1 |
35 |
pjf |
--------------------------------------------------------------------------------
|
2 |
|
|
-- Title : Receiver FIFO with AxiStream interfaces
|
3 |
|
|
-- Project : Tri-Mode Ethernet MAC
|
4 |
|
|
--------------------------------------------------------------------------------
|
5 |
|
|
-- File : rx_client_fifo.vhd
|
6 |
|
|
-- Author : Xilinx Inc.
|
7 |
|
|
-- Project : Virtex-6 Embedded Tri-Mode Ethernet MAC Wrapper
|
8 |
|
|
-- File : rx_client_fifo.vhd
|
9 |
|
|
-- Version : 2.1
|
10 |
|
|
-------------------------------------------------------------------------------
|
11 |
|
|
--
|
12 |
|
|
-- (c) Copyright 2004-2008 Xilinx, Inc. All rights reserved.
|
13 |
|
|
--
|
14 |
|
|
-- This file contains confidential and proprietary information
|
15 |
|
|
-- of Xilinx, Inc. and is protected under U.S. and
|
16 |
|
|
-- international copyright and other intellectual property
|
17 |
|
|
-- laws.
|
18 |
|
|
--
|
19 |
|
|
-- DISCLAIMER
|
20 |
|
|
-- This disclaimer is not a license and does not grant any
|
21 |
|
|
-- rights to the materials distributed herewith. Except as
|
22 |
|
|
-- otherwise provided in a valid license issued to you by
|
23 |
|
|
-- Xilinx, and to the maximum extent permitted by applicable
|
24 |
|
|
-- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
|
25 |
|
|
-- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
|
26 |
|
|
-- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
|
27 |
|
|
-- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
|
28 |
|
|
-- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
|
29 |
|
|
-- (2) Xilinx shall not be liable (whether in contract or tort,
|
30 |
|
|
-- including negligence, or under any other theory of
|
31 |
|
|
-- liability) for any loss or damage of any kind or nature
|
32 |
|
|
-- related to, arising under or in connection with these
|
33 |
|
|
-- materials, including for any direct, or any indirect,
|
34 |
|
|
-- special, incidental, or consequential loss or damage
|
35 |
|
|
-- (including loss of data, profits, goodwill, or any type of
|
36 |
|
|
-- loss or damage suffered as a result of any action brought
|
37 |
|
|
-- by a third party) even if such damage or loss was
|
38 |
|
|
-- reasonably foreseeable or Xilinx had been advised of the
|
39 |
|
|
-- possibility of the same.
|
40 |
|
|
--
|
41 |
|
|
-- CRITICAL APPLICATIONS
|
42 |
|
|
-- Xilinx products are not designed or intended to be fail-
|
43 |
|
|
-- safe, or for use in any application requiring fail-safe
|
44 |
|
|
-- performance, such as life-support or safety devices or
|
45 |
|
|
-- systems, Class III medical devices, nuclear facilities,
|
46 |
|
|
-- applications related to the deployment of airbags, or any
|
47 |
|
|
-- other applications that could lead to death, personal
|
48 |
|
|
-- injury, or severe property or environmental damage
|
49 |
|
|
-- (individually and collectively, "Critical
|
50 |
|
|
-- Applications"). Customer assumes the sole risk and
|
51 |
|
|
-- liability of any use of Xilinx products in Critical
|
52 |
|
|
-- Applications, subject only to applicable laws and
|
53 |
|
|
-- regulations governing limitations on product liability.
|
54 |
|
|
--
|
55 |
|
|
-- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
|
56 |
|
|
-- PART OF THIS FILE AT ALL TIMES.
|
57 |
|
|
--
|
58 |
|
|
-- Description: This is the receiver side FIFO for the design example
|
59 |
|
|
-- of the Tri-Mode Ethernet MAC core. AxiStream interfaces are used.
|
60 |
|
|
--
|
61 |
|
|
-- The FIFO is created from 2 Block RAMs of size 2048
|
62 |
|
|
-- words of 8-bits per word, giving a total frame memory capacity
|
63 |
|
|
-- of 4096 bytes.
|
64 |
|
|
--
|
65 |
|
|
-- Frame data received from the MAC receiver is written into the
|
66 |
|
|
-- FIFO on the rx_mac_aclk. An end-of-frame marker is written to
|
67 |
|
|
-- the BRAM parity bit on the last byte of data stored for a frame.
|
68 |
|
|
-- This acts as frame deliniation.
|
69 |
|
|
--
|
70 |
|
|
-- The rx_axis_mac_tvalid, rx_axis_mac_tlast, and rx_axis_mac_tuser signals
|
71 |
|
|
-- qualify the frame. A frame which ends with rx_axis_mac_tuser asserted
|
72 |
|
|
-- indicates a bad frame and will cause the FIFO write address
|
73 |
|
|
-- pointer to be reset to the base address of that frame. In this
|
74 |
|
|
-- way the bad frame will be overwritten with the next received
|
75 |
|
|
-- frame and is therefore dropped from the FIFO.
|
76 |
|
|
--
|
77 |
|
|
-- Frames will also be dropped from the FIFO if an overflow occurs.
|
78 |
|
|
-- If there is not enough memory capacity in the FIFO to store the
|
79 |
|
|
-- whole of an incoming frame, the write address pointer will be
|
80 |
|
|
-- reset and the overflow signal asserted.
|
81 |
|
|
--
|
82 |
|
|
-- When there is at least one complete frame in the FIFO,
|
83 |
|
|
-- the 8-bit AxiStream read interface's rx_axis_fifo_tvalid signal will
|
84 |
|
|
-- be enabled allowing data to be read from the FIFO.
|
85 |
|
|
--
|
86 |
|
|
-- The FIFO has been designed to operate with different clocks
|
87 |
|
|
-- on the write and read sides. The read clock (user side) should
|
88 |
|
|
-- always operate at an equal or faster frequency than the write
|
89 |
|
|
-- clock (MAC side).
|
90 |
|
|
--
|
91 |
|
|
-- The FIFO is designed to work with a minimum frame length of 8
|
92 |
|
|
-- bytes.
|
93 |
|
|
--
|
94 |
|
|
-- The FIFO memory size can be increased by expanding the rd_addr
|
95 |
|
|
-- and wr_addr signal widths, to address further BRAMs.
