1 |
16 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
2 |
|
|
//
|
3 |
|
|
// Filename: faxil_slave.v (Formal properties of an AXI lite slave)
|
4 |
|
|
//
|
5 |
|
|
// Project: Pipelined Wishbone to AXI converter
|
6 |
|
|
//
|
7 |
|
|
// Purpose:
|
8 |
|
|
//
|
9 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
10 |
|
|
// Gisselquist Technology, LLC
|
11 |
|
|
//
|
12 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
13 |
|
|
//
|
14 |
|
|
// Copyright (C) 2018-2019, Gisselquist Technology, LLC
|
15 |
|
|
//
|
16 |
|
|
// This file is part of the pipelined Wishbone to AXI converter project, a
|
17 |
|
|
// project that contains multiple bus bridging designs and formal bus property
|
18 |
|
|
// sets.
|
19 |
|
|
//
|
20 |
|
|
// The bus bridge designs and property sets are free RTL designs: you can
|
21 |
|
|
// redistribute them and/or modify any of them under the terms of the GNU
|
22 |
|
|
// Lesser General Public License as published by the Free Software Foundation,
|
23 |
|
|
// either version 3 of the License, or (at your option) any later version.
|
24 |
|
|
//
|
25 |
|
|
// The bus bridge designs and property sets are distributed in the hope that
|
26 |
|
|
// they will be useful, but WITHOUT ANY WARRANTY; without even the implied
|
27 |
|
|
// warranty of MERCHANTIBILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
28 |
|
|
// GNU Lesser General Public License for more details.
|
29 |
|
|
//
|
30 |
|
|
// You should have received a copy of the GNU Lesser General Public License
|
31 |
|
|
// along with these designs. (It's in the $(ROOT)/doc directory. Run make
|
32 |
|
|
// with no target there if the PDF file isn't present.) If not, see
|
33 |
|
|
// <http://www.gnu.org/licenses/> for a copy.
|
34 |
|
|
//
|
35 |
|
|
// License: LGPL, v3, as defined and found on www.gnu.org,
|
36 |
|
|
// http://www.gnu.org/licenses/lgpl.html
|
37 |
|
|
//
|
38 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
39 |
|
|
//
|
40 |
|
|
//
|
41 |
|
|
`default_nettype none
|
42 |
|
|
//
|
43 |
|
|
module faxil_slave #(
|
44 |
|
|
parameter C_AXI_DATA_WIDTH = 32,// Fixed, width of the AXI R&W data
|
45 |
|
|
parameter C_AXI_ADDR_WIDTH = 28,// AXI Address width (log wordsize)
|
46 |
|
|
localparam DW = C_AXI_DATA_WIDTH,
|
47 |
|
|
localparam AW = C_AXI_ADDR_WIDTH,
|
48 |
|
|
parameter [0:0] F_OPT_HAS_CACHE = 1'b0,
|
49 |
|
|
parameter [0:0] F_OPT_NO_READS = 1'b0,
|
50 |
|
|
parameter [0:0] F_OPT_NO_WRITES = 1'b0,
|
51 |
|
|
parameter [0:0] F_OPT_BRESP = 1'b1,
|
52 |
|
|
parameter [0:0] F_OPT_RRESP = 1'b1,
|
53 |
|
|
parameter [0:0] F_OPT_ASSUME_RESET = 1'b1,
|
54 |
|
|
parameter F_LGDEPTH = 4,
|
55 |
|
|
parameter [(F_LGDEPTH-1):0] F_AXI_MAXWAIT = 12,
|
56 |
|
|
parameter [(F_LGDEPTH-1):0] F_AXI_MAXDELAY = 12
|
57 |
|
|
) (
|
58 |
|
|
input wire i_clk, // System clock
|
59 |
|
|
input wire i_axi_reset_n,
|
60 |
|
|
|
61 |
|
|
// AXI write address channel signals
|
62 |
|
|
input wire i_axi_awready,//Slave is ready to accept
|
63 |
|
|
input wire [AW-1:0] i_axi_awaddr, // Write address
|
64 |
|
|
input wire [3:0] i_axi_awcache, // Write Cache type
|
65 |
|
|
