| 1 |
2 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
| 2 |
|
|
//
|
| 3 |
|
|
// Filename: wbddrsdram.v
|
| 4 |
|
|
//
|
| 5 |
16 |
dgisselq |
// Project: A wishbone controlled DDR3 SDRAM memory controller.
|
| 6 |
|
|
// Used in: OpenArty, an entirely open SoC based upon the Arty platform
|
| 7 |
2 |
dgisselq |
//
|
| 8 |
16 |
dgisselq |
// Purpose: To control a DDR3-1333 (9-9-9) memory from a wishbone bus.
|
| 9 |
|
|
// In our particular implementation, there will be two command
|
| 10 |
|
|
// clocks (2.5 ns) per FPGA clock (i_clk) at 5 ns, and 64-bits transferred
|
| 11 |
|
|
// per FPGA clock. However, since the memory is focused around 128-bit
|
| 12 |
|
|
// word transfers, attempts to transfer other than adjacent 64-bit words
|
| 13 |
|
|
// will (of necessity) suffer stalls. Please see the documentation for
|
| 14 |
|
|
// more details of how this controller works.
|
| 15 |
2 |
dgisselq |
//
|
| 16 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
| 17 |
|
|
// Gisselquist Technology, LLC
|
| 18 |
|
|
//
|
| 19 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
| 20 |
|
|
//
|
| 21 |
|
|
// Copyright (C) 2015-2016, Gisselquist Technology, LLC
|
| 22 |
|
|
//
|
| 23 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
| 24 |
|
|
// modify it under the terms of the GNU General Public License as published
|
| 25 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
| 26 |
|
|
// your option) any later version.
|
| 27 |
|
|
//
|
| 28 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
| 29 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
| 30 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 31 |
|
|
// for more details.
|
| 32 |
|
|
//
|
| 33 |
|
|
// You should have received a copy of the GNU General Public License along
|
| 34 |
|
|
// with this program. (It's in the $(ROOT)/doc directory, run make with no
|
| 35 |
|
|
// target there if the PDF file isn't present.) If not, see
|
| 36 |
|
|
// <http://www.gnu.org/licenses/> for a copy.
|
| 37 |
|
|
//
|
| 38 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
| 39 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
| 40 |
|
|
//
|
| 41 |
|
|
//
|
| 42 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
| 43 |
|
|
//
|
| 44 |
|
|
//
|
| 45 |
|
|
|
| 46 |
|
|
// Possible commands to the DDR3 memory. These consist of settings for the
|
| 47 |
|
|
// bits: o_wb_cs_n, o_wb_ras_n, o_wb_cas_n, and o_wb_we_n, respectively.
|
| 48 |
|
|
`define DDR_MRSET 4'b0000
|
| 49 |
|
|
`define DDR_REFRESH 4'b0001
|
| 50 |
|
|
`define DDR_PRECHARGE 4'b0010
|
| 51 |
|
|
`define DDR_ACTIVATE 4'b0011
|
| 52 |
|
|
`define DDR_WRITE 4'b0100
|
| 53 |
|
|
`define DDR_READ 4'b0101
|
| 54 |
4 |
dgisselq |
`define DDR_ZQS 4'b0110
|
| 55 |
2 |
dgisselq |
`define DDR_NOOP 4'b0111
|
| 56 |
|
|
//`define DDR_DESELECT 4'b1???
|
| 57 |
|
|
//
|
| 58 |
|
|
// In this controller, 24-bit commands tend to be passed around. These
|
| 59 |
|
|
// 'commands' are bit fields. Here we specify the bits associated with
|
| 60 |
|
|
// the bit fields.
|
| 61 |
5 |
dgisselq |
`define DDR_RSTDONE 24 // End the reset sequence?
|
| 62 |
|
|
`define DDR_RSTTIMER 23 // Does this reset command take multiple clocks?
|
| 63 |
|
|
`define DDR_RSTBIT 22 // Value to place on reset_n
|
| 64 |
|
|
`define DDR_CKEBIT 21 // Should this reset command set CKE?
|
| 65 |
7 |
dgisselq |
//
|
| 66 |
|
|
// Refresh command bit fields
|
| 67 |
18 |
dgisselq |
`define DDR_PREREFRESH_STALL 24
|
| 68 |
7 |
dgisselq |
`define DDR_NEEDREFRESH 23
|
| 69 |
|
|
`define DDR_RFTIMER 22
|
| 70 |
|
|
`define DDR_RFBEGIN 21
|
| 71 |
|
|
//
|
| 72 |
5 |
dgisselq |
`define DDR_CMDLEN 21
|
| 73 |
|
|
`define DDR_CSBIT 20
|
| 74 |
|
|
`define DDR_RASBIT 19
|
| 75 |
|
|
`define DDR_CASBIT 18
|
| 76 |
|
|
`define DDR_WEBIT 17
|
| 77 |
|
|
`define DDR_NOPTIMER 16 // Steal this from BA bits
|
| 78 |
2 |
dgisselq |
`define DDR_BABITS 3 // BABITS are really from 18:16, they are 3 bits
|
| 79 |
3 |
dgisselq |
`define DDR_ADDR_BITS 14
|
| 80 |
7 |
dgisselq |
//
|
| 81 |
16 |
dgisselq |
//
|
| 82 |
3 |
dgisselq |
module wbddrsdram(i_clk, i_reset,
|
| 83 |
16 |
dgisselq |
// Wishbone inputs
|
| 84 |
2 |
dgisselq |
i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data,
|
| 85 |
16 |
dgisselq |
i_wb_sel,
|
| 86 |
|
|
// Wishbone outputs
|
| 87 |
|
|
o_wb_ack, o_wb_stall, o_wb_data,
|
| 88 |
17 |
dgisselq |
// Memory command wires
|
| 89 |
16 |
dgisselq |
o_ddr_reset_n, o_ddr_cke, o_ddr_bus_oe,
|
| 90 |
18 |
dgisselq |
o_ddr_cmd_a, o_ddr_cmd_b, o_ddr_cmd_c, o_ddr_cmd_d,
|
| 91 |
17 |
dgisselq |
// And the data wires to go with them ....
|
| 92 |
18 |
dgisselq |
o_ddr_data, i_ddr_data, o_bus);
|
| 93 |
16 |
dgisselq |
// These parameters are not really meant for adjusting from the
|
| 94 |
|
|
// top level. These are more internal variables, recorded here
|
| 95 |
|
|
// so that things can be automatically adjusted without much
|
| 96 |
|
|
// problem.