|
96 |
|
|
--
|
97 |
|
|
-- Requirements :
|
98 |
|
|
-- * Minimum frame size of 8 bytes
|
99 |
|
|
-- * Spacing between good/bad frame signaling (encoded by
|
100 |
|
|
-- rx_axis_mac_tvalid, rx_axis_mac_tlast, rx_axis_mac_tuser), is at least 64
|
101 |
|
|
-- clock cycles
|
102 |
|
|
-- * Write AxiStream clock is 125MHz downto 1.25MHz
|
103 |
|
|
-- * Read AxiStream clock equal to or faster than write clock,
|
104 |
|
|
-- and downto 20MHz
|
105 |
|
|
--
|
106 |
|
|
--------------------------------------------------------------------------------
|
107 |
|
|
|
108 |
|
|
library unisim;
|
109 |
|
|
use unisim.vcomponents.all;
|
110 |
|
|
|
111 |
|
|
library unimacro;
|
112 |
|
|
use unimacro.vcomponents.all;
|
113 |
|
|
|
114 |
|
|
library ieee;
|
115 |
|
|
use ieee.std_logic_1164.all;
|
116 |
|
|
use ieee.std_logic_unsigned.all;
|
117 |
|
|
use ieee.numeric_std.all;
|
118 |
|
|
|
119 |
|
|
|
120 |
|
|
--------------------------------------------------------------------------------
|
121 |
|
|
-- The entity declaration for the Receiver FIFO
|
122 |
|
|
--------------------------------------------------------------------------------
|
123 |
|
|
|
124 |
|
|
entity rx_client_fifo is
|
125 |
|
|
port (
|
126 |
|
|
-- User-side (read-side) AxiStream interface
|
127 |
|
|
rx_fifo_aclk : in std_logic;
|
128 |
|
|
rx_fifo_resetn : in std_logic;
|
129 |
|
|
rx_axis_fifo_tdata : out std_logic_vector(7 downto 0);
|
130 |
|
|
rx_axis_fifo_tvalid : out std_logic;
|
131 |
|
|
rx_axis_fifo_tlast : out std_logic;
|
132 |
|
|
rx_axis_fifo_tready : in std_logic;
|
133 |
|
|
|
134 |
|
|
-- MAC-side (write-side) AxiStream interface
|
135 |
|
|
rx_mac_aclk : in std_logic;
|
136 |
|
|
rx_mac_resetn : in std_logic;
|
137 |
|
|
rx_axis_mac_tdata : in std_logic_vector(7 downto 0);
|
138 |
|
|
rx_axis_mac_tvalid : in std_logic;
|
139 |
|
|
rx_axis_mac_tlast : in std_logic;
|
140 |
|
|
rx_axis_mac_tready : out std_logic;
|
141 |
|
|
rx_axis_mac_tuser : in std_logic;
|
142 |
|
|
|
143 |
|
|
-- FIFO status and overflow indication,
|
144 |
|
|
-- synchronous to write-side (rx_mac_aclk) interface
|
145 |
|
|
fifo_status : out std_logic_vector(3 downto 0);
|
146 |
|
|
fifo_overflow : out std_logic
|
147 |
|
|
);
|
148 |
|
|
end rx_client_fifo;
|
149 |
|
|
|
150 |
|
|
|
151 |
|
|
architecture RTL of rx_client_fifo is
|
152 |
|
|
|
153 |
|
|
|
154 |
|
|
------------------------------------------------------------------------------
|
155 |
|
|
-- Component declaration for the synchronisation flip-flop pair
|
156 |
|
|
------------------------------------------------------------------------------
|
157 |
|
|
component sync_block
|
158 |
|
|
port (
|
159 |
|
|
clk : in std_logic;
|
160 |
|
|
data_in : in std_logic;
|
161 |
|
|
data_out : out std_logic
|
162 |
|
|
);
|
163 |
|
|
end component;
|
164 |
|
|
|
165 |
|
|
|
166 |
|
|
------------------------------------------------------------------------------
|
167 |
|
|
-- Define internal signals
|
168 |
|
|
------------------------------------------------------------------------------
|
169 |
|
|
|
170 |
|
|
signal VCC : std_logic;
|
171 |
|
|
signal GND_BUS : std_logic_vector(8 downto 0);
|
172 |
|
|
signal GND : std_logic_vector(0 downto 0);
|
173 |
|
|
|
174 |
|
|
-- Encoded read state machine states
|
175 |
|
|
type rd_state_typ is (WAIT_s,
|
176 |
|
|
QUEUE1_s,
|
177 |
|
|
QUEUE2_s,
|
178 |
|
|
QUEUE3_s,
|
179 |
|
|
QUEUE_SOF_s,
|
180 |
|
|
SOF_s,
|
181 |
|
|
DATA_s,
|
182 |
|
|
EOF_s);
|
183 |
|
|
|
184 |
|
|
signal rd_state : rd_state_typ;
|
185 |
|
|
signal rd_nxt_state : rd_state_typ;
|
186 |
|
|
|
187 |
|
|
-- Encoded write state machine states
|
188 |
|
|
type wr_state_typ is (IDLE_s,
|
189 |
|
|
FRAME_s,
|
190 |
|
|
GF_s,
|
191 |
|
|
BF_s,
|
192 |
|
|
OVFLOW_s);
|
193 |
|
|
|
194 |
|
|
signal wr_state : wr_state_typ;
|
195 |
|
|
signal wr_nxt_state : wr_state_typ;
|
196 |
|
|
|
197 |
|
|
type data_pipe is array (0 to 1) of std_logic_vector(7 downto 0);
|
198 |
|
|
type cntl_pipe_long is array(0 to 2) of std_logic;
|
199 |
|
|
type cntl_pipe_short is array(0 to 1) of std_logic;
|
200 |
|
|
|
201 |
|
|
signal wr_en : std_logic;
|
202 |
|
|
signal wr_en_u : std_logic;
|
203 |
|
|
signal wr_en_u_bram : std_logic_vector(0 downto 0);
|
204 |
|
|
signal wr_en_l : std_logic;
|
205 |
|
|
signal wr_en_l_bram : std_logic_vector(0 downto 0);
|
206 |
|
|
signal wr_addr : unsigned(11 downto 0);
|
207 |
|
|
signal wr_addr_inc : std_logic;
|
208 |
|
|
signal wr_start_addr_load : std_logic;
|
209 |
|
|
signal wr_addr_reload : std_logic;
|
210 |
|
|
signal wr_start_addr : unsigned(11 downto 0);
|
211 |
|
|
signal wr_eof_data_bram : std_logic_vector(8 downto 0);
|
212 |
|
|
signal wr_data_bram : std_logic_vector(7 downto 0);
|
213 |
|
|
signal wr_data_pipe : data_pipe;
|
214 |
|
|
signal wr_dv_pipe : cntl_pipe_long;
|
215 |
|
|
signal wr_gfbf_pipe : cntl_pipe_short;
|
216 |
|
|
signal wr_gf : std_logic;
|
217 |
|
|
signal wr_bf : std_logic;
|
218 |
|
|
signal wr_eof_bram_pipe : cntl_pipe_short;
|
219 |
|
|
signal wr_eof_bram : std_logic;
|
220 |
|
|
signal frame_in_fifo : std_logic;
|
221 |
|
|
|
222 |
|
|
signal rd_addr : unsigned(11 downto 0);
|
223 |
|
|
signal rd_addr_inc : std_logic;
|
224 |
|
|
signal rd_addr_reload : std_logic;
|
225 |
|
|
signal rd_eof_data_bram_u : std_logic_vector(8 downto 0);
|
226 |
|
|
signal rd_eof_data_bram_l : std_logic_vector(8 downto 0);
|
227 |
|
|
signal rd_data_bram_u : std_logic_vector(7 downto 0);
|
228 |
|
|
signal rd_data_bram_l : std_logic_vector(7 downto 0);
|
229 |
|
|