input wire [2:0] i_axi_awprot, // Write Protection type
|
66 |
|
|
input wire i_axi_awvalid, // Write address valid
|
67 |
|
|
|
68 |
|
|
// AXI write data channel signals
|
69 |
|
|
input wire i_axi_wready, // Write data ready
|
70 |
|
|
input wire [DW-1:0] i_axi_wdata, // Write data
|
71 |
|
|
input wire [DW/8-1:0] i_axi_wstrb, // Write strobes
|
72 |
|
|
input wire i_axi_wvalid, // Write valid
|
73 |
|
|
|
74 |
|
|
// AXI write response channel signals
|
75 |
|
|
input wire [1:0] i_axi_bresp, // Write response
|
76 |
|
|
input wire i_axi_bvalid, // Write reponse valid
|
77 |
|
|
input wire i_axi_bready, // Response ready
|
78 |
|
|
|
79 |
|
|
// AXI read address channel signals
|
80 |
|
|
input wire i_axi_arready, // Read address ready
|
81 |
|
|
input wire [AW-1:0] i_axi_araddr, // Read address
|
82 |
|
|
input wire [3:0] i_axi_arcache, // Read Cache type
|
83 |
|
|
input wire [2:0] i_axi_arprot, // Read Protection type
|
84 |
|
|
input wire i_axi_arvalid, // Read address valid
|
85 |
|
|
|
86 |
|
|
// AXI read data channel signals
|
87 |
|
|
input wire [1:0] i_axi_rresp, // Read response
|
88 |
|
|
input wire i_axi_rvalid, // Read reponse valid
|
89 |
|
|
input wire [DW-1:0] i_axi_rdata, // Read data
|
90 |
|
|
input wire i_axi_rready, // Read Response ready
|
91 |
|
|
//
|
92 |
|
|
output reg [(F_LGDEPTH-1):0] f_axi_rd_outstanding,
|
93 |
|
|
output reg [(F_LGDEPTH-1):0] f_axi_wr_outstanding,
|
94 |
|
|
output reg [(F_LGDEPTH-1):0] f_axi_awr_outstanding
|
95 |
|
|
);
|
96 |
|
|
|
97 |
|
|
//*****************************************************************************
|
98 |
|
|
// Parameter declarations
|
99 |
|
|
//*****************************************************************************
|
100 |
|
|
|
101 |
|
|
//*****************************************************************************
|
102 |
|
|
// Internal register and wire declarations
|
103 |
|
|
//*****************************************************************************
|
104 |
|
|
|
105 |
|
|
// wire w_fifo_full;
|
106 |
|
|
wire axi_rd_ack, axi_wr_ack, axi_ard_req, axi_awr_req, axi_wr_req,
|
107 |
|
|
axi_rd_err, axi_wr_err;
|
108 |
|
|
//
|
109 |
|
|
assign axi_ard_req = (i_axi_arvalid)&&(i_axi_arready);
|
110 |
|
|
assign axi_awr_req = (i_axi_awvalid)&&(i_axi_awready);
|
111 |
|
|
assign axi_wr_req = (i_axi_wvalid )&&(i_axi_wready);
|
112 |
|
|
//
|
113 |
|
|
assign axi_rd_ack = (i_axi_rvalid)&&(i_axi_rready);
|
114 |
|
|
assign axi_wr_ack = (i_axi_bvalid)&&(i_axi_bready);
|
115 |
|
|
assign axi_rd_err = (axi_rd_ack)&&(i_axi_rresp[1]);
|
116 |
|
|
assign axi_wr_err = (axi_wr_ack)&&(i_axi_bresp[1]);
|
117 |
|
|
|
118 |
|
|
`define SLAVE_ASSUME assume
|
119 |
|
|
`define SLAVE_ASSERT assert
|
120 |
|
|
|
121 |
|
|
//
|
122 |
|
|
// Setup
|
123 |
|
|
//
|
124 |
|
|
reg f_past_valid;
|
125 |
|
|
integer k;
|
126 |
|
|
|
127 |
|
|
initial f_past_valid = 1'b0;
|
128 |
|
|
always @(posedge i_clk)
|
129 |
|
|
f_past_valid <= 1'b1;
|
130 |
|
|
|
131 |
|
|
generate if (F_OPT_ASSUME_RESET)
|
132 |
|
|
begin : ASSUME_INIITAL_RESET
|
133 |
|
|
always @(*)
|
134 |
|
|
if (!f_past_valid)
|
135 |
|
|
assume(!i_axi_reset_n);
|
136 |
|
|
end else begin : ASSERT_INIITAL_RESET
