1 |
10 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
2 |
|
|
//
|
3 |
|
|
// Filename: faxi_slave.v (Formal properties of an AXI slave)
|
4 |
|
|
//
|
5 |
|
|
// Project: Pipelined Wishbone to AXI converter
|
6 |
|
|
//
|
7 |
|
|
// Purpose:
|
8 |
|
|
//
|
9 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
10 |
|
|
// Gisselquist Technology, LLC
|
11 |
|
|
//
|
12 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
13 |
|
|
//
|
14 |
|
|
// Copyright (C) 2017, Gisselquist Technology, LLC
|
15 |
|
|
//
|
16 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
17 |
|
|
// modify it under the terms of the GNU General Public License as published
|
18 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
19 |
|
|
// your option) any later version.
|
20 |
|
|
//
|
21 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
22 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
23 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
24 |
|
|
// for more details.
|
25 |
|
|
//
|
26 |
|
|
// You should have received a copy of the GNU General Public License along
|
27 |
|
|
// with this program. (It's in the $(ROOT)/doc directory, run make with no
|
28 |
|
|
// target there if the PDF file isn't present.) If not, see
|
29 |
|
|
// <http://www.gnu.org/licenses/> for a copy.
|
30 |
|
|
//
|
31 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
32 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
33 |
|
|
//
|
34 |
|
|
//
|
35 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
36 |
|
|
//
|
37 |
|
|
//
|
38 |
|
|
`default_nettype none
|
39 |
|
|
//
|
40 |
|
|
module faxi_slave #(
|
41 |
|
|
parameter C_AXI_ID_WIDTH = 3, // The AXI id width used for R&W
|
42 |
|
|
// This is an int between 1-16
|
43 |
|
|
parameter C_AXI_DATA_WIDTH = 128,// Width of the AXI R&W data
|
44 |
|
|
parameter C_AXI_ADDR_WIDTH = 28, // AXI Address width (log wordsize)
|
45 |
|
|
localparam DW = C_AXI_DATA_WIDTH,
|
46 |
|
|
localparam AW = C_AXI_ADDR_WIDTH,
|
47 |
|
|
parameter [(C_AXI_ID_WIDTH-1):0] F_AXI_MAXSTALL = 3,
|
48 |
|
|
parameter [(C_AXI_ID_WIDTH-1):0] F_AXI_MAXDELAY = 3,
|
49 |
|
|
parameter [0:0] F_STRICT_ORDER = 0, // Reorder, or not? 0 -> Reorder
|
50 |
|
|
parameter [0:0] F_CONSECUTIVE_IDS= 0, // 0=ID's must be consecutive
|
51 |
|
|
parameter [0:0] F_OPT_BURSTS = 1'b1, // Check burst lengths
|
52 |
|
|
parameter [0:0] F_CHECK_IDS = 1'b1 // Check ID's upon issue&return
|
53 |
|
|
) (
|
54 |
|
|
input i_clk, // System clock
|
55 |
|
|
input i_axi_reset_n,
|
56 |
|
|
|
57 |
|
|
// AXI write address channel signals
|
58 |
|
|
input i_axi_awready, // Slave is ready to accept
|
59 |
|
|
input wire [C_AXI_ID_WIDTH-1:0] i_axi_awid, // Write ID
|
60 |
|
|
input wire [AW-1:0] i_axi_awaddr, // Write address
|
61 |
|
|
input wire [7:0] i_axi_awlen, // Write Burst Length
|
62 |
|
|
input wire [2:0] i_axi_awsize, // Write Burst size
|
63 |
|
|
input wire [1:0] i_axi_awburst, // Write Burst type
|
64 |
|
|
input wire [0:0] i_axi_awlock, // Write lock type
|
65 |
|
|
input wire [3:0] i_axi_awcache, // Write Cache type
|
66 |
|
|
input wire [2:0] i_axi_awprot, // Write Protection type
|
67 |
|
|
input wire [3:0] i_axi_awqos, // Write Quality of Svc
|
68 |
|
|
input wire i_axi_awvalid, // Write address valid
|
69 |
|
|
|
70 |
|
|
// AXI write data channel signals
|
71 |
|
|
input wire i_axi_wready, // Write data ready
|
72 |
|
|
input wire [DW-1:0] i_axi_wdata, // Write data
|
73 |
|
|
input wire [DW/8-1:0] i_axi_wstrb, // Write strobes
|
74 |
|
|
input wire i_axi_wlast, // Last write transaction
|
75 |
|
|
input wire i_axi_wvalid, // Write valid
|
76 |
|
|
|
77 |
|
|
// AXI write response channel signals
|
78 |
|
|
input wire [C_AXI_ID_WIDTH-1:0] i_axi_bid, // Response ID
|
79 |
|
|
input wire [1:0] i_axi_bresp, // Write response
|
80 |
|
|
input wire i_axi_bvalid, // Write reponse valid
|
81 |
|
|
input wire i_axi_bready, // Response ready
|
82 |
|
|
|
83 |
|
|
// AXI read address channel signals