signal rd_data_pipe_u : std_logic_vector(7 downto 0);
|
230 |
|
|
signal rd_data_pipe_l : std_logic_vector(7 downto 0);
|
231 |
|
|
signal rd_data_pipe : std_logic_vector(7 downto 0);
|
232 |
|
|
signal rd_valid_pipe : std_logic_vector(1 downto 0);
|
233 |
|
|
signal rd_eof_bram_u : std_logic_vector(0 downto 0);
|
234 |
|
|
signal rd_eof_bram_l : std_logic_vector(0 downto 0);
|
235 |
|
|
signal rd_en : std_logic;
|
236 |
|
|
signal rd_bram_u : std_logic;
|
237 |
|
|
signal rd_bram_u_reg : std_logic;
|
238 |
|
|
signal rd_pull_frame : std_logic;
|
239 |
|
|
signal rd_eof : std_logic;
|
240 |
|
|
|
241 |
|
|
signal wr_store_frame_tog : std_logic := '0';
|
242 |
|
|
signal rd_store_frame_sync : std_logic;
|
243 |
|
|
signal rd_store_frame_delay : std_logic := '0';
|
244 |
|
|
signal rd_store_frame : std_logic;
|
245 |
|
|
signal rd_frames : std_logic_vector(8 downto 0);
|
246 |
|
|
signal wr_fifo_full : std_logic;
|
247 |
|
|
|
248 |
|
|
signal old_rd_addr : std_logic_vector(1 downto 0);
|
249 |
|
|
signal update_addr_tog : std_logic;
|
250 |
|
|
signal update_addr_tog_sync : std_logic;
|
251 |
|
|
signal update_addr_tog_sync_reg : std_logic;
|
252 |
|
|
|
253 |
|
|
signal wr_rd_addr : unsigned(11 downto 0);
|
254 |
|
|
signal wr_addr_diff_in : unsigned(12 downto 0);
|
255 |
|
|
signal wr_addr_diff : unsigned(11 downto 0);
|
256 |
|
|
|
257 |
|
|
signal wr_fifo_status : unsigned(3 downto 0);
|
258 |
|
|
signal rx_axis_fifo_tlast_int : std_logic;
|
259 |
|
|
|
260 |
|
|
signal doa_l_unused : std_logic_vector(8 downto 0);
|
261 |
|
|
signal doa_u_unused : std_logic_vector(8 downto 0);
|
262 |
|
|
|
263 |
|
|
signal rx_fifo_reset : std_logic;
|
264 |
|
|
signal rx_mac_reset : std_logic;
|
265 |
|
|
|
266 |
|
|
|
267 |
|
|
--------------------------------------------------------------------------------
|
268 |
|
|
-- Begin FIFO architecture
|
269 |
|
|
--------------------------------------------------------------------------------
|
270 |
|
|
|
271 |
|
|
begin
|
272 |
|
|
|
273 |
|
|
VCC <= '1';
|
274 |
|
|
GND_BUS <= (others => '0');
|
275 |
|
|
GND(0) <= GND_BUS(0);
|
276 |
|
|
|
277 |
|
|
-- invert reset sense as architecture is optimised for active high resets
|
278 |
|
|
rx_fifo_reset <= not rx_fifo_resetn;
|
279 |
|
|
rx_mac_reset <= not rx_mac_resetn;
|
280 |
|
|
|
281 |
|
|
------------------------------------------------------------------------------
|
282 |
|
|
-- Read state machines and control
|
283 |
|
|
------------------------------------------------------------------------------
|
284 |
|
|
|
285 |
|
|
-- Read state machine.
|
286 |
|
|
-- States are WAIT, QUEUE1, QUEUE2, QUEUE3, QUEUE_SOF, SOF, DATA, EOF.
|
287 |
|
|
-- Clock state to next state.
|
288 |
|
|
clock_rds_p : process(rx_fifo_aclk)
|
289 |
|
|
begin
|
290 |
|
|
if (rx_fifo_aclk'event and rx_fifo_aclk = '1') then
|
291 |
|
|
if rx_fifo_reset = '1' then
|
292 |
|
|
rd_state <= WAIT_s;
|
293 |
|
|
else
|
294 |
|
|
rd_state <= rd_nxt_state;
|
295 |
|
|
end if;
|
296 |
|
|
end if;
|
297 |
|
|
end process clock_rds_p;
|
298 |
|
|
|
299 |
|
|
rx_axis_fifo_tlast <= rx_axis_fifo_tlast_int;
|
300 |
|
|
|
301 |
|
|
-- Decode next state, combinatorial.
|
302 |
|
|
next_rds_p : process(rd_state, frame_in_fifo, rd_eof, rx_axis_fifo_tready,
|
303 |
|
|
rx_axis_fifo_tlast_int, rd_valid_pipe)
|
304 |
|
|
begin
|
305 |
|
|
case rd_state is
|
306 |
|
|
when WAIT_s =>
|
307 |
|
|
-- Wait until there is a full frame in the FIFO, then
|
308 |
|
|
-- start to load the pipeline.
|
309 |
|
|
if frame_in_fifo = '1' and rx_axis_fifo_tlast_int = '0' then
|
310 |
|
|
rd_nxt_state <= QUEUE1_s;
|
311 |
|
|
else
|
312 |
|
|
rd_nxt_state <= WAIT_s;
|
313 |
|
|
end if;
|
314 |
|
|
|
315 |
|
|
-- Load the output pipeline, which takes three clock cycles.
|
316 |
|
|
when QUEUE1_s =>
|
317 |
|
|
rd_nxt_state <= QUEUE2_s;
|
318 |
|
|
|
319 |
|
|
when QUEUE2_s =>
|
320 |
|
|
rd_nxt_state <= QUEUE3_s;
|
321 |
|
|
|
322 |
|
|
when QUEUE3_s =>
|
323 |
|
|
rd_nxt_state <= QUEUE_SOF_s;
|
324 |
|
|
|
325 |
|
|
when QUEUE_SOF_s =>
|
326 |
|
|
-- The pipeline is full and the frame output starts now.
|
327 |
|
|
rd_nxt_state <= DATA_s;
|
328 |
|
|
|
329 |
|
|
when SOF_s =>
|
330 |
|
|
-- A new frame begins immediately following end of last frame.
|
331 |
|
|
if rx_axis_fifo_tready = '1' then
|
332 |
|
|
rd_nxt_state <= DATA_s;
|
333 |
|
|
else
|
334 |
|
|
rd_nxt_state <= SOF_s;
|
335 |
|
|
end if;
|
336 |
|
|
|
337 |
|
|
when DATA_s =>
|
338 |
|
|
-- Read data from the FIFO. When the EOF marker is detected from
|
339 |
|
|
-- the BRAM output, move to the EOF state.
|
340 |
|
|
if rx_axis_fifo_tready = '1' and rd_eof = '1' then
|
341 |
|
|
rd_nxt_state <= EOF_s;
|
342 |
|
|
else
|
343 |
|
|
rd_nxt_state <= DATA_s;
|
344 |
|
|
end if;
|
345 |
|
|
|
346 |
|
|
when EOF_s =>
|
347 |
|
|
-- Hold in this state until tready is asserted and the EOF
|
348 |
|
|
-- marker (tlast) is accepted on interface.
|
349 |
|
|
-- If there is another frame in the FIFO, then it will already be
|
350 |
|
|
-- queued into the pipeline so so move straight to SOF state.
|
351 |
|
|
if rx_axis_fifo_tready = '1' then
|
352 |
|
|
if rd_valid_pipe(1) = '1' then
|
353 |
|
|
rd_nxt_state <= SOF_s;
|
354 |
|
|
else
|
355 |
|
|
rd_nxt_state <= WAIT_s;
|
356 |
|
|
end if;
|
357 |
|
|
else
|
358 |
|
|
rd_nxt_state <= EOF_s;
|
359 |
|
|
end if;
|
360 |
|
|
|
361 |
|
|
when others =>
|
362 |
|
|
rd_nxt_state <= WAIT_s;
|
363 |
|
|
end case;
|
364 |
|
|
end process next_rds_p;
|
365 |
|
|
|
366 |
|
|
-- Detect if frame_in_fifo was high 3 reads ago.