|
137 |
|
|
always @(*)
|
138 |
|
|
if (!f_past_valid)
|
139 |
|
|
assert(!i_axi_reset_n);
|
140 |
|
|
end endgenerate
|
141 |
|
|
|
142 |
|
|
////////////////////////////////////////////////////////////////////////
|
143 |
|
|
//
|
144 |
|
|
//
|
145 |
|
|
// Reset properties
|
146 |
|
|
//
|
147 |
|
|
//
|
148 |
|
|
////////////////////////////////////////////////////////////////////////
|
149 |
|
|
|
150 |
|
|
//
|
151 |
|
|
// If asserted, the reset must be asserted for a minimum of 16 clocks
|
152 |
|
|
reg [3:0] f_reset_length;
|
153 |
|
|
initial f_reset_length = 0;
|
154 |
|
|
always @(posedge i_clk)
|
155 |
|
|
if (i_axi_reset_n)
|
156 |
|
|
f_reset_length <= 0;
|
157 |
|
|
else if (!(&f_reset_length))
|
158 |
|
|
f_reset_length <= f_reset_length + 1'b1;
|
159 |
|
|
|
160 |
|
|
|
161 |
|
|
generate if (F_OPT_ASSUME_RESET)
|
162 |
|
|
begin : ASSUME_RESET
|
163 |
|
|
always @(posedge i_clk)
|
164 |
|
|
if ((f_past_valid)&&(!$past(i_axi_reset_n))&&(!$past(&f_reset_length)))
|
165 |
|
|
assume(!i_axi_reset_n);
|
166 |
|
|
|
167 |
|
|
always @(*)
|
168 |
|
|
if ((f_reset_length > 0)&&(f_reset_length < 4'hf))
|
169 |
|
|
assume(!i_axi_reset_n);
|
170 |
|
|
|
171 |
|
|
end else begin : ASSERT_RESET
|
172 |
|
|
|
173 |
|
|
always @(posedge i_clk)
|
174 |
|
|
if ((f_past_valid)&&(!$past(i_axi_reset_n))&&(!$past(&f_reset_length)))
|
175 |
|
|
assert(!i_axi_reset_n);
|
176 |
|
|
|
177 |
|
|
always @(*)
|
178 |
|
|
if ((f_reset_length > 0)&&(f_reset_length < 4'hf))
|
179 |
|
|
assert(!i_axi_reset_n);
|
180 |
|
|
|
181 |
|
|
end endgenerate
|
182 |
|
|
|
183 |
|
|
always @(posedge i_clk)
|
184 |
|
|
if ((!f_past_valid)||(!$past(i_axi_reset_n)))
|
185 |
|
|
begin
|
186 |
|
|
`SLAVE_ASSUME(!i_axi_arvalid);
|
187 |
|
|
`SLAVE_ASSUME(!i_axi_awvalid);
|
188 |
|
|
`SLAVE_ASSUME(!i_axi_wvalid);
|
189 |
|
|
//
|
190 |
|
|
`SLAVE_ASSERT(!i_axi_bvalid);
|
191 |
|
|
`SLAVE_ASSERT(!i_axi_rvalid);
|
192 |
|
|
end
|
193 |
|
|
|
194 |
|
|
////////////////////////////////////////////////////////////////////////
|
195 |
|
|
//
|
196 |
|
|
//
|
197 |
|
|
// Constant input assumptions (cache and prot)
|
198 |
|
|
//
|
199 |
|
|
//
|
200 |
|
|
////////////////////////////////////////////////////////////////////////
|
201 |
|
|
|
202 |
|
|
always @(*)
|
203 |
|
|
if (i_axi_awvalid)
|
204 |
|
|
begin
|
205 |
|
|
`SLAVE_ASSUME(i_axi_awprot == 3'h0);
|
206 |
|
|
if (F_OPT_HAS_CACHE)
|
207 |
|
|
// Normal non-cachable, but bufferable
|
208 |
|
|
`SLAVE_ASSUME(i_axi_awcache == 4'h3);
|
209 |
|
|
else
|
210 |
|
|
// No caching capability
|
211 |
|
|
`SLAVE_ASSUME(i_axi_awcache == 4'h0);
|
212 |
|
|
end
|
213 |
|
|
|
214 |
|
|
always @(*)
|
215 |
|
|
if (i_axi_arvalid)
|
216 |
|
|
begin
|
217 |
|
|
`SLAVE_ASSUME(i_axi_arprot == 3'h0);
|
218 |
|
|
if (F_OPT_HAS_CACHE)
|
219 |
|
|
// Normal non-cachable, but bufferable
|
220 |
|
|
`SLAVE_ASSUME(i_axi_arcache == 4'h3);
|
221 |
|
|
else
|
222 |
|
|
// No caching capability
|
223 |
|
|
`SLAVE_ASSUME(i_axi_arcache == 4'h0);
|
224 |
|
|
end
|
225 |
|
|
|
226 |
|
|
always @(*)
|
227 |
|
|
if ((i_axi_bvalid)&&(!F_OPT_BRESP))
|
228 |
|
|
`SLAVE_ASSERT(i_axi_bresp == 0);
|
229 |