|
| 97 |
18 |
dgisselq |
parameter CKRP = 0;
|
| 98 |
|
|
parameter BUSNOW = 2, BUSREG = BUSNOW-1;
|
| 99 |
16 |
dgisselq |
// The commands (above) include (in this order):
|
| 100 |
|
|
// o_ddr_cs_n, o_ddr_ras_n, o_ddr_cas_n, o_ddr_we_n,
|
| 101 |
|
|
// o_ddr_dqs, o_ddr_dm, o_ddr_odt
|
| 102 |
|
|
input i_clk, // *MUST* be at 200 MHz for this to work
|
| 103 |
|
|
i_reset;
|
| 104 |
2 |
dgisselq |
// Wishbone inputs
|
| 105 |
18 |
dgisselq |
input i_wb_cyc, i_wb_stb, i_wb_we;
|
| 106 |
|
|
// The bus address needs to identify a single 128-bit word of interest
|
| 107 |
|
|
input [23:0] i_wb_addr;
|
| 108 |
|
|
input [127:0] i_wb_data;
|
| 109 |
|
|
input [15:0] i_wb_sel;
|
| 110 |
16 |
dgisselq |
// Wishbone responses/outputs
|
| 111 |
|
|
output reg o_wb_ack, o_wb_stall;
|
| 112 |
18 |
dgisselq |
output reg [127:0] o_wb_data;
|
| 113 |
16 |
dgisselq |
// DDR memory command wires
|
| 114 |
18 |
dgisselq |
output reg o_ddr_reset_n, o_ddr_cke;
|
| 115 |
|
|
output reg [1:0] o_ddr_bus_oe;
|
| 116 |
16 |
dgisselq |
// CMDs are:
|
| 117 |
|
|
// 4 bits of CS, RAS, CAS, WE
|
| 118 |
|
|
// 3 bits of bank
|
| 119 |
|
|
// 14 bits of Address
|
| 120 |
|
|
// 1 bit of DQS (strobe active, or not)
|
| 121 |
|
|
// 4 bits of mask (one per byte)
|
| 122 |
|
|
// 1 bit of ODT
|
| 123 |
|
|
// ----
|
| 124 |
|
|
// 27 bits total
|
| 125 |
18 |
dgisselq |
output wire [26:0] o_ddr_cmd_a, o_ddr_cmd_b,
|
| 126 |
|
|
o_ddr_cmd_c, o_ddr_cmd_d;
|
| 127 |
|
|
output reg [127:0] o_ddr_data;
|
| 128 |
|
|
input [127:0] i_ddr_data;
|
| 129 |
|
|
output reg o_bus;
|
| 130 |
|
|
reg [2:0] cmd_pipe;
|
| 131 |
|
|
reg [1:0] nxt_pipe;
|
| 132 |
2 |
dgisselq |
|
| 133 |
18 |
dgisselq |
always @(posedge i_clk)
|
| 134 |
|
|
o_bus <= (i_wb_cyc)&&(i_wb_stb)&&(!o_wb_stall);
|
| 135 |
3 |
dgisselq |
|
| 136 |
18 |
dgisselq |
|
| 137 |
16 |
dgisselq |
//////////
|
| 138 |
2 |
dgisselq |
//
|
| 139 |
|
|
//
|
| 140 |
16 |
dgisselq |
// Reset Logic
|
| 141 |
2 |
dgisselq |
//
|
| 142 |
|
|
//
|
| 143 |
16 |
dgisselq |
//////////
|
| 144 |
|
|
//
|
| 145 |
|
|
//
|
| 146 |
2 |
dgisselq |
// Reset logic should be simple, and is given as follows:
|
| 147 |
|
|
// note that it depends upon a ROM memory, reset_mem, and an address into that
|
| 148 |
|
|
// memory: reset_address. Each memory location provides either a "command" to
|
| 149 |
|
|
// the DDR3 SDRAM, or a timer to wait until the next command. Further, the
|
| 150 |
|
|
// timer commands indicate whether or not the command during the timer is to
|
| 151 |
|
|
// be set to idle, or whether the command is instead left as it was.
|
| 152 |
9 |
dgisselq |
reg reset_override, reset_ztimer, maintenance_override;
|
| 153 |
18 |
dgisselq |
reg [3:0] reset_address;
|
| 154 |
|
|
reg [(`DDR_CMDLEN-1):0] reset_cmd, cmd_a, cmd_b, cmd_c, cmd_d,
|
| 155 |
|
|
refresh_cmd, maintenance_cmd;
|
| 156 |
5 |
dgisselq |
reg [24:0] reset_instruction;
|
| 157 |
3 |
dgisselq |
reg [16:0] reset_timer;
|
| 158 |
18 |
dgisselq |
reg r_move;
|
| 159 |
3 |
dgisselq |
initial reset_override = 1'b1;
|
| 160 |
18 |
dgisselq |
initial reset_address = 4'h0;
|
| 161 |
2 |
dgisselq |
always @(posedge i_clk)
|
| 162 |
|
|
if (i_reset)
|
| 163 |
|
|
begin
|
| 164 |
|
|
reset_override <= 1'b1;
|
| 165 |
5 |
dgisselq |
reset_cmd <= { `DDR_NOOP, reset_instruction[16:0]};
|
| 166 |
18 |
dgisselq |
end else if ((reset_ztimer)&&(reset_override))
|
| 167 |
5 |
dgisselq |
begin
|
| 168 |
|
|
if (reset_instruction[`DDR_RSTDONE])
|
| 169 |
|
|
reset_override <= 1'b0;
|
| 170 |
|
|
reset_cmd <= reset_instruction[20:0];
|
| 171 |
|
|
end
|
| 172 |
2 |
dgisselq |
|
| 173 |
4 |
dgisselq |
initial reset_ztimer = 1'b0; // Is the timer zero?
|
| 174 |
5 |
dgisselq |
initial reset_timer = 17'h02;
|
| 175 |
2 |
dgisselq |
always @(posedge i_clk)
|
| 176 |
|
|
if (i_reset)
|
| 177 |
|
|
begin
|
| 178 |
|
|
reset_ztimer <= 1'b0;
|
| 179 |
5 |
dgisselq |
reset_timer <= 17'd2;
|
| 180 |
2 |
dgisselq |
end else if (!reset_ztimer)
|
| 181 |
|
|
begin
|
| 182 |
|
|
reset_ztimer <= (reset_timer == 17'h01);
|
| 183 |
|
|
reset_timer <= reset_timer - 17'h01;
|
| 184 |
|
|
end else if (reset_instruction[`DDR_RSTTIMER])
|
| 185 |
|
|
begin
|
| 186 |
|
|
reset_ztimer <= 1'b0;
|
| 187 |
|
|
reset_timer <= reset_instruction[16:0];
|
| 188 |
|
|
end
|
| 189 |
|
|
|
| 190 |
16 |
dgisselq |
wire [16:0] w_ckXPR, w_ckRFC_first;
|
| 191 |
|
|
wire [13:0] w_MR0, w_MR1, w_MR2;
|
| 192 |
18 |
dgisselq |
assign w_MR0 = 14'h0210;
|
| 193 |
16 |
dgisselq |
assign w_MR1 = 14'h0044;
|
| 194 |
|
|
assign w_MR2 = 14'h0040;
|
| 195 |
18 |
dgisselq |
assign w_ckXPR = 17'd12; // Table 68, p186: 56 nCK / 4 sys clks= 14(-2)
|
| 196 |
|
|
assign w_ckRFC_first = 17'd11; // i.e. 52 nCK, or ckREFI
|
| 197 |
2 |
dgisselq |
always @(posedge i_clk)
|
| 198 |
16 |
dgisselq |
// DONE, TIMER, RESET, CKE,
|
| 199 |
4 |
dgisselq |
if (i_reset)
|
| 200 |
5 |
dgisselq |
reset_instruction <= { 4'h4, `DDR_NOOP, 17'd40_000 };
|
| 201 |
|
|
else if (reset_ztimer) case(reset_address) // RSTDONE, TIMER, CKE, ??