|
84 |
|
|
input wire i_axi_arready, // Read address ready
|
85 |
|
|
input wire [C_AXI_ID_WIDTH-1:0] i_axi_arid, // Read ID
|
86 |
|
|
input wire [AW-1:0] i_axi_araddr, // Read address
|
87 |
|
|
input wire [7:0] i_axi_arlen, // Read Burst Length
|
88 |
|
|
input wire [2:0] i_axi_arsize, // Read Burst size
|
89 |
|
|
input wire [1:0] i_axi_arburst, // Read Burst type
|
90 |
|
|
input wire [0:0] i_axi_arlock, // Read lock type
|
91 |
|
|
input wire [3:0] i_axi_arcache, // Read Cache type
|
92 |
|
|
input wire [2:0] i_axi_arprot, // Read Protection type
|
93 |
|
|
input wire [3:0] i_axi_arqos, // Read Protection type
|
94 |
|
|
input wire i_axi_arvalid, // Read address valid
|
95 |
|
|
|
96 |
|
|
// AXI read data channel signals
|
97 |
|
|
input wire [C_AXI_ID_WIDTH-1:0] i_axi_rid, // Response ID
|
98 |
|
|
input wire [1:0] i_axi_rresp, // Read response
|
99 |
|
|
input wire i_axi_rvalid, // Read reponse valid
|
100 |
|
|
input wire [DW-1:0] i_axi_rdata, // Read data
|
101 |
|
|
input wire i_axi_rlast, // Read last
|
102 |
|
|
input wire i_axi_rready, // Read Response ready
|
103 |
|
|
//
|
104 |
|
|
output reg [(C_AXI_ID_WIDTH-1):0] f_axi_rd_outstanding,
|
105 |
|
|
output reg [(C_AXI_ID_WIDTH-1):0] f_axi_wr_outstanding,
|
106 |
|
|
output reg [(C_AXI_ID_WIDTH-1):0] f_axi_awr_outstanding,
|
107 |
|
|
output reg [((1<<C_AXI_ID_WIDTH)-1):0] f_axi_rd_id_outstanding,
|
108 |
|
|
output reg [((1<<C_AXI_ID_WIDTH)-1):0] f_axi_awr_id_outstanding,
|
109 |
|
|
output reg [((1<<C_AXI_ID_WIDTH)-1):0] f_axi_wr_id_outstanding
|
110 |
|
|
|
111 |
|
|
);
|
112 |
|
|
reg [((1<<C_AXI_ID_WIDTH)-1):0] f_axi_wr_id_complete;
|
113 |
|
|
|
114 |
|
|
//*****************************************************************************
|
115 |
|
|
// Parameter declarations
|
116 |
|
|
//*****************************************************************************
|
117 |
|
|
|
118 |
|
|
localparam LG_AXI_DW = ( C_AXI_DATA_WIDTH == 8) ? 3
|
119 |
|
|
: ((C_AXI_DATA_WIDTH == 16) ? 4
|
120 |
|
|
: ((C_AXI_DATA_WIDTH == 32) ? 5
|
121 |
|
|
: ((C_AXI_DATA_WIDTH == 64) ? 6
|
122 |
|
|
: ((C_AXI_DATA_WIDTH == 128) ? 7
|
123 |
|
|
: 8))));
|
124 |
|
|
|
125 |
|
|
localparam LG_WB_DW = ( DW == 8) ? 3
|
126 |
|
|
: ((DW == 16) ? 4
|
127 |
|
|
: ((DW == 32) ? 5
|
128 |
|
|
: ((DW == 64) ? 6
|
129 |
|
|
: ((DW == 128) ? 7
|
130 |
|
|
: 8))));
|
131 |
|
|
localparam LGFIFOLN = C_AXI_ID_WIDTH;
|
132 |
|
|
localparam FIFOLN = (1<<LGFIFOLN);
|
133 |
|
|
|
134 |
|
|
|
135 |
|
|
//*****************************************************************************
|
136 |
|
|
// Internal register and wire declarations
|
137 |
|
|
//*****************************************************************************
|
138 |
|
|
|
139 |
|
|
// Things we're not changing ...
|
140 |
|
|
always @(*)
|
141 |
|
|
begin
|
142 |
|
|
assume(i_axi_awlen == 8'h0); // Burst length is one
|
143 |
|
|
assume(i_axi_awsize == 3'b101); // maximum bytes per burst is 32
|
144 |
|
|
assume(i_axi_awburst == 2'b01); // Incrementing address (ignored)
|
145 |
|
|
assume(i_axi_arburst == 2'b01); // Incrementing address (ignored)
|
146 |
|
|
assume(i_axi_awlock == 1'b0); // Normal signaling
|
147 |
|
|
assume(i_axi_arlock == 1'b0); // Normal signaling
|
148 |
|
|
assume(i_axi_awcache == 4'h2); // Normal: no cache, no buffer
|
149 |
|
|
assume(i_axi_arcache == 4'h2); // Normal: no cache, no buffer
|
150 |
|
|
assume(i_axi_awprot == 3'b010);// Unpriviledged, unsecure, data access
|
151 |
|
|
assume(i_axi_arprot == 3'b010);// Unpriviledged, unsecure, data access
|
152 |
|
|
assume(i_axi_awqos == 4'h0); // Lowest quality of service (unused)
|
153 |
|
|
assume(i_axi_arqos == 4'h0); // Lowest quality of service (unused)
|
154 |
|
|
end
|
155 |
|
|
|
156 |
|
|
// wire w_fifo_full;
|
157 |
|
|
wire axi_rd_ack, axi_wr_ack, axi_ard_req, axi_awr_req, axi_wr_req,
|
158 |
|
|
axi_rd_err, axi_wr_err;
|
159 |
|
|
//
|
160 |
|
|
assign axi_ard_req = (i_axi_arvalid)&&(i_axi_arready);