|
|
always @(*)
|
230 |
|
|
if ((i_axi_rvalid)&&(!F_OPT_RRESP))
|
231 |
|
|
`SLAVE_ASSERT(i_axi_rresp == 0);
|
232 |
|
|
always @(*)
|
233 |
|
|
if (i_axi_bvalid)
|
234 |
|
|
`SLAVE_ASSERT(i_axi_bresp != 2'b01); // Exclusive access not allowed
|
235 |
|
|
always @(*)
|
236 |
|
|
if (i_axi_rvalid)
|
237 |
|
|
`SLAVE_ASSERT(i_axi_rresp != 2'b01); // Exclusive access not allowed
|
238 |
|
|
|
239 |
|
|
|
240 |
|
|
////////////////////////////////////////////////////////////////////////
|
241 |
|
|
//
|
242 |
|
|
//
|
243 |
|
|
// Stability assumptions
|
244 |
|
|
//
|
245 |
|
|
//
|
246 |
|
|
////////////////////////////////////////////////////////////////////////
|
247 |
|
|
|
248 |
|
|
// Assume any response from the bus will not change prior to that
|
249 |
|
|
// response being accepted
|
250 |
|
|
always @(posedge i_clk)
|
251 |
|
|
if ((f_past_valid)&&($past(i_axi_reset_n)))
|
252 |
|
|
begin
|
253 |
|
|
// Write address channel
|
254 |
|
|
if ((f_past_valid)&&($past(i_axi_awvalid))&&(!$past(i_axi_awready)))
|
255 |
|
|
begin
|
256 |
|
|
`SLAVE_ASSUME(i_axi_awvalid);
|
257 |
|
|
`SLAVE_ASSUME($stable(i_axi_awaddr));
|
258 |
|
|
end
|
259 |
|
|
|
260 |
|
|
// Write data channel
|
261 |
|
|
if ((f_past_valid)&&($past(i_axi_wvalid))&&(!$past(i_axi_wready)))
|
262 |
|
|
begin
|
263 |
|
|
`SLAVE_ASSUME(i_axi_wvalid);
|
264 |
|
|
`SLAVE_ASSUME($stable(i_axi_wstrb));
|
265 |
|
|
`SLAVE_ASSUME($stable(i_axi_wdata));
|
266 |
|
|
end
|
267 |
|
|
|
268 |
|
|
// Incoming Read address channel
|
269 |
|
|
if ((f_past_valid)&&($past(i_axi_arvalid))&&(!$past(i_axi_arready)))
|
270 |
|
|
begin
|
271 |
|
|
`SLAVE_ASSUME(i_axi_arvalid);
|
272 |
|
|
`SLAVE_ASSUME($stable(i_axi_araddr));
|
273 |
|
|
end
|
274 |
|
|
|
275 |
|
|
if ((f_past_valid)&&($past(i_axi_rvalid))&&(!$past(i_axi_rready)))
|
276 |
|
|
begin
|
277 |
|
|
`SLAVE_ASSERT(i_axi_rvalid);
|
278 |
|
|
`SLAVE_ASSERT($stable(i_axi_rresp));
|
279 |
|
|
`SLAVE_ASSERT($stable(i_axi_rdata));
|
280 |
|
|
end
|
281 |
|
|
|
282 |
|
|
if ((f_past_valid)&&($past(i_axi_bvalid))&&(!$past(i_axi_bready)))
|
283 |
|
|
begin
|
284 |
|
|
`SLAVE_ASSERT(i_axi_bvalid);
|
285 |
|
|
`SLAVE_ASSERT($stable(i_axi_bresp));
|
286 |
|
|
end
|
287 |
|
|
end
|
288 |
|
|
|
289 |
|
|
// Nothing should be returned or requested on the first clock
|
290 |
|
|
initial `SLAVE_ASSUME(!i_axi_arvalid);
|
291 |
|
|
initial `SLAVE_ASSUME(!i_axi_awvalid);
|
292 |
|
|
initial `SLAVE_ASSUME(!i_axi_wvalid);
|
293 |
|
|
//
|
294 |
|
|
initial `SLAVE_ASSERT(!i_axi_bvalid);
|
295 |
|
|
initial `SLAVE_ASSERT(!i_axi_rvalid);
|
296 |
|
|
|
297 |
|
|
////////////////////////////////////////////////////////////////////////
|
298 |
|
|
//
|
299 |
|
|
//
|
300 |
|
|
// Insist upon a maximum delay before a request is accepted
|
301 |
|
|
//
|
302 |
|
|
//
|
303 |
|
|
////////////////////////////////////////////////////////////////////////
|
304 |
|
|
|
305 |
|
|
generate if (F_AXI_MAXWAIT > 0)
|
306 |
|
|
begin : CHECK_STALL_COUNT
|
307 |
|
|
//
|
308 |
|
|
// AXI write address channel
|
309 |
|
|
//
|
310 |
|
|
//
|
311 |
|
|
reg [(F_LGDEPTH-1):0] f_axi_awstall,
|
312 |
|
|
f_axi_wstall,
|
313 |
|
|
f_axi_arstall,
