| 1 |
16 |
HanySalah |
//----------------------------------------------------------------------
|
| 2 |
|
|
// Copyright 2010-2011 Synopsys, Inc.
|
| 3 |
|
|
// Copyright 2011 Mentor Graphics Corporation
|
| 4 |
|
|
// All Rights Reserved Worldwide
|
| 5 |
|
|
//
|
| 6 |
|
|
// Licensed under the Apache License, Version 2.0 (the
|
| 7 |
|
|
// "License"); you may not use this file except in
|
| 8 |
|
|
// compliance with the License. You may obtain a copy of
|
| 9 |
|
|
// the License at
|
| 10 |
|
|
//
|
| 11 |
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
| 12 |
|
|
//
|
| 13 |
|
|
// Unless required by applicable law or agreed to in
|
| 14 |
|
|
// writing, software distributed under the License is
|
| 15 |
|
|
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
| 16 |
|
|
// CONDITIONS OF ANY KIND, either express or implied. See
|
| 17 |
|
|
// the License for the specific language governing
|
| 18 |
|
|
// permissions and limitations under the License.
|
| 19 |
|
|
//----------------------------------------------------------------------
|
| 20 |
|
|
|
| 21 |
|
|
// CLASS: uvm_tlm_time
|
| 22 |
|
|
// Canonical time type that can be used in different timescales
|
| 23 |
|
|
//
|
| 24 |
|
|
// This time type is used to represent time values in a canonical
|
| 25 |
|
|
// form that can bridge initiators and targets located in different
|
| 26 |
|
|
// timescales and time precisions.
|
| 27 |
|
|
//
|
| 28 |
|
|
// For a detailed explanation of the purpose for this class,
|
| 29 |
|
|
// see .
|
| 30 |
|
|
//
|
| 31 |
|
|
class uvm_tlm_time;
|
| 32 |
|
|
|
| 33 |
|
|
static local real m_resolution = 1.0e-12; // ps by default
|
| 34 |
|
|
local real m_res;
|
| 35 |
|
|
local time m_time; // Number of 'm_res' time units,
|
| 36 |
|
|
local string m_name;
|
| 37 |
|
|
|
| 38 |
|
|
// Function: set_time_resolution
|
| 39 |
|
|
// Set the default canonical time resolution.
|
| 40 |
|
|
//
|
| 41 |
|
|
// Must be a power of 10.
|
| 42 |
|
|
// When co-simulating with SystemC, it is recommended
|
| 43 |
|
|
// that default canonical time resolution be set to the
|
| 44 |
|
|
// SystemC time resolution.
|
| 45 |
|
|
//
|
| 46 |
|
|
// By default, the default resolution is 1.0e-12 (ps)
|
| 47 |
|
|
//
|
| 48 |
|
|
static function void set_time_resolution(real res);
|
| 49 |
|
|
// Actually, it does not *really* need to be a power of 10.
|
| 50 |
|
|
m_resolution = res;
|
| 51 |
|
|
endfunction
|
| 52 |
|
|
|
| 53 |
|
|
// Function: new
|
| 54 |
|
|
// Create a new canonical time value.
|
| 55 |
|
|
//
|
| 56 |
|
|
// The new value is initialized to 0.
|
| 57 |
|
|
// If a resolution is not specified,
|
| 58 |
|
|
// the default resolution,
|
| 59 |
|
|
// as specified by ,
|
| 60 |
|
|
// is used.
|
| 61 |
|
|
function new(string name = "uvm_tlm_time", real res = 0);
|
| 62 |
|
|
m_name = name;
|
| 63 |
|
|
m_res = (res == 0) ? m_resolution : res;
|
| 64 |
|
|
reset();
|
| 65 |
|
|
endfunction
|
| 66 |
|
|
|
| 67 |
|
|
|
| 68 |
|
|
// Function: get_name
|
| 69 |
|
|
// Return the name of this instance
|
| 70 |
|
|
//
|
| 71 |
|
|
function string get_name();
|
| 72 |
|
|
return m_name;
|
| 73 |
|
|
endfunction
|
| 74 |
|
|
|
| 75 |
|
|
|
| 76 |
|
|
// Function: reset
|
| 77 |
|
|
// Reset the value to 0
|
| 78 |
|
|
function void reset();
|
| 79 |
|
|
m_time = 0;
|
| 80 |
|
|
endfunction
|
| 81 |
|
|
|
| 82 |
|
|
|
| 83 |
|
|
// Scale a timescaled value to 'm_res' units,
|
| 84 |
|
|
// the specified scale
|
| 85 |
|
|
local function real to_m_res(real t, time scaled, real secs);
|
| 86 |
|
|
// ToDo: Check resolution
|
| 87 |
|
|
return t/real'(scaled) * (secs/m_res);
|
| 88 |
|
|
endfunction
|
| 89 |
|
|
|
| 90 |
|
|
|
| 91 |
|
|
// Function: get_realtime
|
| 92 |
|
|
// Return the current canonical time value,
|
| 93 |
|
|
// scaled for the caller's timescale
|
| 94 |
|
|
//
|
| 95 |
|
|
// ~scaled~ must be a time literal value that corresponds
|
| 96 |
|
|
// to the number of seconds specified in ~secs~ (1ns by default).
