant
|
144 |
|
|
// address bit at the higher numbered end of the signal array.
|
145 |
|
|
// The lower array boundary is specific to the data port size.
|
146 |
|
|
// The higher array boundary is core-specific.
|
147 |
|
|
// In some cases (such as FIFO interfaces)
|
148 |
|
|
// the array may not be present on the interface.
|
149 |
|
|
|
150 |
|
|
input [(WB_MASTER * BE_WD)-1:0] wbd_be_master; // Byte Enable
|
151 |
|
|
// SEL_O(7..0) The select output array [SEL_O(7..0)] indicates
|
152 |
|
|
// where valid data is expected on the [DAT_I(63..0)] signal
|
153 |
|
|
// array during READ cycles, and where it is placed on the
|
154 |
|
|
// [DAT_O(63..0)] signal array during WRITE cycles.
|
155 |
|
|
// Also see the [DAT_I(63..0)], [DAT_O(63..0)] and [STB_O]
|
156 |
|
|
// signal descriptions.
|
157 |
32 |
dinesha |
output [(WB_SLAVE * BE_WD)-1:0] wbd_be_slave; // Byte Enable
|
158 |
11 |
dinesha |
// SEL_O(7..0) The select output array [SEL_O(7..0)] indicates
|
159 |
|
|
// where valid data is expected on the [DAT_I(63..0)] signal
|
160 |
|
|
// array during READ cycles, and where it is placed on the
|
161 |
|
|
// [DAT_O(63..0)] signal array during WRITE cycles.
|
162 |
|
|
// Also see the [DAT_I(63..0)], [DAT_O(63..0)] and [STB_O]
|
163 |
|
|
// signal descriptions.
|
164 |
|
|
|
165 |
|
|
input [WB_SLAVE -1:0] wbd_cyc_master;
|
166 |
|
|
// CYC_O The cycle output [CYC_O], when asserted,
|
167 |
|
|
// indicates that a valid bus cycle is in progress.
|
168 |
|
|
// The signal is asserted for the duration of all bus cycles.
|
169 |
|
|
// For example, during a BLOCK transfer cycle there can be
|
170 |
|
|
// multiple data transfers. The [CYC_O] signal is asserted
|
171 |
|
|
// during the first data transfer, and remains asserted
|
172 |
|
|
// until the last data transfer. The [CYC_O] signal is useful
|
173 |
|
|
// for interfaces with multi-port interfaces
|
174 |
|
|
// (such as dual port memories). In these cases,
|
175 |
|
|
// the [CYC_O] signal requests use of a common bus from an
|
176 |
|
|
// arbiter. Once the arbiter grants the bus to the MASTER,
|
177 |
|
|
// it is held until [CYC_O] is negated.
|
178 |
|
|
output [WB_SLAVE -1:0] wbd_cyc_slave;
|
179 |
|
|
// CYC_O The cycle output [CYC_O], when asserted,
|
180 |
|
|
// indicates that a valid bus cycle is in progress.
|
181 |
|
|
// The signal is asserted for the duration of all bus cycles.
|
182 |
|
|
// For example, during a BLOCK transfer cycle there can be
|
183 |
|
|
// multiple data transfers. The [CYC_O] signal is asserted
|
184 |
|
|
// during the first data transfer, and remains asserted
|
185 |
|
|
// until the last data transfer. The [CYC_O] signal is useful
|
186 |
|
|
// for interfaces with multi-port interfaces
|
187 |
|
|
// (such as dual port memories). In these cases,
|
188 |
|
|
// the [CYC_O] signal requests use of a common bus from an
|
189 |
|
|
// arbiter. Once the arbiter grants the bus to the MASTER,
|
190 |
|
|
// it is held until [CYC_O] is negated.
|
191 |
|
|
|
192 |
|
|
input [(WB_MASTER * D_WD)-1:0] wbd_din_master;
|
193 |
|
|
// DAT_I(63..0) The data input array [DAT_I(63..0)] is
|
194 |
|
|
// used to pass binary data. The array boundaries are
|
195 |
|
|
// determined by the port size. Also see the [DAT_O(63..0)]
|
196 |
|
|
// and [SEL_O(7..0)] signal descriptions.