|
314 |
|
|
f_axi_bstall,
|
315 |
|
|
f_axi_rstall;
|
316 |
|
|
|
317 |
|
|
initial f_axi_awstall = 0;
|
318 |
|
|
always @(posedge i_clk)
|
319 |
|
|
if ((!i_axi_reset_n)||(!i_axi_awvalid)||(i_axi_awready))
|
320 |
|
|
f_axi_awstall <= 0;
|
321 |
|
|
else if ((f_axi_awr_outstanding >= f_axi_wr_outstanding)
|
322 |
|
|
&&(i_axi_awvalid && !i_axi_wvalid))
|
323 |
|
|
// If we are waiting for the write channel to be valid
|
324 |
|
|
// then don't count stalls
|
325 |
|
|
f_axi_awstall <= 0;
|
326 |
|
|
else if ((!i_axi_bvalid)||(i_axi_bready))
|
327 |
|
|
f_axi_awstall <= f_axi_awstall + 1'b1;
|
328 |
|
|
|
329 |
|
|
always @(*)
|
330 |
|
|
`SLAVE_ASSERT(f_axi_awstall < F_AXI_MAXWAIT);
|
331 |
|
|
|
332 |
|
|
//
|
333 |
|
|
// AXI write data channel
|
334 |
|
|
//
|
335 |
|
|
//
|
336 |
|
|
initial f_axi_wstall = 0;
|
337 |
|
|
always @(posedge i_clk)
|
338 |
|
|
if ((!i_axi_reset_n)||(!i_axi_wvalid)||(i_axi_wready))
|
339 |
|
|
f_axi_wstall <= 0;
|
340 |
|
|
else if ((f_axi_wr_outstanding >= f_axi_awr_outstanding)
|
341 |
|
|
&&(!i_axi_awvalid && i_axi_wvalid))
|
342 |
|
|
// If we are waiting for the write address channel
|
343 |
|
|
// to be valid, then don't count stalls
|
344 |
|
|
f_axi_wstall <= 0;
|
345 |
|
|
else if ((!i_axi_bvalid)||(i_axi_bready))
|
346 |
|
|
f_axi_wstall <= f_axi_wstall + 1'b1;
|
347 |
|
|
|
348 |
|
|
always @(*)
|
349 |
|
|
`SLAVE_ASSERT(f_axi_wstall < F_AXI_MAXWAIT);
|
350 |
|
|
|
351 |
|
|
//
|
352 |
|
|
// AXI read address channel
|
353 |
|
|
//
|
354 |
|
|
//
|
355 |
|
|
initial f_axi_arstall = 0;
|
356 |
|
|
always @(posedge i_clk)
|
357 |
|
|
if ((!i_axi_reset_n)||(!i_axi_arvalid)||(i_axi_arready))
|
358 |
|
|
f_axi_arstall <= 0;
|
359 |
|
|
else if ((!i_axi_rvalid)||(i_axi_rready))
|
360 |
|
|
f_axi_arstall <= f_axi_arstall + 1'b1;
|
361 |
|
|
|
362 |
|
|
always @(*)
|
363 |
|
|
`SLAVE_ASSERT(f_axi_arstall < F_AXI_MAXWAIT);
|
364 |
|
|
|
365 |
|
|
// AXI write response channel
|
366 |
|
|
initial f_axi_bstall = 0;
|
367 |
|
|
always @(posedge i_clk)
|
368 |
|
|
if ((!i_axi_reset_n)||(!i_axi_bvalid)||(i_axi_bready))
|
369 |
|
|
f_axi_bstall <= 0;
|
370 |
|
|
else
|
371 |
|
|
f_axi_bstall <= f_axi_bstall + 1'b1;
|
372 |
|
|
|
373 |
|
|
always @(*)
|
374 |
|
|
`SLAVE_ASSUME(f_axi_bstall < F_AXI_MAXWAIT);
|
375 |
|
|
|
376 |
|
|
// AXI read response channel
|
377 |
|
|
initial f_axi_rstall = 0;
|
378 |
|
|
always @(posedge i_clk)
|
379 |
|
|
if ((!i_axi_reset_n)||(!i_axi_rvalid)||(i_axi_rready))
|
380 |
|
|
f_axi_rstall <= 0;
|
381 |
|
|
else
|
382 |
|
|
f_axi_rstall <= f_axi_rstall + 1'b1;
|
383 |
|
|
|
384 |
|
|
always @(*)
|
385 |
|
|
`SLAVE_ASSUME(f_axi_rstall < F_AXI_MAXWAIT);
|
386 |
|
|
|
387 |
|
|
end endgenerate
|
388 |
|
|
|
389 |
|
|
////////////////////////////////////////////////////////////////////////
|
390 |
|
|
//
|
391 |
|
|
//
|
392 |
|
|
// Xilinx extensions/guarantees to the AXI protocol
|
393 |
|
|
//
|
394 |
|
|
// 1. The address line will never be more than two clocks ahead of
|
395 |
|
|
// the write data channel, and
|
396 |
|
|
// 2. The write data channel will never be more than one clock
|
397 |
|
|
// ahead of the address channel.