|
367 |
|
|
-- This is used to ensure we only treat data in the pipeline as valid if
|
368 |
|
|
-- frame_in_fifo goes high at or before the EOF marker of the current frame.
|
369 |
|
|
-- It may be that there is valid data (i.e a partial frame has been written)
|
370 |
|
|
-- but until the end of that frame we do not know if it is a good frame.
|
371 |
|
|
rd_valid_pipe_p : process(rx_fifo_aclk)
|
372 |
|
|
begin
|
373 |
|
|
if (rx_fifo_aclk'event and rx_fifo_aclk = '1') then
|
374 |
|
|
if (rx_axis_fifo_tready = '1') then
|
375 |
|
|
rd_valid_pipe <= rd_valid_pipe(0) & frame_in_fifo;
|
376 |
|
|
end if;
|
377 |
|
|
end if;
|
378 |
|
|
end process rd_valid_pipe_p;
|
379 |
|
|
|
380 |
|
|
-- Decode tlast signal from EOF marker.
|
381 |
|
|
rd_ll_decode_p : process(rx_fifo_aclk)
|
382 |
|
|
begin
|
383 |
|
|
if (rx_fifo_aclk'event and rx_fifo_aclk = '1') then
|
384 |
|
|
if rx_fifo_reset = '1' then
|
385 |
|
|
rx_axis_fifo_tlast_int <= '0';
|
386 |
|
|
elsif rx_axis_fifo_tready = '1' then
|
387 |
|
|
-- Assert tlast signal when the EOF marker has been detected, and
|
388 |
|
|
-- continue to drive it until it has been accepted on the interface.
|
389 |
|
|
case rd_state is
|
390 |
|
|
when EOF_s =>
|
391 |
|
|
rx_axis_fifo_tlast_int <= '1';
|
392 |
|
|
when others =>
|
393 |
|
|
rx_axis_fifo_tlast_int <= '0';
|
394 |
|
|
end case;
|
395 |
|
|
end if;
|
396 |
|
|
end if;
|
397 |
|
|
end process rd_ll_decode_p;
|
398 |
|
|
|
399 |
|
|
-- Decode the tvalid output based on state.
|
400 |
|
|
rd_ll_src_p : process(rx_fifo_aclk)
|
401 |
|
|
begin
|
402 |
|
|
if (rx_fifo_aclk'event and rx_fifo_aclk = '1') then
|
403 |
|
|
if rx_fifo_reset = '1' then
|
404 |
|
|
rx_axis_fifo_tvalid <= '0';
|
405 |
|
|
else
|
406 |
|
|
case rd_state is
|
407 |
|
|
when QUEUE_SOF_s =>
|
408 |
|
|
rx_axis_fifo_tvalid <= '1';
|
409 |
|
|
when SOF_s =>
|
410 |
|
|
rx_axis_fifo_tvalid <= '1';
|
411 |
|
|
when DATA_s =>
|
412 |
|
|
rx_axis_fifo_tvalid <= '1';
|
413 |
|
|
when EOF_s =>
|
414 |
|
|
rx_axis_fifo_tvalid <= '1';
|
415 |
|
|
when others =>
|
416 |
|
|
if rx_axis_fifo_tready = '1' then
|
417 |
|
|
rx_axis_fifo_tvalid <= '0';
|
418 |
|
|
end if;
|
419 |
|
|
end case;
|
420 |
|
|
end if;
|
421 |
|
|
end if;
|
422 |
|
|
end process rd_ll_src_p;
|
423 |
|
|
|
424 |
|
|
-- Decode internal control signals.
|
425 |
|
|
-- rd_en is used to enable the BRAM read and load the output pipeline.
|
426 |
|
|
rd_en_p : process(rd_state, rx_axis_fifo_tready)
|
427 |
|
|
begin
|
428 |
|
|
case rd_state is
|
429 |
|
|
when WAIT_s =>
|
430 |
|
|
rd_en <= '0';
|
431 |
|
|
when QUEUE1_s =>
|
432 |
|
|
rd_en <= '1';
|
433 |
|
|
when QUEUE2_s =>
|
434 |
|
|
rd_en <= '1';
|
435 |
|
|
when QUEUE3_s =>
|
436 |
|
|
rd_en <= '1';
|
437 |
|
|
when QUEUE_SOF_s =>
|
438 |
|
|
rd_en <= '1';
|
439 |
|
|
when others =>
|
440 |
|
|
rd_en <= rx_axis_fifo_tready;
|
441 |
|
|
end case;
|
442 |
|
|
end process rd_en_p;
|
443 |
|
|
|
444 |
|
|
-- When the BRAM is being read, enable the read address to be incremented.
|
445 |
|
|
rd_addr_inc <= rd_en;
|
446 |
|
|
|
447 |
|
|
-- When the current frame is done, and if there is no frame in the FIFO, then
|
448 |
|
|
-- the FIFO must wait until a new frame is written in. This requires the read
|
449 |
|
|
-- address to be moved back to where the new frame will be written. The
|
450 |
|
|
-- pipeline is then reloaded using the QUEUE states.
|
451 |
|
|
p_rd_addr_reload : process (rx_fifo_aclk)
|
452 |
|
|
begin
|
453 |
|
|
if rx_fifo_aclk'event and rx_fifo_aclk = '1' then
|
454 |
|
|
if rx_fifo_reset = '1' then
|
455 |
|
|
rd_addr_reload <= '0';
|
456 |
|
|
else
|
457 |
|
|
if rd_state = EOF_s and rd_nxt_state = WAIT_s then
|
458 |
|
|
rd_addr_reload <= '1';
|
459 |
|
|
else
|
460 |
|
|
rd_addr_reload <= '0';
|
461 |
|
|
end if;
|
462 |
|
|
end if;
|
463 |
|
|
end if;
|
464 |
|
|
end process p_rd_addr_reload;
|
465 |
|
|
|
466 |
|
|
-- Data is available if there is at least one frame stored in the FIFO.
|
467 |
|
|
p_rd_avail : process (rx_fifo_aclk)
|
468 |
|
|
begin
|
469 |
|
|
if rx_fifo_aclk'event and rx_fifo_aclk = '1' then
|
470 |
|
|
if rx_fifo_reset = '1' then
|
471 |
|
|
frame_in_fifo <= '0';
|
472 |
|
|
else
|
473 |
|
|
if rd_frames /= (rd_frames'range => '0') then
|
474 |
|
|
frame_in_fifo <= '1';
|
475 |
|
|
else
|
476 |
|
|
frame_in_fifo <= '0';
|
477 |
|
|
end if;
|
478 |
|
|
end if;
|
479 |
|
|
end if;
|
480 |
|
|
end process p_rd_avail;
|
481 |
|
|
|
482 |
|
|
-- When a frame has been stored we need to synchronize that event to the
|
483 |
|
|
-- read clock domain for frame count store.
|
484 |
|
|
resync_wr_store_frame_tog : sync_block
|
485 |
|
|
port map (
|
486 |
|
|
clk => rx_fifo_aclk,
|
487 |
|
|
data_in => wr_store_frame_tog,
|
488 |
|
|
data_out => rd_store_frame_sync
|
489 |
|
|
);
|
490 |
|
|
|
491 |
|
|
p_delay_rd_store : process (rx_fifo_aclk)
|
492 |
|
|
begin
|
493 |
|
|
if rx_fifo_aclk'event and rx_fifo_aclk = '1' then
|
494 |
|
|
rd_store_frame_delay <= rd_store_frame_sync;
|
495 |
|
|
end if;
|
496 |
|
|
end process p_delay_rd_store;
|
497 |
|
|
|
498 |
|
|
-- Edge detect of the resynchronized frame count. This creates a pulse
|
499 |
|
|
-- when a new frame has been stored.