|
| 97 |
|
|
// It must be a time literal value that is greater or equal
|
| 98 |
|
|
// to the current timescale.
|
| 99 |
|
|
//
|
| 100 |
|
|
//| #(delay.get_realtime(1ns));
|
| 101 |
|
|
//| #(delay.get_realtime(1fs, 1.0e-15));
|
| 102 |
|
|
//
|
| 103 |
|
|
function real get_realtime(time scaled, real secs = 1.0e-9);
|
| 104 |
|
|
return m_time*real'(scaled) * m_res/secs;
|
| 105 |
|
|
endfunction
|
| 106 |
|
|
|
| 107 |
|
|
|
| 108 |
|
|
// Function: incr
|
| 109 |
|
|
// Increment the time value by the specified number of scaled time unit
|
| 110 |
|
|
//
|
| 111 |
|
|
// ~t~ is a time value expressed in the scale and precision
|
| 112 |
|
|
// of the caller.
|
| 113 |
|
|
// ~scaled~ must be a time literal value that corresponds
|
| 114 |
|
|
// to the number of seconds specified in ~secs~ (1ns by default).
|
| 115 |
|
|
// It must be a time literal value that is greater or equal
|
| 116 |
|
|
// to the current timescale.
|
| 117 |
|
|
//
|
| 118 |
|
|
//| delay.incr(1.5ns, 1ns);
|
| 119 |
|
|
//| delay.incr(1.5ns, 1ps, 1.0e-12);
|
| 120 |
|
|
//
|
| 121 |
|
|
function void incr(real t, time scaled, real secs = 1.0e-9);
|
| 122 |
|
|
if (t < 0.0) begin
|
| 123 |
|
|
`uvm_error("UVM/TLM/TIMENEG", {"Cannot increment uvm_tlm_time variable ", m_name, " by a negative value"});
|
| 124 |
|
|
return;
|
| 125 |
|
|
end
|
| 126 |
|
|
if (scaled == 0) begin
|
| 127 |
|
|
`uvm_fatal("UVM/TLM/BADSCALE",
|
| 128 |
|
|
"uvm_tlm_time::incr() called with a scaled time literal that is smaller than the current timescale")
|
| 129 |
|
|
end
|
| 130 |
|
|
|
| 131 |
|
|
m_time += to_m_res(t, scaled, secs);
|
| 132 |
|
|
endfunction
|
| 133 |
|
|
|
| 134 |
|
|
|
| 135 |
|
|
// Function: decr
|
| 136 |
|
|
// Decrement the time value by the specified number of scaled time unit
|
| 137 |
|
|
//
|
| 138 |
|
|
// ~t~ is a time value expressed in the scale and precision
|
| 139 |
|
|
// of the caller.
|
| 140 |
|
|
// ~scaled~ must be a time literal value that corresponds
|
| 141 |
|
|
// to the number of seconds specified in ~secs~ (1ns by default).
|
| 142 |
|
|
// It must be a time literal value that is greater or equal
|
| 143 |
|
|
// to the current timescale.
|
| 144 |
|
|
//
|
| 145 |
|
|
//| delay.decr(200ps, 1ns);
|
| 146 |
|
|
//
|
| 147 |
|
|
function void decr(real t, time scaled, real secs);
|
| 148 |
|
|
if (t < 0.0) begin
|
| 149 |
|
|
`uvm_error("UVM/TLM/TIMENEG", {"Cannot decrement uvm_tlm_time variable ", m_name, " by a negative value"});
|
| 150 |
|
|
return;
|
| 151 |
|
|
end
|
| 152 |
|
|
if (scaled == 0) begin
|
| 153 |
|
|
`uvm_fatal("UVM/TLM/BADSCALE",
|
| 154 |
|
|
"uvm_tlm_time::decr() called with a scaled time literal that is smaller than the current timescale")
|
| 155 |
|
|
end
|
| 156 |
|
|
|
| 157 |
|
|
m_time -= to_m_res(t, scaled, secs);
|
| 158 |
|
|
|
| 159 |
|
|
if (m_time < 0.0) begin
|
| 160 |
|
|
`uvm_error("UVM/TLM/TOODECR", {"Cannot decrement uvm_tlm_time variable ", m_name, " to a negative value"});
|
| 161 |
|
|
reset();
|
| 162 |
|
|
end
|
| 163 |
|
|
endfunction
|
| 164 |
|
|
|
| 165 |
|
|
|
| 166 |
|
|
// Function: get_abstime
|
| 167 |
|
|
// Return the current canonical time value,
|
| 168 |
|
|
// in the number of specified time unit, regardless of the
|
| 169 |
|
|
// current timescale of the caller.