|
161 |
|
|
assign axi_awr_req = (i_axi_awvalid)&&(i_axi_awready);
|
162 |
|
|
assign axi_wr_req = (i_axi_wvalid )&&(i_axi_wready);
|
163 |
|
|
//
|
164 |
|
|
assign axi_rd_ack = (i_axi_rvalid)&&(i_axi_rready);
|
165 |
|
|
assign axi_wr_ack = (i_axi_bvalid)&&(i_axi_bready);
|
166 |
|
|
assign axi_rd_err = (axi_rd_ack)&&(i_axi_rresp[1]);
|
167 |
|
|
assign axi_wr_err = (axi_wr_ack)&&(i_axi_bresp[1]);
|
168 |
|
|
|
169 |
|
|
//
|
170 |
|
|
// Setup
|
171 |
|
|
//
|
172 |
|
|
reg f_past_valid;
|
173 |
|
|
integer k;
|
174 |
|
|
|
175 |
|
|
initial f_past_valid = 1'b0;
|
176 |
|
|
always @(posedge i_clk)
|
177 |
|
|
f_past_valid <= 1'b1;
|
178 |
|
|
always @(*)
|
179 |
|
|
if (!f_past_valid)
|
180 |
|
|
assume(!i_axi_reset_n);
|
181 |
|
|
|
182 |
|
|
//
|
183 |
|
|
// All signals must be synchronous with the clock
|
184 |
|
|
//
|
185 |
|
|
always @($global_clock)
|
186 |
|
|
if (f_past_valid) begin
|
187 |
|
|
// Assume our inputs will only change on the positive edge
|
188 |
|
|
// of the clock
|
189 |
|
|
if (!$rose(i_clk))
|
190 |
|
|
begin
|
191 |
|
|
// AXI inputs
|
192 |
|
|
assert($stable(i_axi_awready));
|
193 |
|
|
assert($stable(i_axi_wready));
|
194 |
|
|
//
|
195 |
|
|
assert($stable(i_axi_bid));
|
196 |
|
|
assert($stable(i_axi_bresp));
|
197 |
|
|
assert($stable(i_axi_bvalid));
|
198 |
|
|
assert($stable(i_axi_arready));
|
199 |
|
|
//
|
200 |
|
|
assert($stable(i_axi_rid));
|
201 |
|
|
assert($stable(i_axi_rresp));
|
202 |
|
|
assert($stable(i_axi_rvalid));
|
203 |
|
|
assert($stable(i_axi_rdata));
|
204 |
|
|
assert($stable(i_axi_rlast));
|
205 |
|
|
//
|
206 |
|
|
// AXI outputs
|
207 |
|
|
//
|
208 |
|
|
assume($stable(i_axi_awvalid));
|
209 |
|
|
assume($stable(i_axi_awid));
|
210 |
|
|
assume($stable(i_axi_awlen));
|
211 |
|
|
assume($stable(i_axi_awsize));
|
212 |
|
|
assume($stable(i_axi_awlock));
|
213 |
|
|
assume($stable(i_axi_awcache));
|
214 |
|
|
assume($stable(i_axi_awprot));
|
215 |
|
|
assume($stable(i_axi_awqos));
|
216 |
|
|
//
|
217 |
|
|
assume($stable(i_axi_wvalid));
|
218 |
|
|
assume($stable(i_axi_wdata));
|
219 |
|
|
assume($stable(i_axi_wstrb));
|
220 |
|
|
assume($stable(i_axi_wlast));
|
221 |
|
|
//
|
222 |
|
|
assume($stable(i_axi_arvalid));
|
223 |
|
|
assume($stable(i_axi_arid));
|
224 |
|
|
assume($stable(i_axi_arlen));
|
225 |
|
|
assume($stable(i_axi_arsize));
|
226 |
|
|
assume($stable(i_axi_arburst));
|
227 |
|
|
assume($stable(i_axi_arlock));
|
228 |
|
|
assume($stable(i_axi_arprot));
|
229 |
|
|
assume($stable(i_axi_arqos));
|
230 |
|
|
//
|
231 |
|
|
assume($stable(i_axi_bready));
|
232 |
|
|
//
|
233 |
|
|
assume($stable(i_axi_rready));
|
234 |
|
|
//
|
235 |
|
|
// Formal outputs
|
236 |
|
|
//
|
237 |
|
|
assume($stable(f_axi_rd_outstanding));
|
238 |
|
|
assume($stable(f_axi_wr_outstanding));
|
239 |
|
|
assume($stable(f_axi_awr_outstanding));
|
240 |
|
|
end
|
241 |
|
|
end
|
242 |
|
|
|
243 |
|
|
////////////////////////////////////////////////////
|
244 |
|
|
//
|
245 |
|
|
//
|
246 |
|
|
// Reset properties
|
247 |
|
|
//
|
248 |
|
|
//
|
249 |
|
|
////////////////////////////////////////////////////
|
250 |
|
|
|
251 |
|
|
always @(posedge i_clk)
|
252 |
|
|
if ((f_past_valid)&&(!$past(i_axi_reset_n)))
|
253 |
|
|
begin
|
254 |
|
|
assume(!i_axi_arvalid);
|
255 |
|
|
assume(!i_axi_awvalid);
|
256 |
|
|
assume(!i_axi_wvalid);
|
257 |
|
|
assert(!i_axi_bvalid);
|
258 |
|
|
assert(!i_axi_rvalid);
|
259 |
|
|
end
|
260 |
|
|
|
261 |
|
|
////////////////////////////////////////////////////
|
262 |
|
|
//
|
263 |
|
|
//
|
264 |
|
|
// Stability assumptions, AXI inputs/responses
|
265 |
|
|
//
|
266 |
|
|
//
|
267 |
|
|
////////////////////////////////////////////////////
|
268 |
|
|
|
269 |
|
|
// Assume any response from the bus will not change prior to that
|
270 |
|
|
// response being accepted
|
271 |
|
|
always @(posedge i_clk)
|
272 |
|
|
if (f_past_valid)
|
273 |
|
|
begin
|
274 |
|
|