|
| 202 |
18 |
dgisselq |
// 1. Reset asserted (active low) for 200 us. (@80MHz)
|
| 203 |
|
|
4'h0: reset_instruction <= { 4'h4, `DDR_NOOP, 17'd16_000 };
|
| 204 |
4 |
dgisselq |
// 2. Reset de-asserted, wait 500 us before asserting CKE
|
| 205 |
18 |
dgisselq |
4'h1: reset_instruction <= { 4'h6, `DDR_NOOP, 17'd40_000 };
|
| 206 |
4 |
dgisselq |
// 3. Assert CKE, wait minimum of Reset CKE Exit time
|
| 207 |
18 |
dgisselq |
4'h2: reset_instruction <= { 4'h7, `DDR_NOOP, w_ckXPR };
|
| 208 |
16 |
dgisselq |
// 4. Set MR2. (4 nCK, no TIMER, but needs a NOOP cycle)
|
| 209 |
18 |
dgisselq |
4'h3: reset_instruction <= { 4'h3, `DDR_MRSET, 3'h2, w_MR2 };
|
| 210 |
16 |
dgisselq |
// 5. Set MR1. (4 nCK, no TIMER, but needs a NOOP cycle)
|
| 211 |
18 |
dgisselq |
4'h4: reset_instruction <= { 4'h3, `DDR_MRSET, 3'h1, w_MR1 };
|
| 212 |
16 |
dgisselq |
// 6. Set MR0
|
| 213 |
18 |
dgisselq |
4'h5: reset_instruction <= { 4'h3, `DDR_MRSET, 3'h0, w_MR0 };
|
| 214 |
|
|
// 7. Wait 12 nCK clocks, or 3 sys clocks
|
| 215 |
|
|
4'h6: reset_instruction <= { 4'h7, `DDR_NOOP, 17'd1 };
|
| 216 |
16 |
dgisselq |
// 8. Issue a ZQCL command to start ZQ calibration, A10 is high
|
| 217 |
18 |
dgisselq |
4'h7: reset_instruction <= { 4'h3, `DDR_ZQS, 6'h0, 1'b1, 10'h0};
|
| 218 |
16 |
dgisselq |
//11.Wait for both tDLLK and tZQinit completed, both are
|
| 219 |
|
|
// 512 cks. Of course, since every one of these commands takes
|
| 220 |
18 |
dgisselq |
// two clocks, we wait for one quarter as many clocks (minus
|
| 221 |
|
|
// two for our timer logic)
|
| 222 |
|
|
4'h8: reset_instruction <= { 4'h7, `DDR_NOOP, 17'd126 };
|
| 223 |
4 |
dgisselq |
// 12. Precharge all command
|
| 224 |
18 |
dgisselq |
4'h9: reset_instruction <= { 4'h3, `DDR_PRECHARGE, 6'h0, 1'b1, 10'h0 };
|
| 225 |
|
|
// 13. Wait 5 memory clocks (8 memory clocks) for the precharge
|
| 226 |
|
|
// to complete. A single NOOP here will have us waiting
|
| 227 |
|
|
// 8 clocks, so we should be good here.
|
| 228 |
|
|
4'ha: reset_instruction <= { 4'h3, `DDR_NOOP, 17'd0 };
|
| 229 |
4 |
dgisselq |
// 14. A single Auto Refresh commands
|
| 230 |
18 |
dgisselq |
4'hb: reset_instruction <= { 4'h3, `DDR_REFRESH, 17'h00 };
|
| 231 |
4 |
dgisselq |
// 15. Wait for the auto refresh to complete
|
| 232 |
18 |
dgisselq |
4'hc: reset_instruction <= { 4'h7, `DDR_NOOP, w_ckRFC_first };
|
| 233 |
|
|
4'hd: reset_instruction <= { 4'h7, `DDR_NOOP, 17'd3 };
|
| 234 |
2 |
dgisselq |
default:
|
| 235 |
5 |
dgisselq |
reset_instruction <={4'hb, `DDR_NOOP, 17'd00_000 };
|
| 236 |
2 |
dgisselq |
endcase
|
| 237 |
|
|
|
| 238 |
18 |
dgisselq |
initial reset_address = 4'h0;
|
| 239 |
2 |
dgisselq |
always @(posedge i_clk)
|
| 240 |
|
|
if (i_reset)
|
| 241 |
18 |
dgisselq |
reset_address <= 4'h0;
|
| 242 |
|
|
else if ((reset_ztimer)&&(reset_override)&&(!reset_instruction[`DDR_RSTDONE]))
|
| 243 |
|
|
reset_address <= reset_address + 4'h1;
|
| 244 |
16 |
dgisselq |
|
| 245 |
|
|
//////////
|
| 246 |
2 |
dgisselq |
//
|
| 247 |
16 |
dgisselq |
//
|
| 248 |
|
|
// Refresh Logic
|
| 249 |
|
|
//
|
| 250 |
|
|
//
|
| 251 |
|
|
//////////
|
| 252 |
|
|
//
|
| 253 |
|
|
//
|
| 254 |
|
|
//
|
| 255 |
|
|
// Okay, let's investigate when we need to do a refresh. Our plan will be to
|
| 256 |
|
|
// do a single refreshes every tREFI seconds. We will not push off refreshes,
|
| 257 |
|
|
// nor pull them in--for simplicity. tREFI = 7.8us, but it is a parameter
|
| 258 |
18 |
dgisselq |
// in the number of clocks (2496 nCK). In our case, 7.8us / 12.5ns = 624 clocks
|
| 259 |
|
|
// (not nCK!)
|
| 260 |
16 |
dgisselq |
//
|
| 261 |
|
|
// Note that 160ns are needed between refresh commands (JEDEC, p172), or
|
| 262 |
18 |
dgisselq |
// 52 clocks @320MHz. After this time, no more refreshes will be needed for
|
| 263 |
|
|
// (2496-52) clocks (@ 320 MHz), or (624-13) clocks (@80MHz).
|
| 264 |
16 |
dgisselq |
//
|
| 265 |
|
|
// This logic is very similar to the refresh logic, both use a memory as a
|
| 266 |
|
|
// script.
|
| 267 |
|
|
//
|
| 268 |
18 |
dgisselq |
reg need_refresh, pre_refresh_stall;
|
| 269 |
16 |
dgisselq |
reg refresh_ztimer;
|
| 270 |
|
|
reg [16:0] refresh_counter;
|
| 271 |
|
|
reg [2:0] refresh_addr;
|
| 272 |
18 |
dgisselq |
reg [24:0] refresh_instruction;
|
| 273 |
16 |
dgisselq |
always @(posedge i_clk)
|
| 274 |
|
|
if (reset_override)
|
| 275 |
18 |
dgisselq |
refresh_addr <= 3'h0;
|
| 276 |
16 |
dgisselq |
else if (refresh_ztimer)
|
| 277 |
|
|
refresh_addr <= refresh_addr + 3'h1;
|
| 278 |
|
|
else if (refresh_instruction[`DDR_RFBEGIN])
|
| 279 |
|
|
refresh_addr <= 3'h0;
|
| 280 |
2 |
dgisselq |
|
| 281 |
16 |
dgisselq |
always @(posedge i_clk)
|
| 282 |
|
|
if (reset_override)
|
| 283 |
|
|
begin
|
| 284 |
18 |
dgisselq |
refresh_ztimer <= 1'b0;
|
| 285 |
|
|
refresh_counter <= 17'd4;
|
| 286 |
16 |
dgisselq |
end else if (!refresh_ztimer)
|
| 287 |
|
|
begin
|
| 288 |
|
|
refresh_ztimer <= (refresh_counter == 17'h1);
|
| 289 |
|
|
refresh_counter <= (refresh_counter - 17'h1);
|
| 290 |
|
|
end else if (refresh_instruction[`DDR_RFTIMER])
|
| 291 |
|
|
begin
|
| 292 |
|
|
refresh_ztimer <= 1'b0;
|
| 293 |
|
|
refresh_counter <= refresh_instruction[16:0];
|
| 294 |
|
|
end
|
| 295 |
2 |
dgisselq |
|
| 296 |
16 |
dgisselq |
wire [16:0] w_ckREFI;
|
| 297 |
|
|
assign w_ckREFI = 17'd1560; // == 6240/4
|
| 298 |
|
|
|
| 299 |
|
|
wire [16:0] w_ckREFI_left, w_ckRFC_nxt, w_wait_for_idle,
|
| 300 |
18 |
dgisselq |
w_pre_stall_counts;
|
| 301 |
16 |
dgisselq |
|
| 302 |
|
|
// We need to wait for the bus to become idle from whatever state
|
| 303 |
|
|
// it is in. The difficult time for this measurement is assuming
|
| 304 |
|
|
// a write was just given. In that case, we need to wait for the
|
| 305 |
|
|
// write to complete, and then to wait an additional tWR (write
|
| 306 |
|
|
// recovery time) or 6 nCK clocks from the end of the write. This
|
| 307 |
|
|
// works out to seven idle bus cycles from the time of the write
|
| 308 |
|
|
// command, or a count of 5 (7-2).