|
| 170 |
|
|
//
|
| 171 |
|
|
// ~secs~ is the number of seconds in the desired time unit
|
| 172 |
|
|
// e.g. 1e-9 for nanoseconds.
|
| 173 |
|
|
//
|
| 174 |
|
|
//| $write("%.3f ps\n", delay.get_abstime(1e-12));
|
| 175 |
|
|
//
|
| 176 |
|
|
function real get_abstime(real secs);
|
| 177 |
|
|
return m_time*m_res/secs;
|
| 178 |
|
|
endfunction
|
| 179 |
|
|
|
| 180 |
|
|
|
| 181 |
|
|
// Function: set_abstime
|
| 182 |
|
|
// Set the current canonical time value,
|
| 183 |
|
|
// to the number of specified time unit, regardless of the
|
| 184 |
|
|
// current timescale of the caller.
|
| 185 |
|
|
//
|
| 186 |
|
|
// ~secs~ is the number of seconds in the time unit in the value ~t~
|
| 187 |
|
|
// e.g. 1e-9 for nanoseconds.
|
| 188 |
|
|
//
|
| 189 |
|
|
//| delay.set_abstime(1.5, 1e-12));
|
| 190 |
|
|
//
|
| 191 |
|
|
function void set_abstime(real t, real secs);
|
| 192 |
|
|
m_time = t*secs/m_res;
|
| 193 |
|
|
endfunction
|
| 194 |
|
|
endclass
|
| 195 |
|
|
|
| 196 |
|
|
|
| 197 |
|
|
// Group: Why is this necessary
|
| 198 |
|
|
//
|
| 199 |
|
|
// Integers are not sufficient, on their own,
|
| 200 |
|
|
// to represent time without any ambiguity:
|
| 201 |
|
|
// you need to know the scale of that integer value.
|
| 202 |
|
|
// That scale is information conveyed outside of that integer.
|
| 203 |
|
|
// In SystemVerilog, it is based on the timescale
|
| 204 |
|
|
// that was active when the code was compiled.
|
| 205 |
|
|
// SystemVerilog properly scales time literals, but not integer values.
|
| 206 |
|
|
// That's because it does not know the difference between an integer
|
| 207 |
|
|
// that carries an integer value and an integer that carries a time value.
|
| 208 |
|
|
// The 'time' variables are simply 64-bit integers,
|
| 209 |
|
|
// they are not scaled back and forth to the underlying precision.
|
| 210 |
|
|
//
|
| 211 |
|
|
//| `timescale 1ns/1ps
|
| 212 |
|
|
//|
|
| 213 |
|
|
//| module m();
|
| 214 |
|
|
//|
|
| 215 |
|
|
//| time t;
|
| 216 |
|
|
//|
|
| 217 |
|
|
//| initial
|
| 218 |
|
|
//| begin
|
| 219 |
|
|
//| #1.5;
|
| 220 |
|
|
//| $write("T=%f ns (1.5)\n", $realtime());
|
| 221 |
|
|
//| t = 1.5;
|
| 222 |
|
|
//| #t;
|
| 223 |
|
|
//| $write("T=%f ns (3.0)\n", $realtime());
|
| 224 |
|
|
//| #10ps;
|
| 225 |
|
|
//| $write("T=%f ns (3.010)\n", $realtime());
|
| 226 |
|
|
//| t = 10ps;
|
| 227 |
|
|
//| #t;
|
| 228 |
|
|
//| $write("T=%f ns (3.020)\n", $realtime());
|
| 229 |
|
|
//| end
|
| 230 |
|
|
//| endmodule
|
| 231 |
|
|
//
|
| 232 |
|
|
// yields
|
| 233 |
|
|
//
|
| 234 |
|
|
//| T=1.500000 ns (1.5)
|
| 235 |
|
|
//| T=3.500000 ns (3.0)
|
| 236 |
|
|
//| T=3.510000 ns (3.010)
|
| 237 |
|
|
//| T=3.510000 ns (3.020)
|
| 238 |
|
|
//
|
| 239 |
|
|
// Within SystemVerilog, we have to worry about
|
| 240 |
|
|
// - different time scale
|
| 241 |
|
|
// - different time precision
|
| 242 |
|
|
//
|
| 243 |
|
|
// Because each endpoint in a socket
|
| 244 |
|
|
// could be coded in different packages
|
| 245 |
|
|
// and thus be executing under different timescale directives,
|
| 246 |
|
|
// a simple integer cannot be used to exchange time information
|
| 247 |
|
|
// across a socket.