if ((f_past_valid)&&($past(i_axi_rvalid))&&(!$past(i_axi_rready)))
|
275 |
|
|
begin
|
276 |
|
|
assert(i_axi_rid == $past(i_axi_rid));
|
277 |
|
|
assert(i_axi_rresp == $past(i_axi_rresp));
|
278 |
|
|
assert(i_axi_rdata == $past(i_axi_rdata));
|
279 |
|
|
assert(i_axi_rlast == $past(i_axi_rlast));
|
280 |
|
|
end
|
281 |
|
|
|
282 |
|
|
if ((f_past_valid)&&($past(i_axi_bvalid))&&(!$past(i_axi_bready)))
|
283 |
|
|
begin
|
284 |
|
|
assert(i_axi_bid == $past(i_axi_bid));
|
285 |
|
|
assert(i_axi_bresp == $past(i_axi_bresp));
|
286 |
|
|
end
|
287 |
|
|
end
|
288 |
|
|
|
289 |
|
|
// Nothing should be returning a result on the first clock
|
290 |
|
|
initial assert(!i_axi_bvalid);
|
291 |
|
|
initial assert(!i_axi_rvalid);
|
292 |
|
|
//
|
293 |
|
|
initial assume(!i_axi_arvalid);
|
294 |
|
|
initial assume(!i_axi_awvalid);
|
295 |
|
|
initial assume(!i_axi_wvalid);
|
296 |
|
|
|
297 |
|
|
//////////////////////////////////////////////
|
298 |
|
|
//
|
299 |
|
|
//
|
300 |
|
|
// Stability assumptions, AXI outputs/requests
|
301 |
|
|
//
|
302 |
|
|
//
|
303 |
|
|
//////////////////////////////////////////////
|
304 |
|
|
|
305 |
|
|
// Read address chanel
|
306 |
|
|
always @(posedge i_clk)
|
307 |
|
|
if ((f_past_valid)&&($past(i_axi_arvalid))&&(!$past(i_axi_arready)))
|
308 |
|
|
begin
|
309 |
|
|
assume(i_axi_arvalid);
|
310 |
|
|
assume($stable(i_axi_arid));
|
311 |
|
|
assume($stable(i_axi_araddr));
|
312 |
|
|
assume($stable(i_axi_arlen));
|
313 |
|
|
assume($stable(i_axi_arsize));
|
314 |
|
|
assume($stable(i_axi_arburst));
|
315 |
|
|
assume($stable(i_axi_arlock));
|
316 |
|
|
assume($stable(i_axi_arcache));
|
317 |
|
|
assume($stable(i_axi_arprot));
|
318 |
|
|
assume($stable(i_axi_arqos));
|
319 |
|
|
assume($stable(i_axi_arvalid));
|
320 |
|
|
end
|
321 |
|
|
|
322 |
|
|
// If valid, but not ready, on any channel is true, nothing changes
|
323 |
|
|
// until valid && ready
|
324 |
|
|
always @(posedge i_clk)
|
325 |
|
|
if ((f_past_valid)&&($past(i_axi_awvalid))&&(!$past(i_axi_awready)))
|
326 |
|
|
begin
|
327 |
|
|
assume($stable(i_axi_awid));
|
328 |
|
|
assume($stable(i_axi_awaddr));
|
329 |
|
|
assume($stable(i_axi_awlen));
|
330 |
|
|
assume($stable(i_axi_awsize));
|
331 |
|
|
assume($stable(i_axi_awburst));
|
332 |
|
|
assume($stable(i_axi_awlock));
|
333 |
|
|
assume($stable(i_axi_awcache));
|
334 |
|
|
assume($stable(i_axi_awprot));
|
335 |
|
|
assume($stable(i_axi_awqos));
|
336 |
|
|
assume($stable(i_axi_awvalid));
|
337 |
|
|
end
|
338 |
|
|
|
339 |
|
|
always @(posedge i_clk)
|
340 |
|
|
if ((f_past_valid)&&($past(i_axi_wvalid))&&(!$past(i_axi_wready)))
|
341 |
|
|
begin
|
342 |
|
|
// AXI write data channel signals
|
343 |
|
|
assume($stable(i_axi_wdata));
|
344 |
|
|
assume($stable(i_axi_wstrb));
|
345 |
|
|
assume($stable(i_axi_wlast));
|
346 |
|
|
assume($stable(i_axi_wvalid));
|
347 |
|
|
end
|
348 |
|
|
|
349 |
|
|
//
|
350 |
|
|
//
|
351 |
|
|
|
352 |
|
|
///////////////////////////////////////////////////////////////////
|
353 |
|
|
//
|
354 |
|
|
//
|
355 |
|
|
// Insist upon a maximum delay before a request is accepted
|
356 |
|
|
//
|
357 |
|
|
//
|
358 |
|
|
///////////////////////////////////////////////////////////////////
|
359 |
|
|
|
360 |
|
|
//
|
361 |
|
|
// AXI write address channel
|
362 |
|
|
//
|
363 |
|
|
//
|
364 |
|
|
reg [(C_AXI_ID_WIDTH):0] f_axi_awstall;
|
365 |
|
|
initial f_axi_awstall = 0;
|
366 |
|
|
always @(posedge i_clk)
|
367 |
|
|
if ((!i_axi_reset_n)||(!i_axi_awvalid)||(i_axi_awready))
|
368 |
|
|
f_axi_awstall <= 0;
|
369 |
|
|
else
|
370 |
|
|
f_axi_awstall <= f_axi_awstall + 1'b1;
|
371 |
|
|
always @(*)
|
372 |
|
|
assert((F_AXI_MAXSTALL==0)||(f_axi_awstall < F_AXI_MAXSTALL));
|
373 |
|
|
|
374 |
|
|
//
|
375 |
|
|
// AXI write data channel
|
376 |
|
|
//
|
377 |
|
|
//
|
378 |
|
|
// AXI explicitly allows write bursts with zero strobes. This is part
|
379 |
|
|
// of how a transaction is aborted (if at all).