|
500 |
|
|
p_sync_rd_store : process (rx_fifo_aclk)
|
501 |
|
|
begin
|
502 |
|
|
if rx_fifo_aclk'event and rx_fifo_aclk = '1' then
|
503 |
|
|
if rx_fifo_reset = '1' then
|
504 |
|
|
rd_store_frame <= '0';
|
505 |
|
|
else
|
506 |
|
|
-- Edge detector
|
507 |
|
|
if (rd_store_frame_delay xor rd_store_frame_sync) = '1' then
|
508 |
|
|
rd_store_frame <= '1';
|
509 |
|
|
else
|
510 |
|
|
rd_store_frame <= '0';
|
511 |
|
|
end if;
|
512 |
|
|
end if;
|
513 |
|
|
end if;
|
514 |
|
|
end process p_sync_rd_store;
|
515 |
|
|
|
516 |
|
|
-- This creates a pulse when a new frame has begun to be output.
|
517 |
|
|
p_rd_pull_frame : process (rx_fifo_aclk)
|
518 |
|
|
begin
|
519 |
|
|
if rx_fifo_aclk'event and rx_fifo_aclk = '1' then
|
520 |
|
|
if rx_fifo_reset = '1' then
|
521 |
|
|
rd_pull_frame <= '0';
|
522 |
|
|
else
|
523 |
|
|
if rd_state = SOF_s and rd_nxt_state /= SOF_s then
|
524 |
|
|
rd_pull_frame <= '1';
|
525 |
|
|
elsif rd_state = QUEUE_SOF_s and rd_nxt_state /= QUEUE_SOF_s then
|
526 |
|
|
rd_pull_frame <= '1';
|
527 |
|
|
else
|
528 |
|
|
rd_pull_frame <= '0';
|
529 |
|
|
end if;
|
530 |
|
|
end if;
|
531 |
|
|
end if;
|
532 |
|
|
end process p_rd_pull_frame;
|
533 |
|
|
|
534 |
|
|
-- Up/down counter to monitor the number of frames stored within the FIFO.
|
535 |
|
|
-- Note:
|
536 |
|
|
-- * increments at the end of a frame write cycle
|
537 |
|
|
-- * decrements at the beginning of a frame read cycle
|
538 |
|
|
p_rd_frames : process (rx_fifo_aclk)
|
539 |
|
|
begin
|
540 |
|
|
if rx_fifo_aclk'event and rx_fifo_aclk = '1' then
|
541 |
|
|
if rx_fifo_reset = '1' then
|
542 |
|
|
rd_frames <= (others => '0');
|
543 |
|
|
else
|
544 |
|
|
-- A frame is written to the FIFO in this cycle, and no frame is being
|
545 |
|
|
-- read out on the same cycle.
|
546 |
|
|
if rd_store_frame = '1' and rd_pull_frame = '0' then
|
547 |
|
|
rd_frames <= rd_frames + 1;
|
548 |
|
|
-- A frame is being read out on this cycle and no frame is being
|
549 |
|
|
-- written on the same cycle.
|
550 |
|
|
elsif rd_store_frame = '0' and rd_pull_frame = '1' then
|
551 |
|
|
rd_frames <= rd_frames - 1;
|
552 |
|
|
end if;
|
553 |
|
|
end if;
|
554 |
|
|
end if;
|
555 |
|
|
end process p_rd_frames;
|
556 |
|
|
|
557 |
|
|
|
558 |
|
|
------------------------------------------------------------------------------
|
559 |
|
|
-- Write state machines and control
|
560 |
|
|
------------------------------------------------------------------------------
|
561 |
|
|
|
562 |
|
|
-- Write state machine.
|
563 |
|
|
-- States are IDLE, FRAME, GF, BF, OVFLOW.
|
564 |
|
|
-- Clock state to next state.
|
565 |
|
|
clock_wrs_p : process(rx_mac_aclk)
|
566 |
|
|
begin
|
567 |
|
|
if (rx_mac_aclk'event and rx_mac_aclk = '1') then
|
568 |
|
|
if rx_mac_reset = '1' then
|
569 |
|
|
wr_state <= IDLE_s;
|
570 |
|
|
else
|
571 |
|
|
wr_state <= wr_nxt_state;
|
572 |
|
|
end if;
|
573 |
|
|
end if;
|
574 |
|
|
end process clock_wrs_p;
|
575 |
|
|
|
576 |
|
|
-- Decode next state, combinatorial.
|
577 |
|
|
next_wrs_p : process(wr_state, wr_dv_pipe(1), wr_gf, wr_bf, wr_fifo_full)
|
578 |
|
|
begin
|
579 |
|
|
case wr_state is
|
580 |
|
|
when IDLE_s =>
|
581 |
|
|
-- There is data in incoming pipeline when dv_pipe(1) goes high.
|
582 |
|
|
if wr_dv_pipe(1) = '1' then
|
583 |
|
|
wr_nxt_state <= FRAME_s;
|
584 |
|
|
else
|
585 |
|
|
wr_nxt_state <= IDLE_s;
|
586 |
|
|
end if;
|
587 |
|
|
|
588 |
|
|
when FRAME_s =>
|
589 |
|
|
-- If FIFO is full then go to overflow state.
|
590 |
|
|
-- If the good or bad flag is detected, then the end of the frame
|
591 |
|
|
-- has been reached and the gf or bf state is visited before idle.
|
592 |
|
|
-- Otherwise remain in frame state while data is written to FIFO.
|
593 |
|
|
if wr_fifo_full = '1' then
|
594 |
|
|
wr_nxt_state <= OVFLOW_s;
|
595 |
|
|
elsif wr_gf = '1' then
|
596 |
|
|
wr_nxt_state <= GF_s;
|
597 |
|
|
elsif wr_bf = '1' then
|
598 |
|
|
wr_nxt_state <= BF_s;
|
599 |
|
|
else
|
600 |
|
|
wr_nxt_state <= FRAME_s;
|
601 |
|
|
end if;
|
602 |
|
|
|
603 |
|
|
when GF_s =>
|
604 |
|
|
-- Return to idle and wait for next frame.
|
605 |
|
|
wr_nxt_state <= IDLE_s;
|
606 |
|
|
|
607 |
|
|
when BF_s =>
|
608 |
|
|
-- Return to idle and wait for next frame.
|
609 |
|
|
wr_nxt_state <= IDLE_s;
|
610 |
|
|
|
611 |
|
|
when OVFLOW_s =>
|
612 |
|
|
-- Wait until the good or bad flag received.
|
613 |
|
|
if wr_gf = '1' or wr_bf = '1' then
|
614 |
|
|
wr_nxt_state <= IDLE_s;
|
615 |
|
|
else
|
616 |
|
|
wr_nxt_state <= OVFLOW_s;
|
617 |
|
|
end if;
|
618 |
|
|
|
619 |
|
|
when others =>
|
620 |
|
|
wr_nxt_state <= IDLE_s;
|
621 |
|
|
end case;
|
622 |
|
|
end process next_wrs_p;
|
623 |
|
|
|
624 |
|
|
-- Decode control signals, combinatorial.
|
625 |
|
|
-- wr_en is used to enable the BRAM write and loading of the input pipeline.