|
197 |
|
|
|
198 |
|
|
output [(WB_SLAVE * D_WD)-1:0] wbd_din_slave;
|
199 |
|
|
// DAT_I(63..0) The data input array [DAT_I(63..0)] is
|
200 |
|
|
// used to pass binary data. The array boundaries are
|
201 |
|
|
// determined by the port size. Also see the [DAT_O(63..0)]
|
202 |
|
|
// and [SEL_O(7..0)] signal descriptions.
|
203 |
|
|
|
204 |
|
|
output [(WB_MASTER * D_WD)-1:0] wbd_dout_master;
|
205 |
|
|
// DAT_O(63..0) The data output array [DAT_O(63..0)] is
|
206 |
|
|
// used to pass binary data. The array boundaries are
|
207 |
|
|
// determined by the port size. Also see the [DAT_I(63..0)]
|
208 |
|
|
// and [SEL_O(7..0)] signal descriptions.
|
209 |
|
|
input [(WB_SLAVE * D_WD)-1:0] wbd_dout_slave;
|
210 |
|
|
// DAT_O(63..0) The data output array [DAT_O(63..0)] is
|
211 |
|
|
// used to pass binary data. The array boundaries are
|
212 |
|
|
// determined by the port size. Also see the [DAT_I(63..0)]
|
213 |
|
|
// and [SEL_O(7..0)] signal descriptions.
|
214 |
|
|
|
215 |
|
|
output [WB_MASTER -1:0] wbd_err_master;
|
216 |
|
|
// ERR_I The error input [ERR_I] indicates an abnormal
|
217 |
|
|
// cycle termination. The source of the error, and the
|
218 |
|
|
// response generated by the MASTER is defined by the IP core
|
219 |
|
|
// supplier in the WISHBONE DATASHEET. Also see the [ACK_I]
|
220 |
|
|
// and [RTY_I] signal descriptions.
|
221 |
|
|
input [WB_SLAVE -1:0] wbd_err_slave;
|
222 |
|
|
// ERR_I The error input [ERR_I] indicates an abnormal
|
223 |
|
|
// cycle termination. The source of the error, and the
|
224 |
|
|
// response generated by the MASTER is defined by the IP core
|
225 |
|
|
// supplier in the WISHBONE DATASHEET. Also see the [ACK_I]
|
226 |
|
|
// and [RTY_I] signal descriptions.
|
227 |
|
|
|
228 |
|
|
output [WB_MASTER -1:0] wbd_rty_master;
|
229 |
|
|
// RTY_I The retry input [RTY_I] indicates that the indicates
|
230 |
|
|
// that the interface is not ready to accept or send data, and
|
231 |
|
|
// that the cycle should be retried. When and how the cycle is
|
232 |
|
|
// retried is defined by the IP core supplier in the WISHBONE
|
233 |
|
|
// DATASHEET. Also see the [ERR_I] and [RTY_I] signal
|
234 |
|
|
// descriptions.
|
235 |
|
|
input [WB_SLAVE -1:0] wbd_rty_slave;
|
236 |
|
|
// RTY_I The retry input [RTY_I] indicates that the indicates
|
237 |
|
|
// that the interface is not ready to accept or send data, and
|
238 |
|
|
// that the cycle should be retried. When and how the cycle is
|
239 |
|
|
// retried is defined by the IP core supplier in the WISHBONE
|
240 |
|
|
// DATASHEET. Also see the [ERR_I] and [RTY_I] signal
|
241 |
|
|
// descriptions.