|
380 |
|
|
//always @(*) if (i_axi_wvalid) assume(|i_axi_wstrb);
|
381 |
|
|
|
382 |
|
|
reg [(C_AXI_ID_WIDTH):0] f_axi_wstall;
|
383 |
|
|
initial f_axi_wstall = 0;
|
384 |
|
|
always @(posedge i_clk)
|
385 |
|
|
if ((!i_axi_reset_n)||(!i_axi_wvalid)||(i_axi_wready))
|
386 |
|
|
f_axi_wstall <= 0;
|
387 |
|
|
else
|
388 |
|
|
f_axi_wstall <= f_axi_wstall + 1'b1;
|
389 |
|
|
always @(*)
|
390 |
|
|
assert((F_AXI_MAXSTALL==0)||(f_axi_wstall < F_AXI_MAXSTALL));
|
391 |
|
|
|
392 |
|
|
|
393 |
|
|
//
|
394 |
|
|
// AXI read address channel
|
395 |
|
|
//
|
396 |
|
|
//
|
397 |
|
|
reg [(C_AXI_ID_WIDTH):0] f_axi_arstall;
|
398 |
|
|
initial f_axi_arstall = 0;
|
399 |
|
|
always @(posedge i_clk)
|
400 |
|
|
if ((!i_axi_reset_n)||(!i_axi_arvalid)||(i_axi_arready))
|
401 |
|
|
f_axi_arstall <= 0;
|
402 |
|
|
else
|
403 |
|
|
f_axi_arstall <= f_axi_arstall + 1'b1;
|
404 |
|
|
always @(*)
|
405 |
|
|
assert((F_AXI_MAXSTALL==0)||(f_axi_arstall < F_AXI_MAXSTALL));
|
406 |
|
|
|
407 |
|
|
|
408 |
|
|
////////////////////////////////////////////////////////////////////////
|
409 |
|
|
//
|
410 |
|
|
//
|
411 |
|
|
// Count outstanding transactions. With these measures, we count
|
412 |
|
|
// once per any burst.
|
413 |
|
|
//
|
414 |
|
|
//
|
415 |
|
|
////////////////////////////////////////////////////////////////////////
|
416 |
|
|
initial f_axi_awr_outstanding = 0;
|
417 |
|
|
always @(posedge i_clk)
|
418 |
|
|
if (!i_axi_reset_n)
|
419 |
|
|
f_axi_awr_outstanding <= 0;
|
420 |
|
|
else case({ (axi_awr_req), (axi_wr_ack) })
|
421 |
|
|
2'b10: f_axi_awr_outstanding <= f_axi_awr_outstanding + 1'b1;
|
422 |
|
|
2'b01: f_axi_awr_outstanding <= f_axi_awr_outstanding - 1'b1;
|
423 |
|
|
default: begin end
|
424 |
|
|
endcase
|
425 |
|
|
|
426 |
|
|
initial f_axi_wr_outstanding = 0;
|
427 |
|
|
always @(posedge i_clk)
|
428 |
|
|
if (!i_axi_reset_n)
|
429 |
|
|
f_axi_wr_outstanding <= 0;
|
430 |
|
|
else case({ (axi_wr_req)&&(i_axi_wlast), (axi_wr_ack) })
|
431 |
|
|
2'b01: f_axi_wr_outstanding <= f_axi_wr_outstanding - 1'b1;
|
432 |
|
|
2'b10: f_axi_wr_outstanding <= f_axi_wr_outstanding + 1'b1;
|
433 |
|
|
endcase
|
434 |
|
|
|
435 |
|
|
initial f_axi_rd_outstanding = 0;
|
436 |
|
|
always @(posedge i_clk)
|
437 |
|
|
if (!i_axi_reset_n)
|
438 |
|
|
f_axi_rd_outstanding <= 0;
|
439 |
|
|
else case({ (axi_ard_req), (axi_rd_ack)&&(i_axi_rlast) })
|
440 |
|
|
2'b01: f_axi_rd_outstanding <= f_axi_rd_outstanding - 1'b1;
|
441 |
|
|
2'b10: f_axi_rd_outstanding <= f_axi_rd_outstanding + 1'b1;
|
442 |
|
|
endcase
|
443 |
|
|
|
444 |
|
|
// Do not let the number of outstanding requests overflow
|
445 |
|
|
always @(posedge i_clk)
|
446 |
|
|
assume(f_axi_wr_outstanding < {(C_AXI_ID_WIDTH){1'b1}});
|
447 |
|
|
always @(posedge i_clk)
|
448 |
|
|
assume(f_axi_awr_outstanding < {(C_AXI_ID_WIDTH){1'b1}});
|
449 |
|
|
always @(posedge i_clk)
|
450 |
|
|
assume(f_axi_rd_outstanding < {(C_AXI_ID_WIDTH){1'b1}});
|
451 |
|
|
|
452 |
|
|
////////////////////////////////////////////////////////////////////////
|
453 |
|
|
//
|
454 |
|
|
//
|
455 |
|
|
// Insist that all responses are returned in less than a maximum delay
|
456 |
|
|
// In this case, we count responses within a burst, rather than entire
|
457 |
|
|
// bursts.