|
| 248 |
|
|
//
|
| 249 |
|
|
// For example
|
| 250 |
|
|
//
|
| 251 |
|
|
//| `timescale 1ns/1ps
|
| 252 |
|
|
//|
|
| 253 |
|
|
//| package a_pkg;
|
| 254 |
|
|
//|
|
| 255 |
|
|
//| class a;
|
| 256 |
|
|
//| function void f(inout time t);
|
| 257 |
|
|
//| t += 10ns;
|
| 258 |
|
|
//| endfunction
|
| 259 |
|
|
//| endclass
|
| 260 |
|
|
//|
|
| 261 |
|
|
//| endpackage
|
| 262 |
|
|
//|
|
| 263 |
|
|
//|
|
| 264 |
|
|
//| `timescale 1ps/1ps
|
| 265 |
|
|
//|
|
| 266 |
|
|
//| program p;
|
| 267 |
|
|
//|
|
| 268 |
|
|
//| import a_pkg::*;
|
| 269 |
|
|
//|
|
| 270 |
|
|
//| time t;
|
| 271 |
|
|
//|
|
| 272 |
|
|
//| initial
|
| 273 |
|
|
//| begin
|
| 274 |
|
|
//| a A = new;
|
| 275 |
|
|
//| A.f(t);
|
| 276 |
|
|
//| #t;
|
| 277 |
|
|
//| $write("T=%0d ps (10,000)\n", $realtime());
|
| 278 |
|
|
//| end
|
| 279 |
|
|
//| endprogram
|
| 280 |
|
|
//
|
| 281 |
|
|
// yields
|
| 282 |
|
|
//
|
| 283 |
|
|
//| T=10 ps (10,000)
|
| 284 |
|
|
//
|
| 285 |
|
|
// Scaling is needed every time you make a procedural call
|
| 286 |
|
|
// to code that may interpret a time value in a different timescale.
|
| 287 |
|
|
//
|
| 288 |
|
|
// Using the uvm_tlm_time type
|
| 289 |
|
|
//
|
| 290 |
|
|
//| `timescale 1ns/1ps
|
| 291 |
|
|
//|
|
| 292 |
|
|
//| package a_pkg;
|
| 293 |
|
|
//|
|
| 294 |
|
|
//| import uvm_pkg::*;
|
| 295 |
|
|
//|
|
| 296 |
|
|
//| class a;
|
| 297 |
|
|
//| function void f(uvm_tlm_time t);
|
| 298 |
|
|
//| t.incr(10ns, 1ns);
|
| 299 |
|
|
//| endfunction
|
| 300 |
|
|
//| endclass
|
| 301 |
|
|
//|
|
| 302 |
|
|
//| endpackage
|
| 303 |
|
|
//|
|
| 304 |
|
|
//|
|
| 305 |
|
|
//| `timescale 1ps/1ps
|
| 306 |
|
|
//|
|
| 307 |
|
|
//| program p;
|
| 308 |
|
|
//|
|
| 309 |
|
|
//| import uvm_pkg::*;
|
| 310 |
|
|
//| import a_pkg::*;
|
| 311 |
|
|
//|
|
| 312 |
|
|
//| uvm_tlm_time t = new;
|
| 313 |
|
|
//|
|
| 314 |
|
|
//| initial
|
| 315 |
|
|
//| begin
|
| 316 |
|
|
//| a A = new;
|
| 317 |
|
|
//| A.f(t);
|
| 318 |
|
|
//| #(t.get_realtime(1ns));
|
| 319 |
|
|
//| $write("T=%0d ps (10,000)\n", $realtime());
|
| 320 |
|
|
//| end
|
| 321 |
|
|
//| endprogram
|
| 322 |
|
|
//
|
| 323 |
|
|
// yields
|
| 324 |
|
|
//
|
| 325 |
|
|
//| T=10000 ps (10,000)
|
| 326 |
|
|
//
|
| 327 |
|
|
// A similar procedure is required when crossing any simulator
|
| 328 |
|
|
// or language boundary,
|
| 329 |
|
|
// such as interfacing between SystemVerilog and SystemC.
|
| 330 |
|
|
|
| 331 |
|
|
|
| 332 |
|
|
|