|
626 |
|
|
wr_en <= wr_dv_pipe(2) when wr_state = FRAME_s else '0';
|
627 |
|
|
|
628 |
|
|
-- The upper and lower signals are used to distinguish between the upper and
|
629 |
|
|
-- lower BRAMs.
|
630 |
|
|
wr_en_l <= wr_en and not(wr_addr(11));
|
631 |
|
|
wr_en_u <= wr_en and wr_addr(11);
|
632 |
|
|
wr_en_l_bram(0) <= wr_en_l;
|
633 |
|
|
wr_en_u_bram(0) <= wr_en_u;
|
634 |
|
|
|
635 |
|
|
-- Increment the write address when we are receiving valid frame data.
|
636 |
|
|
wr_addr_inc <= wr_dv_pipe(2) when wr_state = FRAME_s else '0';
|
637 |
|
|
|
638 |
|
|
-- If the FIFO overflows or a frame is to be dropped, we need to move the
|
639 |
|
|
-- write address back to the start of the frame. This allows the data to be
|
640 |
|
|
-- overwritten.
|
641 |
|
|
wr_addr_reload <= '1' when wr_state = BF_s or wr_state = OVFLOW_s else '0';
|
642 |
|
|
|
643 |
|
|
-- The start address is saved when in the idle state.
|
644 |
|
|
wr_start_addr_load <= '1' when wr_state = IDLE_s else '0';
|
645 |
|
|
|
646 |
|
|
-- We need to know when a frame is stored, in order to increment the count of
|
647 |
|
|
-- frames stored in the FIFO.
|
648 |
|
|
p_wr_store_tog : process (rx_mac_aclk)
|
649 |
|
|
begin
|
650 |
|
|
if (rx_mac_aclk'event and rx_mac_aclk = '1') then
|
651 |
|
|
if wr_state = GF_s then
|
652 |
|
|
wr_store_frame_tog <= not wr_store_frame_tog;
|
653 |
|
|
end if;
|
654 |
|
|
end if;
|
655 |
|
|
end process;
|
656 |
|
|
|
657 |
|
|
|
658 |
|
|
------------------------------------------------------------------------------
|
659 |
|
|
-- Address counters
|
660 |
|
|
------------------------------------------------------------------------------
|
661 |
|
|
|
662 |
|
|
-- Write address is incremented when data is being written into the FIFO.
|
663 |
|
|
wr_addr_p : process(rx_mac_aclk)
|
664 |
|
|
begin
|
665 |
|
|
if (rx_mac_aclk'event and rx_mac_aclk = '1') then
|
666 |
|
|
if rx_mac_reset = '1' then
|
667 |
|
|
wr_addr <= (others => '0');
|
668 |
|
|
else
|
669 |
|
|
if wr_addr_reload = '1' then
|
670 |
|
|
wr_addr <= wr_start_addr;
|
671 |
|
|
elsif wr_addr_inc = '1' then
|
672 |
|
|
wr_addr <= wr_addr + 1;
|
673 |
|
|
end if;
|
674 |
|
|
end if;
|
675 |
|
|
end if;
|
676 |
|
|
end process wr_addr_p;
|
677 |
|
|
|
678 |
|
|
-- Store the start address.
|
679 |
|
|
wr_staddr_p : process(rx_mac_aclk)
|
680 |
|
|
begin
|
681 |
|
|
if (rx_mac_aclk'event and rx_mac_aclk = '1') then
|
682 |
|
|
if rx_mac_reset = '1' then
|
683 |
|
|
wr_start_addr <= (others => '0');
|
684 |
|
|
else
|
685 |
|
|
if wr_start_addr_load = '1' then
|
686 |
|
|
wr_start_addr <= wr_addr;
|
687 |
|
|
end if;
|
688 |
|
|
end if;
|
689 |
|
|
end if;
|
690 |
|
|
end process wr_staddr_p;
|
691 |
|
|
|
692 |
|
|
-- Read address is incremented when data is being read from the FIFO.
|
693 |
|
|
rd_addr_p : process(rx_fifo_aclk)
|
694 |
|
|
begin
|
695 |
|
|
if (rx_fifo_aclk'event and rx_fifo_aclk = '1') then
|
696 |
|
|
if rx_fifo_reset = '1' then
|
697 |
|
|
rd_addr <= (others => '0');
|
698 |
|
|
else
|
699 |
|
|
if rd_addr_reload = '1' then
|
700 |
|
|
rd_addr <= rd_addr - 3;
|
701 |
|
|
elsif rd_addr_inc = '1' then
|
702 |
|
|
rd_addr <= rd_addr + 1;
|
703 |
|
|
end if;
|
704 |
|
|
end if;
|
705 |
|
|
end if;
|
706 |
|
|
end process rd_addr_p;
|
707 |
|
|
|
708 |
|
|
-- Which BRAM is read from is dependant on the upper bit of the address
|
709 |
|
|
-- space. This needs to be registered to give the correct timing.
|
710 |
|
|
rd_bram_p : process(rx_fifo_aclk)
|
711 |
|
|
begin
|
712 |
|
|
if (rx_fifo_aclk'event and rx_fifo_aclk = '1') then
|
713 |
|
|
if rx_fifo_reset = '1' then
|
714 |
|
|
rd_bram_u <= '0';
|
715 |
|
|
rd_bram_u_reg <= '0';
|
716 |
|
|
elsif rd_addr_inc = '1' then
|
717 |
|
|
rd_bram_u <= rd_addr(11);
|
718 |
|
|
rd_bram_u_reg <= rd_bram_u;
|
719 |
|
|
end if;
|
720 |
|
|
end if;
|
721 |
|
|
end process rd_bram_p;
|
722 |
|
|
|
723 |
|
|
|
724 |
|
|
------------------------------------------------------------------------------
|
725 |
|
|
-- Data pipelines
|
726 |
|
|
------------------------------------------------------------------------------
|
727 |
|
|
|
728 |
|
|
-- Register data inputs to BRAM.
|
729 |
|
|
-- No resets to allow for SRL16 target.
|
730 |
|
|
reg_din_p : process(rx_mac_aclk)
|
731 |
|
|
begin
|
732 |
|
|
if (rx_mac_aclk'event and rx_mac_aclk = '1') then
|
733 |
|
|
wr_data_pipe(0) <= rx_axis_mac_tdata;
|
734 |
|
|
wr_data_pipe(1) <= wr_data_pipe(0);
|
735 |
|
|
wr_data_bram <= wr_data_pipe(1);
|
736 |
|
|
end if;
|
737 |
|
|
end process reg_din_p;
|
738 |
|
|
|
739 |
|
|
-- The valid input enables BRAM write and is a condition for other signals.
|
740 |
|
|
reg_dv_p : process(rx_mac_aclk)
|
741 |
|
|
begin
|
742 |
|
|
if (rx_mac_aclk'event and rx_mac_aclk = '1') then
|
743 |
|
|
wr_dv_pipe(0) <= rx_axis_mac_tvalid;
|
744 |
|
|
wr_dv_pipe(1) <= wr_dv_pipe(0);
|
745 |
|
|
wr_dv_pipe(2) <= wr_dv_pipe(1);
|
746 |
|
|
end if;
|
747 |
|
|
end process reg_dv_p;
|
748 |
|
|
|
749 |
|
|
-- End of frame flag set when tlast and tvalid are asserted together.