|
458 |
|
|
//
|
459 |
|
|
//
|
460 |
|
|
////////////////////////////////////////////////////////////////////////
|
461 |
|
|
|
462 |
|
|
reg [(C_AXI_ID_WIDTH):0] f_axi_wr_ack_delay,
|
463 |
|
|
f_axi_awr_ack_delay,
|
464 |
|
|
f_axi_rd_ack_delay;
|
465 |
|
|
|
466 |
|
|
initial f_axi_rd_ack_delay = 0;
|
467 |
|
|
always @(posedge i_clk)
|
468 |
|
|
if ((!i_axi_reset_n)||(axi_rd_ack))
|
469 |
|
|
f_axi_rd_ack_delay <= 0;
|
470 |
|
|
else if (f_axi_rd_outstanding > 0)
|
471 |
|
|
f_axi_rd_ack_delay <= f_axi_rd_ack_delay + 1'b1;
|
472 |
|
|
|
473 |
|
|
initial f_axi_wr_ack_delay = 0;
|
474 |
|
|
always @(posedge i_clk)
|
475 |
|
|
if ((!i_axi_reset_n)||(axi_wr_ack))
|
476 |
|
|
f_axi_wr_ack_delay <= 0;
|
477 |
|
|
else if (f_axi_wr_outstanding > 0)
|
478 |
|
|
f_axi_wr_ack_delay <= f_axi_wr_ack_delay + 1'b1;
|
479 |
|
|
|
480 |
|
|
initial f_axi_awr_ack_delay = 0;
|
481 |
|
|
always @(posedge i_clk)
|
482 |
|
|
if ((!i_axi_reset_n)||(axi_wr_ack))
|
483 |
|
|
f_axi_awr_ack_delay <= 0;
|
484 |
|
|
else if (f_axi_awr_outstanding > 0)
|
485 |
|
|
f_axi_awr_ack_delay <= f_axi_awr_ack_delay + 1'b1;
|
486 |
|
|
|
487 |
|
|
always @(posedge i_clk)
|
488 |
|
|
assert((F_AXI_MAXDELAY==0)||(f_axi_rd_ack_delay < F_AXI_MAXDELAY));
|
489 |
|
|
|
490 |
|
|
always @(posedge i_clk)
|
491 |
|
|
assert((F_AXI_MAXDELAY==0)||(f_axi_wr_ack_delay < F_AXI_MAXDELAY));
|
492 |
|
|
|
493 |
|
|
always @(posedge i_clk)
|
494 |
|
|
assert((F_AXI_MAXDELAY==0)||(f_axi_awr_ack_delay < F_AXI_MAXDELAY));
|
495 |
|
|
|
496 |
|
|
////////////////////////////////////////////////////////////////////////
|
497 |
|
|
//
|
498 |
|
|
//
|
499 |
|
|
// Assume all acknowledgements must follow requests
|
500 |
|
|
//
|
501 |
|
|
// The outstanding count is a count of bursts, but the acknowledgements
|
502 |
|
|
// we are looking for are individual. Hence, there should be no
|
503 |
|
|
// individual acknowledgements coming back if there's no outstanding
|
504 |
|
|
// burst.
|
505 |
|
|
//
|
506 |
|
|
//
|
507 |
|
|
////////////////////////////////////////////////////////////////////////
|
508 |
|
|
|
509 |
|
|
//
|
510 |
|
|
// AXI write response channel
|
511 |
|
|
//
|
512 |
|
|
always @(posedge i_clk)
|
513 |
|
|
if ((!axi_awr_req)&&(axi_wr_ack))
|
514 |
|
|
assert(f_axi_awr_outstanding > 0);
|
515 |
|
|
always @(posedge i_clk)
|
516 |
|
|
if ((!axi_wr_req)&&(axi_wr_ack))
|
517 |
|
|
assert(f_axi_wr_outstanding > 0);
|
518 |
|
|
|
519 |
|
|
//
|
520 |
|
|
// AXI read data channel signals
|
521 |
|
|
//
|
522 |
|
|
initial f_axi_rd_outstanding = 0;
|
523 |
|
|
always @(posedge i_clk)
|
524 |
|
|
if ((!axi_ard_req)&&(axi_rd_ack))
|
525 |
|
|
assert(f_axi_rd_outstanding > 0);
|
526 |
|
|
|
527 |
|
|
///////////////////////////////////////////////////////////////////
|
528 |
|
|
//
|
529 |
|
|
//
|
530 |
|
|
// Manage the ID buffer. Basic rules apply such as you can't
|
531 |
|
|
// make a request of an already requested ID # before that ID
|
532 |
|
|
// is returned, etc.
|
533 |
|
|
//
|
534 |
|
|
// Elements in this buffer reference transactions--possibly burst
|
535 |
|
|
// transactions and not necessarily the individual values.
|
536 |
|
|
//
|
537 |
|
|
//
|
538 |
|
|
///////////////////////////////////////////////////////////////////
|
539 |
|
|
// Now, let's look into that FIFO. Without it, we know nothing about
|
540 |
|
|
// the ID's
|
541 |
|
|
|
542 |
|
|
initial f_axi_rd_id_outstanding = 0;
|
543 |
|
|
initial f_axi_wr_id_outstanding = 0;
|
544 |
|
|
initial f_axi_awr_id_outstanding = 0;
|
545 |
|
|
initial f_axi_wr_id_complete = 0;
|
546 |
|
|
always @(posedge i_clk)
|
547 |
|
|
if (!i_axi_reset_n)
|
548 |
|
|
begin
|
549 |
|
|
f_axi_rd_id_outstanding <= 0;
|
550 |
|
|
f_axi_wr_id_outstanding <= 0;
|
551 |
|
|