|
| 309 |
18 |
dgisselq |
assign w_pre_stall_counts = 17'd3; //
|
| 310 |
|
|
assign w_wait_for_idle = 17'd0; //
|
| 311 |
|
|
assign w_ckREFI_left[16:0] = 17'd624 // The full interval
|
| 312 |
|
|
-17'd13 // Minus what we've already waited
|
| 313 |
16 |
dgisselq |
-w_wait_for_idle
|
| 314 |
18 |
dgisselq |
-17'd19;
|
| 315 |
|
|
assign w_ckRFC_nxt[16:0] = 17'd12-17'd3;
|
| 316 |
16 |
dgisselq |
|
| 317 |
|
|
always @(posedge i_clk)
|
| 318 |
18 |
dgisselq |
if (reset_override)
|
| 319 |
|
|
refresh_instruction <= { 4'h2, `DDR_NOOP, 17'd1 };
|
| 320 |
|
|
else if (refresh_ztimer)
|
| 321 |
16 |
dgisselq |
case(refresh_addr)//NEED-REFRESH, HAVE-TIMER, BEGIN(start-over)
|
| 322 |
|
|
// First, a number of clocks needing no refresh
|
| 323 |
18 |
dgisselq |
3'h0: refresh_instruction <= { 4'h2, `DDR_NOOP, w_ckREFI_left };
|
| 324 |
16 |
dgisselq |
// Then, we take command of the bus and wait for it to be
|
| 325 |
|
|
// guaranteed idle
|
| 326 |
18 |
dgisselq |
3'h1: refresh_instruction <= { 4'ha, `DDR_NOOP, w_pre_stall_counts };
|
| 327 |
|
|
3'h2: refresh_instruction <= { 4'hc, `DDR_NOOP, w_wait_for_idle };
|
| 328 |
16 |
dgisselq |
// Once the bus is idle, all commands complete, and a minimum
|
| 329 |
|
|
// recovery time given, we can issue a precharge all command
|
| 330 |
18 |
dgisselq |
3'h3: refresh_instruction <= { 4'hc, `DDR_PRECHARGE, 17'h0400 };
|
| 331 |
16 |
dgisselq |
// Now we need to wait tRP = 3 clocks (6 nCK)
|
| 332 |
18 |
dgisselq |
3'h4: refresh_instruction <= { 4'hc, `DDR_NOOP, 17'h00 };
|
| 333 |
|
|
3'h5: refresh_instruction <= { 4'hc, `DDR_REFRESH, 17'h00 };
|
| 334 |
|
|
3'h6: refresh_instruction <= { 4'he, `DDR_NOOP, w_ckRFC_nxt };
|
| 335 |
|
|
3'h7: refresh_instruction <= { 4'h2, `DDR_NOOP, 17'd12 };
|
| 336 |
|
|
// default:
|
| 337 |
|
|
// refresh_instruction <= { 4'h1, `DDR_NOOP, 17'h00 };
|
| 338 |
16 |
dgisselq |
endcase
|
| 339 |
|
|
|
| 340 |
|
|
// Note that we don't need to check if (reset_override) here since
|
| 341 |
|
|
// refresh_ztimer will always be true if (reset_override)--in other
|
| 342 |
|
|
// words, it will be true for many, many, clocks--enough for this
|
| 343 |
|
|
// logic to settle out.
|
| 344 |
|
|
always @(posedge i_clk)
|
| 345 |
|
|
if (refresh_ztimer)
|
| 346 |
|
|
refresh_cmd <= refresh_instruction[20:0];
|
| 347 |
|
|
always @(posedge i_clk)
|
| 348 |
|
|
if (refresh_ztimer)
|
| 349 |
|
|
need_refresh <= refresh_instruction[`DDR_NEEDREFRESH];
|
| 350 |
18 |
dgisselq |
always @(posedge i_clk)
|
| 351 |
|
|
if (refresh_ztimer)
|
| 352 |
|
|
pre_refresh_stall <= refresh_instruction[`DDR_PREREFRESH_STALL];
|
| 353 |
16 |
dgisselq |
|
| 354 |
|
|
|
| 355 |
|
|
|
| 356 |
|
|
reg [1:0] drive_dqs;
|
| 357 |
|
|
// Our chosen timing doesn't require any more resolution than one
|
| 358 |
|
|
// bus clock for ODT. (Of course, this really isn't necessary, since
|
| 359 |
|
|
// we aren't using ODT as per the MRx registers ... but we keep it
|
| 360 |
|
|
// around in case we change our minds later.)
|
| 361 |
18 |
dgisselq |
reg [15:0] ddr_dm;
|
| 362 |
16 |
dgisselq |
|
| 363 |
|
|
// The pending transaction
|
| 364 |
18 |
dgisselq |
reg [127:0] r_data;
|
| 365 |
16 |
dgisselq |
reg r_pending, r_we;
|
| 366 |
|
|
reg [13:0] r_row;
|
| 367 |
|
|
reg [2:0] r_bank;
|
| 368 |
|
|
reg [9:0] r_col;
|
| 369 |
18 |
dgisselq |
reg [15:0] r_sel;
|
| 370 |
16 |
dgisselq |
|
| 371 |
|
|
// The pending transaction, one further into the pipeline. This is
|
| 372 |
|
|
// the stage where the read/write command is actually given to the
|
| 373 |
|
|
// interface if we haven't stalled.
|
| 374 |
18 |
dgisselq |
reg [127:0] s_data;
|
| 375 |
|
|
reg s_pending, s_we;
|
| 376 |
16 |
dgisselq |
reg [13:0] s_row, s_nxt_row;
|
| 377 |
|
|
reg [2:0] s_bank, s_nxt_bank;
|
| 378 |
|
|
reg [9:0] s_col;
|
| 379 |
18 |
dgisselq |
reg [15:0] s_sel;
|
| 380 |
16 |
dgisselq |
|
| 381 |
|
|
// Can we preload the next bank?