|
398 |
|
|
//
|
399 |
|
|
//
|
400 |
|
|
////////////////////////////////////////////////////////////////////////
|
401 |
|
|
//
|
402 |
|
|
//
|
403 |
|
|
// Rule number one:
|
404 |
|
|
always @(posedge i_clk)
|
405 |
|
|
if ((i_axi_reset_n)&&($past(i_axi_reset_n))
|
406 |
|
|
&&($past(i_axi_awvalid && !i_axi_wvalid,2))
|
407 |
|
|
&&($past(f_axi_awr_outstanding>=f_axi_wr_outstanding,2))
|
408 |
|
|
&&(!$past(i_axi_wvalid)))
|
409 |
|
|
`SLAVE_ASSUME(i_axi_wvalid);
|
410 |
|
|
|
411 |
|
|
// Rule number two:
|
412 |
|
|
always @(posedge i_clk)
|
413 |
|
|
if ((i_axi_reset_n)&&(!$past(i_axi_awvalid))&&($past(i_axi_wvalid))
|
414 |
|
|
&&(f_axi_awr_outstanding < f_axi_wr_outstanding))
|
415 |
|
|
`SLAVE_ASSUME(i_axi_awvalid);
|
416 |
|
|
|
417 |
|
|
////////////////////////////////////////////////////////////////////////
|
418 |
|
|
//
|
419 |
|
|
//
|
420 |
|
|
// Count outstanding transactions. With these measures, we count
|
421 |
|
|
// once per any burst.
|
422 |
|
|
//
|
423 |
|
|
//
|
424 |
|
|
////////////////////////////////////////////////////////////////////////
|
425 |
|
|
initial f_axi_awr_outstanding = 0;
|
426 |
|
|
always @(posedge i_clk)
|
427 |
|
|
if (!i_axi_reset_n)
|
428 |
|
|
f_axi_awr_outstanding <= 0;
|
429 |
|
|
else case({ (axi_awr_req), (axi_wr_ack) })
|
430 |
|
|
2'b10: f_axi_awr_outstanding <= f_axi_awr_outstanding + 1'b1;
|
431 |
|
|
2'b01: f_axi_awr_outstanding <= f_axi_awr_outstanding - 1'b1;
|
432 |
|
|
default: begin end
|
433 |
|
|
endcase
|
434 |
|
|
|
435 |
|
|
initial f_axi_wr_outstanding = 0;
|
436 |
|
|
always @(posedge i_clk)
|
437 |
|
|
if (!i_axi_reset_n)
|
438 |
|
|
f_axi_wr_outstanding <= 0;
|
439 |
|
|
else case({ (axi_wr_req), (axi_wr_ack) })
|
440 |
|
|
2'b01: f_axi_wr_outstanding <= f_axi_wr_outstanding - 1'b1;
|
441 |
|
|
2'b10: f_axi_wr_outstanding <= f_axi_wr_outstanding + 1'b1;
|
442 |
|
|
endcase
|
443 |
|
|
|
444 |
|
|
initial f_axi_rd_outstanding = 0;
|
445 |
|
|
always @(posedge i_clk)
|
446 |
|
|
if (!i_axi_reset_n)
|
447 |
|
|
f_axi_rd_outstanding <= 0;
|
448 |
|
|
else case({ (axi_ard_req), (axi_rd_ack) })
|
449 |
|
|
2'b01: f_axi_rd_outstanding <= f_axi_rd_outstanding - 1'b1;
|
450 |
|
|
2'b10: f_axi_rd_outstanding <= f_axi_rd_outstanding + 1'b1;
|
451 |
|
|
endcase
|
452 |
|
|
|
453 |
|
|
//
|
454 |
|
|
// Do not let the number of outstanding requests overflow
|
455 |
|
|
always @(posedge i_clk)
|
456 |
|
|
`SLAVE_ASSERT(f_axi_wr_outstanding < {(F_LGDEPTH){1'b1}});
|
457 |
|
|
always @(posedge i_clk)
|
458 |
|
|
`SLAVE_ASSERT(f_axi_awr_outstanding < {(F_LGDEPTH){1'b1}});
|
459 |
|
|
always @(posedge i_clk)