f_axi_wr_id_complete <= 0;
|
552 |
|
|
f_axi_awr_id_outstanding <= 0;
|
553 |
|
|
end else begin
|
554 |
|
|
// When issuing a write
|
555 |
|
|
if (axi_awr_req)
|
556 |
|
|
begin
|
557 |
|
|
if ((F_CONSECUTIVE_IDS)&&(F_CHECK_IDS))
|
558 |
|
|
assume(f_axi_awr_id_outstanding[i_axi_awid+1'b1] == 1'b0);
|
559 |
|
|
assume((!F_CHECK_IDS)
|
560 |
|
|
||(f_axi_awr_id_outstanding[i_axi_awid] == 1'b0));
|
561 |
|
|
assume((!F_CHECK_IDS)
|
562 |
|
|
||(f_axi_wr_id_complete[i_axi_awid] == 1'b0));
|
563 |
|
|
f_axi_awr_id_outstanding[i_axi_awid] <= 1'b1;
|
564 |
|
|
f_axi_wr_id_complete[i_axi_awid] <= 1'b0;
|
565 |
|
|
end
|
566 |
|
|
|
567 |
|
|
if (axi_wr_req)
|
568 |
|
|
begin
|
569 |
|
|
if ((F_CONSECUTIVE_IDS)&&(F_CHECK_IDS))
|
570 |
|
|
assume(f_axi_wr_id_outstanding[i_axi_awid+1'b1] == 1'b0);
|
571 |
|
|
assume((!F_CHECK_IDS)
|
572 |
|
|
||(f_axi_wr_id_outstanding[i_axi_awid] == 1'b0));
|
573 |
|
|
f_axi_wr_id_outstanding[i_axi_awid] <= 1'b1;
|
574 |
|
|
if (i_axi_wlast)
|
575 |
|
|
begin
|
576 |
|
|
assert(f_axi_wr_id_complete[i_axi_awid] == 1'b0);
|
577 |
|
|
f_axi_wr_id_complete[i_axi_awid] <= 1'b1;
|
578 |
|
|
end
|
579 |
|
|
end
|
580 |
|
|
|
581 |
|
|
// When issuing a read
|
582 |
|
|
if (axi_ard_req)
|
583 |
|
|
begin
|
584 |
|
|
if ((F_CONSECUTIVE_IDS)&&(F_CHECK_IDS))
|
585 |
|
|
assume(f_axi_rd_id_outstanding[i_axi_arid+1'b1] == 1'b0);
|
586 |
|
|
assume((!F_CHECK_IDS)
|
587 |
|
|
||(f_axi_rd_id_outstanding[i_axi_arid] == 1'b0));
|
588 |
|
|
f_axi_rd_id_outstanding[i_axi_arid] <= 1'b1;
|
589 |
|
|
end
|
590 |
|
|
|
591 |
|
|
// When a write is acknowledged
|
592 |
|
|
if (axi_wr_ack)
|
593 |
|
|
begin
|
594 |
|
|
if (F_CHECK_IDS)
|
595 |
|
|
begin
|
596 |
|
|
assert(f_axi_awr_id_outstanding[i_axi_bid]);
|
597 |
|
|
assert(f_axi_wr_id_outstanding[i_axi_bid]);
|
598 |
|
|
assert((!F_STRICT_ORDER)||(!F_CONSECUTIVE_IDS)
|
599 |
|
|
||(!f_axi_wr_id_outstanding[i_axi_bid-1'b1]));
|
600 |
|
|
assert((!F_STRICT_ORDER)||(!F_CONSECUTIVE_IDS)
|
601 |
|
|
||(!f_axi_awr_id_outstanding[i_axi_bid-1'b1]));
|
602 |
|
|
assert(f_axi_wr_id_complete[i_axi_bid]);
|
603 |
|
|
end
|
604 |
|
|
f_axi_awr_id_outstanding[i_axi_bid] <= 1'b0;
|
605 |
|
|
f_axi_wr_id_outstanding[i_axi_bid] <= 1'b0;
|
606 |
|
|
f_axi_wr_id_complete[i_axi_bid] <= 1'b0;
|
607 |
|
|
end
|
608 |
|
|
|
609 |
|
|
// When a read is acknowledged
|
610 |
|
|
if (axi_rd_ack)
|
611 |
|
|
begin
|
612 |
|
|
if (F_CHECK_IDS)
|
613 |
|
|
begin
|
614 |
|
|
assert(f_axi_rd_id_outstanding[i_axi_rid]);
|
615 |
|
|
assert((!F_STRICT_ORDER)||(!F_CONSECUTIVE_IDS)
|
616 |
|
|
||(!f_axi_rd_id_outstanding[i_axi_rid-1'b1]));
|
617 |
|
|
end
|
618 |
|
|
|
619 |
|
|
if (i_axi_rlast)
|
620 |
|
|
f_axi_rd_id_outstanding[i_axi_rid] <= 1'b0;
|
621 |
|
|
end
|
622 |
|
|
end
|
623 |
|
|
|
624 |
|
|
|
625 |
|
|
reg [LGFIFOLN:0] f_axi_rd_id_outstanding_count,
|
626 |
|
|
f_axi_awr_id_outstanding_count,
|
627 |
|
|
f_axi_wr_id_outstanding_count;
|
628 |
|
|
|
629 |
|
|
initial f_axi_rd_id_outstanding_count = 0;
|
630 |
|
|
initial f_axi_awr_id_outstanding_count = 0;
|
631 |
|
|
initial f_axi_wr_id_outstanding_count = 0;
|
632 |
|
|
always @(*)
|
633 |
|
|
begin
|
634 |
|
|
//
|
635 |
|
|
f_axi_rd_id_outstanding_count = 0;
|
636 |
|
|
for(k=0; k< FIFOLN; k=k+1)
|
637 |
|
|
if (f_axi_rd_id_outstanding[k])
|
638 |
|
|
f_axi_rd_id_outstanding_count
|
639 |
|
|
= f_axi_rd_id_outstanding_count +1;
|
640 |
|
|
//
|
641 |
|
|
f_axi_wr_id_outstanding_count = 0;
|
642 |
|
|
for(k=0; k< FIFOLN; k=k+1)
|
643 |
|
|
if (f_axi_wr_id_outstanding[k])
|
644 |
|
|
f_axi_wr_id_outstanding_count = f_axi_wr_id_outstanding_count +1;
|
645 |
|
|
f_axi_awr_id_outstanding_count = 0;
|
646 |
|
|
for(k=0; k< FIFOLN; k=k+1)
|
647 |
|
|
if (f_axi_awr_id_outstanding[k])
|
648 |
|
|