|
750 |
|
|
reg_eof_p : process(rx_mac_aclk)
|
751 |
|
|
begin
|
752 |
|
|
if (rx_mac_aclk'event and rx_mac_aclk = '1') then
|
753 |
|
|
wr_eof_bram_pipe(0) <= rx_axis_mac_tlast;
|
754 |
|
|
wr_eof_bram_pipe(1) <= wr_eof_bram_pipe(0);
|
755 |
|
|
wr_eof_bram <= wr_eof_bram_pipe(1) and wr_dv_pipe(1);
|
756 |
|
|
end if;
|
757 |
|
|
end process reg_eof_p;
|
758 |
|
|
|
759 |
|
|
-- Upon arrival of EOF flag, the frame is good if tuser signal
|
760 |
|
|
-- is low, and bad if tuser signal is high.
|
761 |
|
|
reg_gf_p : process(rx_mac_aclk)
|
762 |
|
|
begin
|
763 |
|
|
if (rx_mac_aclk'event and rx_mac_aclk = '1') then
|
764 |
|
|
wr_gfbf_pipe(0) <= rx_axis_mac_tuser;
|
765 |
|
|
wr_gfbf_pipe(1) <= wr_gfbf_pipe(0);
|
766 |
|
|
wr_gf <= (not wr_gfbf_pipe(1)) and wr_eof_bram_pipe(1) and wr_dv_pipe(1);
|
767 |
|
|
wr_bf <= wr_gfbf_pipe(1) and wr_eof_bram_pipe(1) and wr_dv_pipe(1);
|
768 |
|
|
end if;
|
769 |
|
|
end process reg_gf_p;
|
770 |
|
|
|
771 |
|
|
-- The MAC's RX path cannot be helpd off, so the tready signal is always high.
|
772 |
|
|
reg_ready_p : process(rx_mac_aclk)
|
773 |
|
|
begin
|
774 |
|
|
if (rx_mac_aclk'event and rx_mac_aclk = '1') then
|
775 |
|
|
if (rx_mac_reset = '1') then
|
776 |
|
|
rx_axis_mac_tready <= '0';
|
777 |
|
|
else
|
778 |
|
|
rx_axis_mac_tready <= '1';
|
779 |
|
|
end if;
|
780 |
|
|
end if;
|
781 |
|
|
end process reg_ready_p;
|
782 |
|
|
|
783 |
|
|
-- Register data outputs from BRAM.
|
784 |
|
|
-- No resets to allow for SRL16 target.
|
785 |
|
|
reg_dout_p : process(rx_fifo_aclk)
|
786 |
|
|
begin
|
787 |
|
|
if (rx_fifo_aclk'event and rx_fifo_aclk = '1') then
|
788 |
|
|
if rd_en = '1' then
|
789 |
|
|
rd_data_pipe_u <= rd_data_bram_u;
|
790 |
|
|
rd_data_pipe_l <= rd_data_bram_l;
|
791 |
|
|
if rd_bram_u_reg = '1' then
|
792 |
|
|
rd_data_pipe <= rd_data_pipe_u;
|
793 |
|
|
else
|
794 |
|
|
rd_data_pipe <= rd_data_pipe_l;
|
795 |
|
|
end if;
|
796 |
|
|
rx_axis_fifo_tdata <= rd_data_pipe;
|
797 |
|
|
end if;
|
798 |
|
|
end if;
|
799 |
|
|
end process reg_dout_p;
|
800 |
|
|
|
801 |
|
|
reg_eofout_p : process(rx_fifo_aclk)
|
802 |
|
|
begin
|
803 |
|
|
if (rx_fifo_aclk'event and rx_fifo_aclk = '1') then
|
804 |
|
|
if rd_en = '1' then
|
805 |
|
|
if rd_bram_u = '1' then
|
806 |
|
|
rd_eof <= rd_eof_bram_u(0);
|
807 |
|
|
else
|
808 |
|
|
rd_eof <= rd_eof_bram_l(0);
|
809 |
|
|
end if;
|
810 |
|
|
end if;
|
811 |
|
|
end if;
|
812 |
|
|
end process reg_eofout_p;
|
813 |
|
|
|
814 |
|
|
|
815 |
|
|
------------------------------------------------------------------------------
|
816 |
|
|
-- Overflow functionality
|
817 |
|
|
------------------------------------------------------------------------------
|
818 |
|
|
|
819 |
|
|
-- to minimise the number of read address updates the bottom 6 bits of the
|
820 |
|
|
-- read address are not passed across and the write domain will only sample
|
821 |
|
|
-- them when bits 5 and 4 of the read address transition from 01 to 10.
|
822 |
|
|
-- Since this is for full detection this just means that if the read stops
|
823 |
|
|
-- the write will hit full up to 64 locations early
|
824 |
|
|
|
825 |
|
|
-- need to use two bits and look for an increment transition as reload can cause
|
826 |
|
|
-- a decrement on this boundary (decrement is only by 3 so above bit 2 should be safe)
|
827 |
|
|
p_rd_addr_tog : process (rx_fifo_aclk)
|
828 |
|
|
begin
|
829 |
|
|
if rx_fifo_aclk'event and rx_fifo_aclk = '1' then
|
830 |
|
|
if rx_fifo_reset = '1' then
|
831 |
|
|
old_rd_addr <= (others => '0');
|
832 |
|
|
update_addr_tog <= '0';
|
833 |
|
|
else
|
834 |
|
|
old_rd_addr <= std_logic_vector(rd_addr(5 downto 4));
|
835 |
|
|
if rd_addr(5 downto 4) = "10" and old_rd_addr = "01" then
|
836 |
|
|
update_addr_tog <= not update_addr_tog;
|
837 |
|
|
end if;
|
838 |
|
|
end if;
|
839 |
|
|
end if;
|
840 |
|
|
end process p_rd_addr_tog;
|
841 |
|
|
|
842 |
|
|
sync_rd_addr_tog: sync_block
|
843 |
|
|
port map (
|
844 |
|
|
clk => rx_mac_aclk,
|
845 |
|
|
data_in => update_addr_tog,
|
846 |
|
|
data_out => update_addr_tog_sync
|
847 |
|
|
);
|
848 |
|
|
|
849 |
|
|
-- Obtain the difference between write and read pointers.
|
850 |
|
|
p_sample_addr : process (rx_mac_aclk)
|
851 |
|
|
begin
|
852 |
|
|
if rx_mac_aclk'event and rx_mac_aclk = '1' then
|
853 |
|
|
if rx_mac_reset = '1' then
|
854 |
|
|
update_addr_tog_sync_reg <= '0';
|
855 |
|
|
wr_rd_addr <= (others => '0');
|
856 |
|
|
else
|
857 |
|
|
update_addr_tog_sync_reg <= update_addr_tog_sync;
|
858 |
|
|
if update_addr_tog_sync_reg /= update_addr_tog_sync then
|
859 |
|
|
wr_rd_addr <= rd_addr(11 downto 6) & "000000";
|
860 |
|
|
end if;
|
861 |
|
|
end if;
|
862 |
|
|
end if;
|
863 |
|
|
end process p_sample_addr;
|
864 |
|
|
|
865 |
|
|
wr_addr_diff_in <= ('0' & wr_rd_addr) - ('0' & wr_addr);
|
866 |
|
|
|
867 |
|
|
-- Obtain the difference between write and read pointers.