|
460 |
|
|
`SLAVE_ASSERT(f_axi_rd_outstanding < {(F_LGDEPTH){1'b1}});
|
461 |
|
|
|
462 |
|
|
//
|
463 |
|
|
// That means that requests need to stop when we're almost full
|
464 |
|
|
always @(posedge i_clk)
|
465 |
|
|
if (f_axi_awr_outstanding == { {(F_LGDEPTH-1){1'b1}}, 1'b0} )
|
466 |
|
|
assert(!i_axi_awvalid);
|
467 |
|
|
always @(posedge i_clk)
|
468 |
|
|
if (f_axi_wr_outstanding == { {(F_LGDEPTH-1){1'b1}}, 1'b0} )
|
469 |
|
|
assert(!i_axi_wvalid);
|
470 |
|
|
always @(posedge i_clk)
|
471 |
|
|
if (f_axi_rd_outstanding == { {(F_LGDEPTH-1){1'b1}}, 1'b0} )
|
472 |
|
|
assert(!i_axi_arvalid);
|
473 |
|
|
|
474 |
|
|
////////////////////////////////////////////////////////////////////////
|
475 |
|
|
//
|
476 |
|
|
//
|
477 |
|
|
// Insist that all responses are returned in less than a maximum delay
|
478 |
|
|
// In this case, we count responses within a burst, rather than entire
|
479 |
|
|
// bursts.
|
480 |
|
|
//
|
481 |
|
|
//
|
482 |
|
|
////////////////////////////////////////////////////////////////////////
|
483 |
|
|
generate if (F_AXI_MAXDELAY > 0)
|
484 |
|
|
begin : CHECK_MAX_DELAY
|
485 |
|
|
|
486 |
|
|
reg [(F_LGDEPTH-1):0] f_axi_wr_ack_delay,
|
487 |
|
|
f_axi_rd_ack_delay;
|
488 |
|
|
|
489 |
|
|
initial f_axi_rd_ack_delay = 0;
|
490 |
|
|
always @(posedge i_clk)
|
491 |
|
|
if ((!i_axi_reset_n)||(i_axi_rvalid)||(f_axi_rd_outstanding==0))
|
492 |
|
|
f_axi_rd_ack_delay <= 0;
|
493 |
|
|
else
|
494 |
|
|
f_axi_rd_ack_delay <= f_axi_rd_ack_delay + 1'b1;
|
495 |
|
|
|
496 |
|
|
initial f_axi_wr_ack_delay = 0;
|
497 |
|
|
always @(posedge i_clk)
|
498 |
|
|
if ((!i_axi_reset_n)||(i_axi_bvalid)||(f_axi_wr_outstanding==0))
|
499 |
|
|
f_axi_wr_ack_delay <= 0;
|
500 |
|
|
else if (f_axi_wr_outstanding > 0)
|
501 |
|
|
f_axi_wr_ack_delay <= f_axi_wr_ack_delay + 1'b1;
|
502 |
|
|
|
503 |
|
|
always @(*)
|
504 |
|
|
`SLAVE_ASSERT(f_axi_rd_ack_delay < F_AXI_MAXDELAY);
|
505 |
|
|
|
506 |
|
|
always @(*)
|
507 |
|
|
`SLAVE_ASSERT(f_axi_wr_ack_delay < F_AXI_MAXDELAY);
|
508 |
|
|
|
509 |
|
|
end endgenerate
|
510 |
|
|
|
511 |
|
|
////////////////////////////////////////////////////////////////////////
|
512 |
|
|
//
|
513 |
|
|
//
|
514 |
|
|
// Assume acknowledgements must follow requests
|
515 |
|
|
//
|
516 |
|
|
// The f_axi*outstanding counters count the number of requests. No
|
517 |
|
|
// acknowledgment should issue without a pending request
|
518 |
|
|
// burst. Further, the spec is clear: you can't acknowledge something
|
519 |
|
|
// on the same clock you get the request. There must be at least one
|
520 |
|
|
// clock delay.