f_axi_awr_id_outstanding_count = f_axi_awr_id_outstanding_count +1;
|
649 |
|
|
end
|
650 |
|
|
|
651 |
|
|
always @(*)
|
652 |
|
|
assume((!F_CHECK_IDS)||(f_axi_awr_outstanding== f_axi_awr_id_outstanding_count));
|
653 |
|
|
|
654 |
|
|
always @(*)
|
655 |
|
|
assume((!F_CHECK_IDS)||(f_axi_wr_outstanding == f_axi_wr_id_outstanding_count));
|
656 |
|
|
|
657 |
|
|
always @(*)
|
658 |
|
|
assume((!F_CHECK_IDS)||(f_axi_rd_outstanding == f_axi_rd_id_outstanding_count));
|
659 |
|
|
|
660 |
|
|
always @(*)
|
661 |
|
|
assume( ((f_axi_wr_id_complete)&(~f_axi_awr_id_outstanding)) == 0);
|
662 |
|
|
|
663 |
|
|
generate if (F_OPT_BURSTS)
|
664 |
|
|
begin
|
665 |
|
|
reg [(8-1):0] f_rd_pending [0:(FIFOLN-1)];
|
666 |
|
|
reg [(8-1):0] f_wr_pending,
|
667 |
|
|
f_rd_count, f_wr_count;
|
668 |
|
|
|
669 |
|
|
reg r_last_rd_id_valid,
|
670 |
|
|
r_last_wr_id_valid;
|
671 |
|
|
|
672 |
|
|
reg [(C_AXI_ID_WIDTH-1):0] r_last_wr_id, r_last_rd_id;
|
673 |
|
|
|
674 |
|
|
initial r_last_wr_id_valid = 1'b0;
|
675 |
|
|
initial r_last_rd_id_valid = 1'b0;
|
676 |
|
|
always @(posedge i_clk)
|
677 |
|
|
if (!i_axi_reset_n)
|
678 |
|
|
begin
|
679 |
|
|
r_last_wr_id_valid <= 1'b0;
|
680 |
|
|
r_last_rd_id_valid <= 1'b0;
|
681 |
|
|
f_wr_count <= 0;
|
682 |
|
|
f_rd_count <= 0;
|
683 |
|
|
end else begin
|
684 |
|
|
if (axi_awr_req)
|
685 |
|
|
begin
|
686 |
|
|
f_wr_pending <= i_axi_awlen+9'h1;
|
687 |
|
|
assume(f_wr_pending == 0);
|
688 |
|
|
r_last_wr_id_valid <= 1'b1;
|
689 |
|
|
end
|
690 |
|
|
|
691 |
|
|
if (axi_ard_req)
|
692 |
|
|
f_rd_pending[i_axi_arid] <= i_axi_arlen+9'h1;
|
693 |
|
|
|
694 |
|
|
|
695 |
|
|
if ((axi_wr_req)&&(i_axi_wlast))
|
696 |
|
|
begin
|
697 |
|
|
f_wr_count <= 0;
|
698 |
|
|
r_last_wr_id_valid <= 1'b0;
|
699 |
|
|
assume(
|
700 |
|
|
// Either this is the last
|
701 |
|
|
// of a series of requests we've
|
702 |
|
|
// been waiting for,
|
703 |
|
|
(f_wr_pending == f_wr_count - 9'h1)
|
704 |
|
|
// *or* the only value
|
705 |
|
|
// associated with an as yet
|
706 |
|
|
// to be counted request
|
707 |
|
|
||((axi_awr_req)&&(i_axi_awlen == 0)));
|
708 |
|
|
end else if (axi_wr_req)
|
709 |
|
|
f_wr_count <= f_wr_count + 1'b1;
|
710 |
|
|
|
711 |
|
|
if (axi_rd_ack)
|
712 |
|
|
begin
|
713 |
|
|
if (i_axi_rlast)
|
714 |
|
|
r_last_rd_id_valid <= 1'b0;
|
715 |
|
|
else
|
716 |
|
|
r_last_rd_id_valid <= 1'b1;
|
717 |
|
|
|
718 |
|
|
r_last_rd_id <= i_axi_rid;
|
719 |
|
|
if ((axi_rd_ack)&&(r_last_rd_id_valid))
|
720 |
|
|
assert(i_axi_rid == r_last_rd_id);
|
721 |
|
|
end
|
722 |
|
|
|
723 |
|
|
if ((axi_rd_ack)&&(i_axi_rlast))
|
724 |
|
|
assume(f_rd_count == f_rd_pending[i_axi_rid]-9'h1);
|
725 |
|
|
if ((axi_rd_ack)&&(i_axi_rlast))
|
726 |
|
|
f_rd_count <= 0;
|
727 |
|
|
else if (axi_rd_ack)
|
728 |
|
|
f_rd_count <= f_rd_count + 1'b1;
|
729 |
|
|
end
|
730 |
|
|
end else begin
|
731 |
|
|
always @(*) begin
|
732 |
|
|
// Since we aren't allowing bursts, *every*
|
733 |
|
|
// write data and read data must always be the last
|
734 |
|
|
// value
|
735 |
|
|
assume((i_axi_wlast)||(!i_axi_wvalid));
|
736 |
|
|
assert((i_axi_rlast)||(!i_axi_rvalid));
|
737 |
|
|
|
738 |
|
|
assume((!i_axi_arvalid)||(i_axi_arlen==0));
|
739 |
|
|
assume((!i_axi_awvalid)||(i_axi_awlen==0));
|
740 |
|
|
end
|
741 |
|
|
|
742 |
|
|
always @(posedge i_clk)
|
743 |
|
|
if (i_axi_awvalid)
|
744 |
|
|
assume(i_axi_awlen == 0);
|
745 |
|
|
always @(posedge i_clk)
|
746 |
|
|
if (i_axi_arvalid)
|
747 |
|
|
assume(i_axi_arlen == 0);
|
748 |
|
|
always @(posedge i_clk)
|
749 |
|
|
if (i_axi_wvalid)
|
750 |
|
|
assume(i_axi_wlast);
|
751 |
|
|
always @(posedge i_clk)
|
752 |
|
|
if (i_axi_rvalid)
|
753 |
|
|
assert(i_axi_rlast);
|
754 |
|
|
end endgenerate
|
755 |
|
|
|
756 |
|
|
`endif
|
757 |
|
|
endmodule
|