|
242 |
|
|
|
243 |
|
|
|
244 |
|
|
reg [WB_MASTER-1:0] wbd_ack_master;
|
245 |
|
|
reg [WB_MASTER-1:0] wbd_err_master;
|
246 |
|
|
reg [WB_MASTER-1:0] wbd_rty_master;
|
247 |
|
|
|
248 |
|
|
|
249 |
|
|
reg [WB_MASTER-1:0] master_busy; // master busy flag
|
250 |
|
|
reg [WB_SLAVE-1:0] slave_busy; // slave busy flag
|
251 |
|
|
reg [TAR_WD -1:0] master_mx_id[WB_MASTER-1:0];
|
252 |
|
|
reg [TAR_WD -1:0] slave_mx_id [WB_SLAVE-1:0];
|
253 |
|
|
|
254 |
|
|
reg [TAR_WD-1 :0] cur_target_id;
|
255 |
|
|
wire [TAR_WD-1:0] wbd_taddr_master_t[WB_MASTER]; // target address from master
|
256 |
|
|
wire [D_WD-1:0] wbd_din_master_t[WB_MASTER-1:0]; // target address from master
|
257 |
|
|
reg [D_WD-1:0] wbd_dout_master_t[WB_MASTER-1:0]; // target address from master
|
258 |
|
|
wire [ADR_WD-1:0] wbd_adr_master_t[WB_MASTER-1:0]; // target address from master
|
259 |
|
|
wire [BE_WD-1:0] wbd_be_master_t[WB_MASTER-1:0]; // target address from master
|
260 |
|
|
|
261 |
|
|
|
262 |
|
|
reg [WB_SLAVE-1:0] wbd_stb_slave;
|
263 |
|
|
reg [WB_SLAVE-1:0] wbd_we_slave;
|
264 |
|
|
reg [WB_SLAVE-1:0] wbd_cyc_slave;
|
265 |
|
|
wire [D_WD-1:0] wbd_dout_slave_t[WB_SLAVE-1:0]; // target data towards master
|
266 |
|
|
|
267 |
|
|
|
268 |
|
|
reg [D_WD-1:0] wbd_din_slave_t[WB_SLAVE-1:0]; // target address from master
|
269 |
|
|
reg [ADR_WD-1:0] wbd_adr_slave_t[WB_SLAVE-1:0]; // target address from master
|
270 |
|
|
reg [BE_WD-1:0] wbd_be_slave_t[WB_SLAVE-1:0]; // target address from master
|
271 |
|
|
|
272 |
|
|
integer i,k,l;
|
273 |
|
|
|
274 |
|
|
|
275 |
|
|
/**********************************************************
|
276 |
|
|
Re-Arraging the array in seperate two dimensional information
|
277 |
|
|
***********************************************************/
|
278 |
|
|
|
279 |
|
|
genvar j,m;
|
280 |
|
|
generate
|
281 |
|
|
|
282 |
|
|
// Connect the Master Mux
|
283 |
|
|
for(j=0; j < WB_MASTER ; j = j + 1) begin : master_expand
|
284 |
|
|
assign wbd_taddr_master_t[j] = wbd_taddr_master[((j+1)*TAR_WD)-1:j * TAR_WD];
|
285 |
|
|
assign wbd_din_master_t[j] = wbd_din_master[((j+1)*D_WD)-1:j * D_WD];
|
286 |
|
|
assign wbd_adr_master_t[j] = wbd_adr_master[((j+1)*ADR_WD)-1:j * ADR_WD];
|
287 |
|
|
assign wbd_be_master_t[j] = wbd_be_master[((j+1)*BE_WD)-1:j * BE_WD];
|
288 |
|
|
|
289 |
|
|
assign wbd_dout_master[((j+1)*D_WD)-1:j * D_WD] = wbd_dout_master_t[j];
|
290 |
|
|
end
|
291 |
|
|
|
292 |
|
|
// Connect the Slave Mux
|
293 |
|
|
for(m=0; m < WB_SLAVE ; m = m + 1) begin : slave_expand
|
294 |
|
|
assign wbd_din_slave[((m+1)*D_WD)-1:m * D_WD] = wbd_din_slave_t[m];
|
295 |
|
|
assign wbd_adr_slave[((m+1)*ADR_WD)-1:m * ADR_WD] = wbd_adr_slave_t[m];
|
296 |
|
|
assign wbd_be_slave[((m+1)*BE_WD)-1:m * BE_WD] = wbd_be_slave_t[m];
|
297 |
|
|
|
298 |
|
|
assign wbd_dout_slave_t[m] = wbd_dout_slave[((m+1)*D_WD)-1:m * D_WD];
|
299 |
|
|
|
300 |
|
|
end
|
301 |
|
|
endgenerate
|
302 |
|
|
|
303 |
|
|
always @* begin
|
304 |
|
|
for(k = 0; k < WB_MASTER; k = k + 1) begin
|
305 |
|
|
if(master_busy[k] == 1) begin
|
306 |
|
|