|
| 382 |
|
|
reg [13:0] r_nxt_row;
|
| 383 |
|
|
reg [2:0] r_nxt_bank;
|
| 384 |
|
|
|
| 385 |
|
|
reg need_close_bank, need_close_this_bank,
|
| 386 |
|
|
last_close_bank, maybe_close_next_bank,
|
| 387 |
|
|
last_maybe_close,
|
| 388 |
|
|
need_open_bank, last_open_bank, maybe_open_next_bank,
|
| 389 |
|
|
last_maybe_open,
|
| 390 |
|
|
valid_bank;
|
| 391 |
|
|
reg [(`DDR_CMDLEN-1):0] close_bank_cmd, activate_bank_cmd,
|
| 392 |
|
|
maybe_close_cmd, maybe_open_cmd, rw_cmd;
|
| 393 |
|
|
reg rw_we;
|
| 394 |
|
|
|
| 395 |
|
|
wire w_this_closing_bank, w_this_opening_bank,
|
| 396 |
|
|
w_this_maybe_close, w_this_maybe_open,
|
| 397 |
|
|
w_this_rw_move;
|
| 398 |
|
|
reg last_closing_bank, last_opening_bank;
|
| 399 |
|
|
wire w_need_close_this_bank, w_need_open_bank,
|
| 400 |
18 |
dgisselq |
w_r_valid, w_s_valid;
|
| 401 |
16 |
dgisselq |
|
| 402 |
|
|
//////////
|
| 403 |
2 |
dgisselq |
//
|
| 404 |
|
|
//
|
| 405 |
16 |
dgisselq |
// Open Banks
|
| 406 |
|
|
//
|
| 407 |
|
|
//
|
| 408 |
|
|
//////////
|
| 409 |
|
|
//
|
| 410 |
|
|
//
|
| 411 |
|
|
//
|
| 412 |
2 |
dgisselq |
// Let's keep track of any open banks. There are 8 of them to keep track of.
|
| 413 |
|
|
//
|
| 414 |
18 |
dgisselq |
// A precharge requires 1 clocks at 80MHz to complete.
|
| 415 |
|
|
// An activate also requires 1 clocks at 80MHz to complete.
|
| 416 |
|
|
// By the time we log these, they will be complete.
|
| 417 |
16 |
dgisselq |
// Precharges are not allowed until the maximum of:
|
| 418 |
|
|
// 2 clocks (200 MHz) after a read command
|
| 419 |
18 |
dgisselq |
// 4 clocks after a write command
|
| 420 |
2 |
dgisselq |
//
|
| 421 |
|
|
//
|
| 422 |
3 |
dgisselq |
wire w_precharge_all;
|
| 423 |
16 |
dgisselq |
reg [CKRP:0] bank_status [0:7];
|
| 424 |
6 |
dgisselq |
reg [13:0] bank_address [0:7];
|
| 425 |
18 |
dgisselq |
reg [1:0] bank_wr_ck [0:7]; // tWTR
|
| 426 |
12 |
dgisselq |
reg bank_wr_ckzro [0:7]; // tWTR
|
| 427 |
18 |
dgisselq |
wire [7:0] bank_open;
|
| 428 |
|
|
wire [7:0] bank_closed;
|
| 429 |
6 |
dgisselq |
|
| 430 |
18 |
dgisselq |
wire [1:0] write_recycle_clocks;
|
| 431 |
|
|
assign write_recycle_clocks = 2'h3;
|
| 432 |
12 |
dgisselq |
|
| 433 |
18 |
dgisselq |
genvar k;
|
| 434 |
|
|
generate
|
| 435 |
|
|
for(k=0; k<8; k=k+1)
|
| 436 |
|
|
assign bank_open[k] = bank_status[k][0];
|
| 437 |
|
|
for(k=0; k<8; k=k+1)
|
| 438 |
|
|
assign bank_closed[k] = !bank_status[k][0];
|
| 439 |
|
|
endgenerate
|
| 440 |
|
|
|
| 441 |
16 |
dgisselq |
initial bank_open = 0;
|
| 442 |
14 |
dgisselq |
initial bank_closed = 8'hff;
|
| 443 |
2 |
dgisselq |
always @(posedge i_clk)
|
| 444 |
|
|
begin
|
| 445 |
18 |
dgisselq |
bank_wr_ck[0] <= (|bank_wr_ck[0])?(bank_wr_ck[0]-2'h1):2'h0;
|
| 446 |
|
|
bank_wr_ck[1] <= (|bank_wr_ck[1])?(bank_wr_ck[1]-2'h1):2'h0;
|
| 447 |
|
|
bank_wr_ck[2] <= (|bank_wr_ck[2])?(bank_wr_ck[2]-2'h1):2'h0;
|
| 448 |
|
|
bank_wr_ck[3] <= (|bank_wr_ck[3])?(bank_wr_ck[3]-2'h1):2'h0;
|
| 449 |
|
|
bank_wr_ck[4] <= (|bank_wr_ck[4])?(bank_wr_ck[4]-2'h1):2'h0;
|
| 450 |
|
|
bank_wr_ck[5] <= (|bank_wr_ck[5])?(bank_wr_ck[5]-2'h1):2'h0;
|
| 451 |
|
|
bank_wr_ck[6] <= (|bank_wr_ck[6])?(bank_wr_ck[6]-2'h1):2'h0;
|
| 452 |
|
|
bank_wr_ck[7] <= (|bank_wr_ck[7])?(bank_wr_ck[7]-2'h1):2'h0;
|
| 453 |
12 |
dgisselq |
|
| 454 |
18 |
dgisselq |
bank_wr_ckzro[0] <= (bank_wr_ck[0][1]==1'b0);
|
| 455 |
|
|
bank_wr_ckzro[1] <= (bank_wr_ck[1][1]==1'b0);
|
| 456 |
|
|
bank_wr_ckzro[2] <= (bank_wr_ck[2][1]==1'b0);
|
| 457 |
|
|
bank_wr_ckzro[3] <= (bank_wr_ck[3][1]==1'b0);
|
| 458 |
|
|
bank_wr_ckzro[4] <= (bank_wr_ck[4][1]==1'b0);
|
| 459 |
|
|
bank_wr_ckzro[5] <= (bank_wr_ck[5][1]==1'b0);
|
| 460 |
|
|
bank_wr_ckzro[6] <= (bank_wr_ck[6][1]==1'b0);
|
| 461 |
|
|
bank_wr_ckzro[7] <= (bank_wr_ck[7][1]==1'b0);
|
| 462 |
12 |
dgisselq |
|
| 463 |
18 |
dgisselq |
// bank_open[0] <= (bank_status[0][(CKRP-2):0] =={(CKRP-1){1'b1}});
|
| 464 |
|
|
// bank_open[1] <= (bank_status[1][(CKRP-2):0] =={(CKRP-1){1'b1}});
|
| 465 |
|
|
// bank_open[2] <= (bank_status[2][(CKRP-2):0] =={(CKRP-1){1'b1}});
|
| 466 |
|
|
// bank_open[3] <= (bank_status[3][(CKRP-2):0] =={(CKRP-1){1'b1}});
|
| 467 |
|
|
// bank_open[4] <= (bank_status[4][(CKRP-2):0] =={(CKRP-1){1'b1}});
|
| 468 |
|
|
// bank_open[5] <= (bank_status[5][(CKRP-2):0] =={(CKRP-1){1'b1}});