|
868 |
|
|
p_addr_diff : process (rx_mac_aclk)
|
869 |
|
|
begin
|
870 |
|
|
if rx_mac_aclk'event and rx_mac_aclk = '1' then
|
871 |
|
|
if rx_mac_reset = '1' then
|
872 |
|
|
wr_addr_diff <= (others => '0');
|
873 |
|
|
else
|
874 |
|
|
wr_addr_diff <= wr_addr_diff_in(11 downto 0);
|
875 |
|
|
end if;
|
876 |
|
|
end if;
|
877 |
|
|
end process p_addr_diff;
|
878 |
|
|
|
879 |
|
|
-- Detect when the FIFO is full.
|
880 |
|
|
-- The FIFO is considered to be full if the write address pointer is
|
881 |
|
|
-- within 0 to 3 of the read address pointer.
|
882 |
|
|
p_wr_full : process (rx_mac_aclk)
|
883 |
|
|
begin
|
884 |
|
|
if rx_mac_aclk'event and rx_mac_aclk = '1' then
|
885 |
|
|
if rx_mac_reset = '1' then
|
886 |
|
|
wr_fifo_full <= '0';
|
887 |
|
|
else
|
888 |
|
|
if wr_addr_diff(11 downto 4) = 0
|
889 |
|
|
and wr_addr_diff(3 downto 2) /= "00" then
|
890 |
|
|
wr_fifo_full <= '1';
|
891 |
|
|
else
|
892 |
|
|
wr_fifo_full <= '0';
|
893 |
|
|
end if;
|
894 |
|
|
end if;
|
895 |
|
|
end if;
|
896 |
|
|
end process p_wr_full;
|
897 |
|
|
|
898 |
|
|
-- Decode the overflow indicator output.
|
899 |
|
|
fifo_overflow <= '1' when wr_state = OVFLOW_s else '0';
|
900 |
|
|
|
901 |
|
|
|
902 |
|
|
------------------------------------------------------------------------------
|
903 |
|
|
-- FIFO status signals
|
904 |
|
|
------------------------------------------------------------------------------
|
905 |
|
|
-- The FIFO status is four bits which represents the occupancy of the FIFO
|
906 |
|
|
-- in sixteenths. To generate this signal we therefore only need to compare
|
907 |
|
|
-- the 4 most significant bits of the write address pointer with the 4 most
|
908 |
|
|
-- significant bits of the read address pointer.
|
909 |
|
|
|
910 |
|
|
p_wr_fifo_status : process (rx_mac_aclk)
|
911 |
|
|
begin
|
912 |
|
|
if rx_mac_aclk'event and rx_mac_aclk = '1' then
|
913 |
|
|
if rx_mac_reset = '1' then
|
914 |
|
|
wr_fifo_status <= "0000";
|
915 |
|
|
else
|
916 |
|
|
if wr_addr_diff = (wr_addr_diff'range => '0') then
|
917 |
|
|
wr_fifo_status <= "0000";
|
918 |
|
|
else
|
919 |
|
|
wr_fifo_status(3) <= not wr_addr_diff(11);
|
920 |
|
|
wr_fifo_status(2) <= not wr_addr_diff(10);
|
921 |
|
|
wr_fifo_status(1) <= not wr_addr_diff(9);
|
922 |
|
|
wr_fifo_status(0) <= not wr_addr_diff(8);
|
923 |
|
|
end if;
|
924 |
|
|
end if;
|
925 |
|
|
end if;
|
926 |
|
|
end process p_wr_fifo_status;
|
927 |
|
|
|
928 |
|
|
fifo_status <= std_logic_vector(wr_fifo_status);
|
929 |
|
|
|
930 |
|
|
|
931 |
|
|
------------------------------------------------------------------------------
|
932 |
|
|
-- Instantiate FIFO block memory
|
933 |
|
|
------------------------------------------------------------------------------
|
934 |
|
|
|
935 |
|
|
wr_eof_data_bram(8) <= wr_eof_bram;
|
936 |
|
|
wr_eof_data_bram(7 downto 0) <= wr_data_bram;
|
937 |
|
|
|
938 |
|
|
-- Block RAM for lower address space (rx_addr(11) = '0')
|
939 |
|
|
rd_eof_bram_l(0) <= rd_eof_data_bram_l(8);
|
940 |
|
|
rd_data_bram_l <= rd_eof_data_bram_l(7 downto 0);
|
941 |
|
|
ramgen_l : BRAM_TDP_MACRO
|
942 |
|
|
generic map (
|
943 |
|
|
DEVICE => "VIRTEX6",
|
944 |
|
|
WRITE_WIDTH_A => 9,
|
945 |
|
|
WRITE_WIDTH_B => 9,
|
946 |
|
|
READ_WIDTH_A => 9,
|
947 |
|
|
READ_WIDTH_B => 9)
|
948 |
|
|
port map (
|
949 |
|
|
DOA => doa_l_unused,
|
950 |
|
|
DOB => rd_eof_data_bram_l,
|
951 |
|
|
ADDRA => std_logic_vector(wr_addr(10 downto 0)),
|
952 |
|
|
ADDRB => std_logic_vector(rd_addr(10 downto 0)),
|
953 |
|
|
CLKA => rx_mac_aclk,
|
954 |
|
|
CLKB => rx_fifo_aclk,
|
955 |
|
|
DIA => wr_eof_data_bram,
|
956 |
|
|
DIB => GND_BUS(8 downto 0),
|
957 |
|
|
ENA => VCC,
|
958 |
|
|
ENB => rd_en,
|
959 |
|
|
REGCEA => VCC,
|
960 |
|
|
REGCEB => VCC,
|
961 |
|
|
RSTA => rx_mac_reset,
|
962 |
|
|
RSTB => rx_fifo_reset,
|
963 |
|
|
WEA => wr_en_l_bram,
|
964 |
|
|
WEB => GND
|
965 |
|
|
);
|
966 |
|
|
|
967 |
|
|
-- Block RAM for lower address space (rx_addr(11) = '0')
|
968 |
|
|
rd_eof_bram_u(0) <= rd_eof_data_bram_u(8);
|
969 |
|
|
rd_data_bram_u <= rd_eof_data_bram_u(7 downto 0);
|
970 |
|
|
ramgen_u : BRAM_TDP_MACRO
|
971 |
|
|
generic map (
|
972 |
|
|
DEVICE => "VIRTEX6",
|
973 |
|
|
WRITE_WIDTH_A => 9,
|
974 |
|
|
WRITE_WIDTH_B => 9,
|
975 |
|
|
READ_WIDTH_A => 9,
|
976 |
|
|
READ_WIDTH_B => 9)
|
977 |
|
|
port map (
|
978 |
|
|
DOA => doa_u_unused,
|
979 |
|
|
DOB => rd_eof_data_bram_u,
|
980 |
|
|
ADDRA => std_logic_vector(wr_addr(10 downto 0)),
|
981 |
|
|
ADDRB => std_logic_vector(rd_addr(10 downto 0)),
|
982 |
|
|
CLKA => rx_mac_aclk,
|
983 |
|
|
CLKB => rx_fifo_aclk,
|
984 |
|
|
DIA => wr_eof_data_bram,
|
985 |
|
|
DIB => GND_BUS(8 downto 0),
|
986 |
|
|
ENA => VCC,
|
987 |
|
|
ENB => rd_en,
|
988 |
|
|
REGCEA => VCC,
|
989 |
|
|
REGCEB => VCC,
|
990 |
|
|
RSTA => rx_mac_reset,
|
991 |
|
|
RSTB => rx_fifo_reset,
|
992 |
|
|
WEA => wr_en_u_bram,
|
993 |
|
|
WEB => GND
|
994 |
|
|
);
|
995 |
|
|
|
996 |
|
|
|
997 |
|
|
end RTL;
|