wbd_dout_master_t[k] = wbd_dout_slave_t[master_mx_id[k]];
|
307 |
|
|
wbd_ack_master[k] = wbd_ack_slave[master_mx_id[k]];
|
308 |
|
|
wbd_err_master[k] = wbd_err_slave[master_mx_id[k]];
|
309 |
|
|
wbd_rty_master[k] = wbd_rty_slave[master_mx_id[k]];
|
310 |
|
|
end else begin
|
311 |
|
|
wbd_dout_master_t[k] = 0;
|
312 |
|
|
wbd_ack_master[k] = 0;
|
313 |
|
|
wbd_err_master[k] = 0;
|
314 |
|
|
wbd_rty_master[k] = 0;
|
315 |
|
|
end
|
316 |
|
|
end
|
317 |
|
|
for(l = 0; l < WB_SLAVE; l = l + 1) begin
|
318 |
|
|
if(slave_busy[l] == 1) begin
|
319 |
|
|
wbd_din_slave_t[l] = wbd_din_master_t[slave_mx_id[l]];
|
320 |
|
|
wbd_adr_slave_t[l] = wbd_adr_master_t[slave_mx_id[l]];
|
321 |
|
|
wbd_be_slave_t[l] = wbd_be_master_t[slave_mx_id[l]];
|
322 |
|
|
wbd_stb_slave[l] = wbd_stb_master[slave_mx_id[l]];
|
323 |
|
|
wbd_we_slave[l] = wbd_we_master[slave_mx_id[l]];
|
324 |
|
|
wbd_cyc_slave[l] = wbd_cyc_master[slave_mx_id[l]];
|
325 |
|
|
end else begin
|
326 |
|
|
wbd_din_slave_t[l] = 0;
|
327 |
|
|
wbd_adr_slave_t[l] = 0;
|
328 |
|
|
wbd_be_slave_t[l] = 0;
|
329 |
|
|
wbd_stb_slave[l] = 0;
|
330 |
|
|
wbd_we_slave[l] = 0;
|
331 |
|
|
wbd_cyc_slave[l] = 0;
|
332 |
|
|
end
|
333 |
|
|
end
|
334 |
|
|
end
|
335 |
|
|
|
336 |
|
|
/*******************************************************
|
337 |
|
|
Parsing through the master and deciding on mux connectio
|
338 |
|
|
Step-1: analysis the master from 0 to total master
|
339 |
|
|
Step-2: If the previously master is not busy,
|
340 |
|
|
Then check for any new request from the master and
|
341 |
|
|
check corresponding slave is free or not. If there is
|
342 |
|
|
master request and requesting slave is free.
|
343 |
|
|
Then set the master max id to slave id &
|
344 |
|
|
requesting slave to master number & set the master
|
345 |
|
|
and slave busy flag
|
346 |
|
|
Step-3: If the previous state of master is busy and bus-cycle
|
347 |
|
|
is de-asserted, then reset the master and corresponding
|
348 |
|
|
slave busy flag
|
349 |
|
|
|
350 |
|
|
*********************************************************/
|
351 |
|
|
|
352 |
|
|
always @(negedge rst_n or posedge clk) begin
|
353 |
|
|
if(rst_n == 0) begin
|
354 |
|
|
master_busy <= 0;
|
355 |
|
|
slave_busy <= 0;
|
356 |
|
|
end
|
357 |
|
|
else begin
|
358 |
|
|
for(i = 0; i < WB_MASTER; i = i + 1) begin
|
359 |
|
|
cur_target_id = wbd_taddr_master_t[i];
|
360 |
|
|
if(master_busy[i] == 0) begin
|
361 |
|
|
if(wbd_stb_master[i] & slave_busy[cur_target_id] == 0) begin
|
362 |
|
|
master_mx_id[i] = cur_target_id;
|
363 |
|
|
slave_mx_id [cur_target_id] = i;
|
364 |
|
|
slave_busy[cur_target_id] = 1;
|
365 |
|
|
master_busy[i] = 1;
|
366 |
|
|
// synopsys translate_off
|
367 |
|
|
$display("%m:%t: Locking Master : %d with Slave : %d",$time,i,cur_target_id);
|
368 |
|
|
// synopsys translate_on
|
369 |
|
|
end
|
370 |
|
|
end else if(wbd_cyc_master[i] == 0) begin
|
371 |
|
|
master_busy[i] = 0;
|
372 |
|
|
slave_busy[cur_target_id] = 0;
|
373 |
|
|
end
|
374 |
|
|
end
|
375 |
|
|
end
|
376 |
|
|
end
|
377 |
|
|
|
378 |
|
|
|
379 |
|
|
|
380 |
|
|
endmodule
|