|
| 469 |
|
|
// bank_open[6] <= (bank_status[6][(CKRP-2):0] =={(CKRP-1){1'b1}});
|
| 470 |
|
|
// bank_open[7] <= (bank_status[7][(CKRP-2):0] =={(CKRP-1){1'b1}});
|
| 471 |
12 |
dgisselq |
|
| 472 |
18 |
dgisselq |
// bank_closed[0] <= (bank_status[0][(CKRP-3):0] == 0);
|
| 473 |
|
|
// bank_closed[1] <= (bank_status[1][(CKRP-3):0] == 0);
|
| 474 |
|
|
// bank_closed[2] <= (bank_status[2][(CKRP-3):0] == 0);
|
| 475 |
|
|
// bank_closed[3] <= (bank_status[3][(CKRP-3):0] == 0);
|
| 476 |
|
|
// bank_closed[4] <= (bank_status[4][(CKRP-3):0] == 0);
|
| 477 |
|
|
// bank_closed[5] <= (bank_status[5][(CKRP-3):0] == 0);
|
| 478 |
|
|
// bank_closed[6] <= (bank_status[6][(CKRP-3):0] == 0);
|
| 479 |
|
|
// bank_closed[7] <= (bank_status[7][(CKRP-3):0] == 0);
|
| 480 |
14 |
dgisselq |
|
| 481 |
12 |
dgisselq |
if (w_this_rw_move)
|
| 482 |
18 |
dgisselq |
bank_wr_ck[rw_cmd[16:14]] <= (rw_cmd[`DDR_WEBIT])? 2'h0
|
| 483 |
12 |
dgisselq |
: write_recycle_clocks;
|
| 484 |
|
|
|
| 485 |
18 |
dgisselq |
if (cmd_pipe[0])
|
| 486 |
|
|
begin
|
| 487 |
|
|
bank_status[s_bank] <= 1'b0;
|
| 488 |
|
|
if (nxt_pipe[1])
|
| 489 |
|
|
bank_status[s_nxt_bank] <= 1'b1;
|
| 490 |
|
|
end else begin
|
| 491 |
|
|
if (cmd_pipe[1])
|
| 492 |
|
|
bank_status[s_bank] <= 1'b1;
|
| 493 |
|
|
else if (nxt_pipe[1])
|
| 494 |
|
|
bank_status[s_nxt_bank] <= 1'b1;
|
| 495 |
|
|
if (nxt_pipe[0])
|
| 496 |
|
|
bank_status[s_nxt_bank] <= 1'b0;
|
| 497 |
|
|
end
|
| 498 |
|
|
|
| 499 |
14 |
dgisselq |
if (maintenance_override)
|
| 500 |
2 |
dgisselq |
begin
|
| 501 |
18 |
dgisselq |
bank_status[0] <= 1'b0;
|
| 502 |
|
|
bank_status[1] <= 1'b0;
|
| 503 |
|
|
bank_status[2] <= 1'b0;
|
| 504 |
|
|
bank_status[3] <= 1'b0;
|
| 505 |
|
|
bank_status[4] <= 1'b0;
|
| 506 |
|
|
bank_status[5] <= 1'b0;
|
| 507 |
|
|
bank_status[6] <= 1'b0;
|
| 508 |
|
|
bank_status[7] <= 1'b0;
|
| 509 |
2 |
dgisselq |
end
|
| 510 |
18 |
dgisselq |
|
| 511 |
2 |
dgisselq |
end
|
| 512 |
|
|
|
| 513 |
|
|
always @(posedge i_clk)
|
| 514 |
18 |
dgisselq |
if (cmd_pipe[1])
|
| 515 |
|
|
bank_address[s_bank] <= s_row;
|
| 516 |
|
|
else if (nxt_pipe[1])
|
| 517 |
|
|
bank_address[s_nxt_bank] <= s_nxt_row;
|
| 518 |
2 |
dgisselq |
|
| 519 |
16 |
dgisselq |
|
| 520 |
|
|
//////////
|
| 521 |
2 |
dgisselq |
//
|
| 522 |
|
|
//
|
| 523 |
16 |
dgisselq |
// Data BUS information
|
| 524 |
2 |
dgisselq |
//
|
| 525 |
|
|
//
|
| 526 |
16 |
dgisselq |
//////////
|
| 527 |
2 |
dgisselq |
//
|
| 528 |
|
|
//
|
| 529 |
16 |
dgisselq |
// Our purpose here is to keep track of when the data bus will be
|
| 530 |
|
|
// active. This is separate from the FIFO which will contain the
|
| 531 |
|
|
// data to be placed on the bus (when so placed), in that this is
|
| 532 |
|
|
// a group of shift registers--every position has a location in time,
|
| 533 |
|
|
// and time always moves forward. The FIFO, on the other hand, only
|
| 534 |
|
|
// moves forward when data moves onto the bus.
|
| 535 |
2 |
dgisselq |
//
|
| 536 |
|
|
//
|
| 537 |
16 |
dgisselq |
|
| 538 |
18 |
dgisselq |
reg [BUSNOW:0] bus_active, bus_read, bus_ack;
|
| 539 |
|
|
reg [BUSNOW:0] bus_subaddr;
|
| 540 |
3 |
dgisselq |
initial bus_active = 0;
|
| 541 |
14 |
dgisselq |
initial bus_ack = 0;
|
| 542 |
2 |
dgisselq |
always @(posedge i_clk)
|
| 543 |
|
|
begin
|
| 544 |
16 |
dgisselq |
bus_active[BUSNOW:0] <= { bus_active[(BUSNOW-1):0], 1'b0 };
|
| 545 |
|
|
// Drive the d-bus?
|
| 546 |
|
|
bus_read[BUSNOW:0] <= { bus_read[(BUSNOW-1):0], 1'b0 };
|
| 547 |
13 |
dgisselq |
// Will this position on the bus get a wishbone acknowledgement?
|
| 548 |
16 |
dgisselq |
bus_ack[BUSNOW:0] <= { bus_ack[(BUSNOW-1):0], 1'b0 };
|
| 549 |
|
|
//
|
| 550 |
|
|
bus_subaddr[BUSNOW:0] <= { bus_subaddr[(BUSNOW-1):0], 1'b1 };
|
| 551 |
13 |
dgisselq |
|
| 552 |
18 |
dgisselq |
if (cmd_pipe[2])
|
| 553 |
2 |
dgisselq |
begin
|
| 554 |
18 |
dgisselq |
bus_active[0]<= 1'b1; // Data transfers in one clocks
|
| 555 |
|
|
bus_ack[0] <= 1'b1;
|
| 556 |
|
|
bus_ack[0] <= 1'b1;
|
| 557 |
4 |
dgisselq |
|
| 558 |
18 |
dgisselq |
bus_read[0] <= !(rw_we);
|
| 559 |
2 |
dgisselq |
end
|
| 560 |
|
|
end
|
| 561 |
|
|
|
| 562 |
|
|
//
|
| 563 |
|
|
//
|
| 564 |
|
|
// Now, let's see, can we issue a read command?