|
521 |
|
|
//
|
522 |
|
|
//
|
523 |
|
|
////////////////////////////////////////////////////////////////////////
|
524 |
|
|
|
525 |
|
|
//
|
526 |
|
|
// AXI write response channel
|
527 |
|
|
//
|
528 |
|
|
always @(posedge i_clk)
|
529 |
|
|
if (i_axi_bvalid)
|
530 |
|
|
begin
|
531 |
|
|
`SLAVE_ASSERT(f_axi_awr_outstanding > 0);
|
532 |
|
|
`SLAVE_ASSERT(f_axi_wr_outstanding > 0);
|
533 |
|
|
end
|
534 |
|
|
|
535 |
|
|
//
|
536 |
|
|
// AXI read data channel signals
|
537 |
|
|
//
|
538 |
|
|
always @(posedge i_clk)
|
539 |
|
|
if (i_axi_rvalid)
|
540 |
|
|
`SLAVE_ASSERT(f_axi_rd_outstanding > 0);
|
541 |
|
|
|
542 |
|
|
////////////////////////////////////////////////////////////////////////
|
543 |
|
|
//
|
544 |
|
|
//
|
545 |
|
|
// Optionally disable either read or write channels (or both??)
|
546 |
|
|
//
|
547 |
|
|
//
|
548 |
|
|
////////////////////////////////////////////////////////////////////////
|
549 |
|
|
|
550 |
|
|
initial assert((!F_OPT_NO_READS)||(!F_OPT_NO_WRITES));
|
551 |
|
|
|
552 |
|
|
generate if (F_OPT_NO_READS)
|
553 |
|
|
begin : NO_READS
|
554 |
|
|
|
555 |
|
|
always @(*)
|
556 |
|
|
`SLAVE_ASSUME(i_axi_arvalid == 0);
|
557 |
|
|
always @(*)
|
558 |
|
|
`SLAVE_ASSERT(f_axi_rd_outstanding == 0);
|
559 |
|
|
always @(*)
|
560 |
|
|
`SLAVE_ASSERT(i_axi_rvalid == 0);
|
561 |
|
|
|
562 |
|
|
end endgenerate
|
563 |
|
|
|
564 |
|
|
generate if (F_OPT_NO_WRITES)
|
565 |
|
|
begin : NO_WRITES
|
566 |
|
|
|
567 |
|
|
always @(*)
|
568 |
|
|
`SLAVE_ASSUME(i_axi_awvalid == 0);
|
569 |
|
|
always @(*)
|
570 |
|
|
`SLAVE_ASSUME(i_axi_wvalid == 0);
|
571 |
|
|
always @(*)
|
572 |
|
|
`SLAVE_ASSERT(f_axi_wr_outstanding == 0);
|
573 |
|
|
always @(*)
|
574 |
|
|
`SLAVE_ASSERT(f_axi_awr_outstanding == 0);
|
575 |
|
|
always @(*)
|
576 |
|
|
`SLAVE_ASSERT(i_axi_bvalid == 0);
|
577 |
|
|
|
578 |
|
|
end endgenerate
|
579 |
|
|
|
580 |
|
|
////////////////////////////////////////////////////////////////////////
|
581 |
|
|
//
|
582 |
|
|
//
|
583 |
|
|
// Cover properties
|
584 |
|
|
//
|
585 |
|
|
// We'll use this to prove that transactions are even possible, and
|
586 |
|
|
// hence that we haven't so constrained the bus that nothing can take
|
587 |
|
|
// place.
|
588 |
|
|
//
|
589 |
|
|
//
|
590 |
|
|
////////////////////////////////////////////////////////////////////////
|
591 |
|
|
|
592 |
|
|
//
|
593 |
|
|
// AXI write response channel
|
594 |
|
|
//
|
595 |
|
|
always @(posedge i_clk)
|
596 |
|
|
if (!F_OPT_NO_WRITES)
|
597 |
|
|
cover((i_axi_bvalid)&&(i_axi_bready));
|
598 |
|
|
|
599 |
|
|
//
|
600 |
|
|
// AXI read response channel
|
601 |
|
|
//
|
602 |
|
|
always @(posedge i_clk)
|
603 |
|
|
if (!F_OPT_NO_READS)
|
604 |
|
|
cover((i_axi_rvalid)&&(i_axi_rready));
|
605 |
|
|
endmodule
|