|
| 565 |
|
|
//
|
| 566 |
|
|
//
|
| 567 |
18 |
dgisselq |
wire pre_valid;
|
| 568 |
|
|
assign pre_valid = !maintenance_override;
|
| 569 |
14 |
dgisselq |
|
| 570 |
18 |
dgisselq |
reg pipe_stall;
|
| 571 |
14 |
dgisselq |
assign w_r_valid = (pre_valid)&&(r_pending)
|
| 572 |
18 |
dgisselq |
&&(bank_status[r_bank][0])
|
| 573 |
14 |
dgisselq |
&&(bank_address[r_bank]==r_row)
|
| 574 |
|
|
&&((r_we)||(bank_wr_ckzro[r_bank]));
|
| 575 |
18 |
dgisselq |
assign w_s_valid = ((pre_valid)&&(s_pending)&&(pipe_stall)
|
| 576 |
|
|
&&(bank_status[s_bank][0])
|
| 577 |
14 |
dgisselq |
&&(bank_address[s_bank]==s_row)
|
| 578 |
18 |
dgisselq |
&&((s_we)||(bank_wr_ckzro[s_bank])));
|
| 579 |
14 |
dgisselq |
|
| 580 |
2 |
dgisselq |
always @(posedge i_clk)
|
| 581 |
|
|
begin
|
| 582 |
9 |
dgisselq |
r_pending <= (i_wb_stb)&&(~o_wb_stall)
|
| 583 |
|
|
||(r_pending)&&(pipe_stall);
|
| 584 |
|
|
if (~pipe_stall)
|
| 585 |
|
|
s_pending <= r_pending;
|
| 586 |
|
|
if (~pipe_stall)
|
| 587 |
2 |
dgisselq |
begin
|
| 588 |
18 |
dgisselq |
if (r_pending)
|
| 589 |
|
|
begin
|
| 590 |
|
|
pipe_stall <= 1'b1;
|
| 591 |
|
|
o_wb_stall <= 1'b1;
|
| 592 |
|
|
if (!bank_status[r_bank][0])
|
| 593 |
|
|
cmd_pipe <= 3'b010;
|
| 594 |
|
|
else if (bank_address[r_bank] != r_row)
|
| 595 |
|
|
cmd_pipe <= 3'b001; // Read in two clocks
|
| 596 |
|
|
else begin
|
| 597 |
|
|
cmd_pipe <= 3'b100; // Read now
|
| 598 |
|
|
pipe_stall <= 1'b0;
|
| 599 |
|
|
o_wb_stall <= 1'b0;
|
| 600 |
|
|
end
|
| 601 |
|
|
|
| 602 |
|
|
if (!bank_status[r_nxt_bank][0])
|
| 603 |
|
|
nxt_pipe <= 2'b10;
|
| 604 |
|
|
else if (bank_address[r_nxt_bank] != r_row)
|
| 605 |
|
|
nxt_pipe <= 2'b01; // Read in two clocks
|
| 606 |
|
|
else
|
| 607 |
|
|
nxt_pipe <= 2'b00; // Next is ready
|
| 608 |
|
|
if (nxt_pipe[1])
|
| 609 |
|
|
nxt_pipe[1] <= 1'b0;
|
| 610 |
|
|
end else begin
|
| 611 |
|
|
cmd_pipe <= 3'b000;
|
| 612 |
|
|
nxt_pipe <= { nxt_pipe[0], 1'b0 };
|
| 613 |
|
|
pipe_stall <= 1'b0;
|
| 614 |
|
|
o_wb_stall <= 1'b0;
|
| 615 |
|
|
end
|
| 616 |
9 |
dgisselq |
end else begin // if (pipe_stall)
|
| 617 |
18 |
dgisselq |
pipe_stall <= (s_pending)&&(cmd_pipe[0]);
|
| 618 |
|
|
o_wb_stall <= (s_pending)&&(cmd_pipe[0]);
|
| 619 |
|
|
cmd_pipe <= { cmd_pipe[1:0], 1'b0 };
|
| 620 |
|
|
|
| 621 |
|
|
nxt_pipe[0] <= (cmd_pipe[0])&&(nxt_pipe[0]);
|
| 622 |
|
|
nxt_pipe[1] <= ((cmd_pipe[0])&&(nxt_pipe[0])) ? 1'b0
|
| 623 |
|
|
: ((cmd_pipe[1])?(|nxt_pipe[1:0]) : nxt_pipe[0]);
|
| 624 |
9 |
dgisselq |
end
|
| 625 |
18 |
dgisselq |
if (pre_refresh_stall)
|
| 626 |
2 |
dgisselq |
o_wb_stall <= 1'b1;
|
| 627 |
|
|
|
| 628 |
9 |
dgisselq |
if (~pipe_stall)
|
| 629 |
2 |
dgisselq |
begin
|
| 630 |
|
|
r_we <= i_wb_we;
|
| 631 |
|
|
r_data <= i_wb_data;
|
| 632 |
18 |
dgisselq |
r_row <= i_wb_addr[23:10]; // 14 bits row address
|
| 633 |
|
|
r_bank <= i_wb_addr[9:7];
|
| 634 |
|
|
r_col <= { i_wb_addr[6:0], 3'b000 }; // 10 bits Caddr
|
| 635 |
16 |
dgisselq |
r_sel <= i_wb_sel;
|
| 636 |
2 |
dgisselq |
|
| 637 |
16 |
dgisselq |
// i_wb_addr[0] is the 8-bit byte selector of 16-bits (ignored)
|
| 638 |
|
|
// i_wb_addr[1] is the 16-bit half-word selector of 32-bits (ignored)
|
| 639 |
|
|
// i_wb_addr[2] is the 32-bit word selector of 64-bits (ignored)
|
| 640 |
|
|
// i_wb_addr[3] is the 64-bit long word selector of 128-bits
|
| 641 |
|
|
|
| 642 |
2 |
dgisselq |
// pre-emptive work
|
| 643 |
18 |
dgisselq |
r_nxt_row <= (i_wb_addr[9:7]==3'h7)
|
| 644 |
|
|
? (i_wb_addr[23:10]+14'h1)
|
| 645 |
|
|
: i_wb_addr[23:10];
|
| 646 |
|
|
r_nxt_bank <= i_wb_addr[9:7]+3'h1;
|
| 647 |
2 |
dgisselq |
end
|
| 648 |
9 |
dgisselq |
|
| 649 |
|
|
if (~pipe_stall)
|
| 650 |
|
|
begin
|
| 651 |
|
|
// Moving one down the pipeline
|
| 652 |
|
|
s_we <= r_we;
|
| 653 |
|
|
s_data <= r_data;
|
| 654 |
|
|
s_row <= r_row;
|
| 655 |
|
|
s_bank <= r_bank;
|
| 656 |
|
|
s_col <= r_col;
|
| 657 |
18 |
dgisselq |
s_sel <= (r_we)?(~r_sel):16'h00;
|
| 658 |
9 |
dgisselq |
|
| 659 |
|
|
// pre-emptive work
|
| 660 |
|
|
s_nxt_row <= r_nxt_row;
|
| 661 |
|
|
s_nxt_bank <= r_nxt_bank;
|
| 662 |
|
|
end
|
| 663 |
2 |
dgisselq |
end
|
| 664 |
|
|
|
| 665 |
18 |
dgisselq |
wire [2:0] this_bank;
|
| 666 |
|
|
wire [13:0] this_row;
|
| 667 |
|
|
wire [9:0] this_col;
|
| 668 |
|
|
assign this_bank = (pipe_stall)?s_bank : r_bank;
|
| 669 |
|
|
assign this_row = (pipe_stall)?s_row : r_row;
|
| 670 |
|
|
assign this_col = (pipe_stall)?s_col : r_col;
|
| 671 |
3 |
dgisselq |
|
| 672 |
18 |
dgisselq |
assign w_need_close_this_bank = (cmd_pipe == 3'b000);
|
| 673 |
|
|
wire w_this_bank_valid;
|
| 674 |
|
|
assign w_this_bank_valid = (cmd_pipe[2]);
|
| 675 |
2 |
dgisselq |
|
| 676 |
|
|
//
|
| 677 |
|
|
//
|
| 678 |
|
|
// Okay, let's look at the last assignment in our chain. It should look
|
| 679 |
|
|
// something like:
|
| 680 |
|
|
always @(posedge i_clk)
|
| 681 |
4 |
dgisselq |
if (i_reset)
|
| 682 |
|
|
o_ddr_reset_n <= 1'b0;
|
| 683 |
|
|
else if (reset_ztimer)
|
| 684 |
|
|
o_ddr_reset_n <= reset_instruction[`DDR_RSTBIT];
|
| 685 |
2 |
dgisselq |
always @(posedge i_clk)
|
| 686 |
4 |
dgisselq |
if (i_reset)
|
| 687 |
|
|
o_ddr_cke <= 1'b0;
|
| 688 |
|
|
else if (reset_ztimer)
|
| 689 |
|
|
o_ddr_cke <= reset_instruction[`DDR_CKEBIT];
|
| 690 |
6 |
dgisselq |
|
| 691 |
9 |
dgisselq |
always @(posedge i_clk)
|
| 692 |
|
|
if (i_reset)
|
| 693 |
|
|
maintenance_override <= 1'b1;
|
| 694 |
|
|
else
|
| 695 |
|
|
maintenance_override <= (reset_override)||(need_refresh);
|
| 696 |
7 |
dgisselq |
|
| 697 |
9 |
dgisselq |
initial maintenance_cmd = { `DDR_NOOP, 17'h00 };
|
| 698 |
|
|
always @(posedge i_clk)
|
| 699 |
|
|
if (i_reset)
|
| 700 |
|
|
maintenance_cmd <= { `DDR_NOOP, 17'h00 };
|
| 701 |
|
|
else
|
| 702 |
|
|
maintenance_cmd <= (reset_override)?reset_cmd:refresh_cmd;
|
| 703 |
|
|
|
| 704 |
18 |
dgisselq |
assign w_need_open_bank = ((r_pending)||(s_pending))
|
| 705 |
|
|
&&(bank_closed[this_bank])
|
| 706 |
|
|
||((pipe_stall)&&(!cmd_b[20]));
|
| 707 |
|
|
|
| 708 |
|
|
assign w_this_closing_bank = (!maintenance_override)&&(cmd_pipe[0]);
|
| 709 |
|
|
assign w_this_opening_bank = (!maintenance_override)&&(cmd_pipe[1]);
|
| 710 |
|
|
assign w_this_rw_move = (!maintenance_override)&&(cmd_pipe[2]);
|
| 711 |
|
|
assign w_this_maybe_close = (!maintenance_override)&&(!cmd_pipe[0])&&(nxt_pipe[0]);
|
| 712 |
|
|
assign w_this_maybe_open = (!maintenance_override)&&(!cmd_pipe[1])&&(nxt_pipe[1]);
|
| 713 |
|
|
reg [2:0] r_odt;
|
| 714 |
|
|
|
| 715 |
2 |
dgisselq |
always @(posedge i_clk)
|
| 716 |
|
|
begin
|
| 717 |
6 |
dgisselq |
last_opening_bank <= 1'b0;
|
| 718 |
|
|
last_closing_bank <= 1'b0;
|
| 719 |
|
|
last_maybe_open <= 1'b0;
|
| 720 |
|
|
last_maybe_close <= 1'b0;
|
| 721 |
16 |
dgisselq |
|
| 722 |
18 |
dgisselq |
|
| 723 |
|
|
// We run our commands by timeslots, A, B, C, and D in that
|
| 724 |
|
|
// order.
|
| 725 |
|
|
|
| 726 |
|
|
// Timeslot A always contains any maintenance commands we might
|
| 727 |
|
|
// have.
|
| 728 |
|
|
// Timeslot B always contains any precharge command, excluding
|
| 729 |
|
|
// the maintenance precharge-all command.
|
| 730 |
|
|
// Timeslot C always contains any activate command
|
| 731 |
|
|
// Timeslot D always contains any read/write command
|
| 732 |
|
|
//
|
| 733 |
|
|
// We can always set these commands to whatever, to reduce the
|
| 734 |
|
|
// used logic, as long as the top bit (CS_N) is used to select
|
| 735 |
|
|
// whether or not the command is active. If CS_N is 0 the
|
| 736 |
|
|
// command will be applied by the chip, if 1 the command turns
|
| 737 |
|
|
// into a deselect command that the chip will ignore.
|
| 738 |
|
|
//
|
| 739 |
|
|
cmd_a <= maintenance_cmd;
|
| 740 |
|
|
|
| 741 |
|
|
cmd_b <= { `DDR_PRECHARGE, s_nxt_bank, s_nxt_row[13:11], 1'b0, s_nxt_row[9:0] };
|
| 742 |
|
|
cmd_b[20] <= 1'b1; // Deactivate, unless ...
|
| 743 |
|
|
if (cmd_pipe[0])
|
| 744 |
|
|
cmd_b <= { `DDR_PRECHARGE, s_bank, s_row[13:11], 1'b0, s_row[9:0] };
|
| 745 |
|
|
cmd_b[20] <= (!cmd_pipe[0])&&(!nxt_pipe[0]);
|
| 746 |
|
|
|
| 747 |
|
|
cmd_c <= { `DDR_ACTIVATE, s_nxt_bank, s_nxt_row[13:11], 1'b0, s_nxt_row[9:0] };
|
| 748 |
|
|
cmd_c[20] <= 1'b1; // Disable command, unless ...
|
| 749 |
|
|
if (cmd_pipe[1])
|
| 750 |
|
|
cmd_c <= { `DDR_ACTIVATE, r_bank, r_row[13:0] };
|
| 751 |
|
|
else if (nxt_pipe[1])
|
| 752 |
|
|
cmd_c[20] <= 1'b0;
|
| 753 |
|
|
|
| 754 |
|
|
if (cmd_pipe[2])
|
| 755 |
|
|
begin
|
| 756 |
|
|
cmd_d[`DDR_CSBIT:`DDR_WEBIT] <= (s_we)?`DDR_WRITE:`DDR_READ;
|
| 757 |
|
|
cmd_d[(`DDR_WEBIT-1):0] <= { s_bank, 3'h0, 1'b0, s_col };
|
| 758 |
|
|
end
|
| 759 |
|
|
cmd_d[20] <= !(cmd_pipe[2]);
|
| 760 |
|
|
|
| 761 |
|
|
|
| 762 |
|
|
if ((s_pending)&&(pipe_stall))
|
| 763 |
|
|
rw_we <= s_we;
|
| 764 |
|
|
else
|
| 765 |
|
|
rw_we <= r_we;
|
| 766 |
|
|
|
| 767 |
|
|
r_odt <= { r_odt[2:1], (cmd_pipe[2])&&(s_we) };
|
| 768 |
|
|
// cmd_d <= rw_cmd;
|
| 769 |
|
|
r_move <= (!cmd_pipe[2]);
|
| 770 |
|
|
|
| 771 |
|
|
// Now, if the maintenance mode must override whatever we are
|
| 772 |
|
|
// doing, we only need to apply this more complicated logic
|
| 773 |
|
|
// to the CS_N bit, or bit[20], since this will activate or
|
| 774 |
|
|
// deactivate the rest of the command--making the rest
|
| 775 |
|
|
// either relevant (CS_N=0) or irrelevant (CS_N=1) as we need.
|
| 776 |
16 |
dgisselq |
if (maintenance_override)
|
| 777 |
18 |
dgisselq |
begin // Over-ride all commands. Make them deselect commands,
|
| 778 |
|
|
// save for the maintenance timeslot.
|
| 779 |
|
|
cmd_a[20] <= 1'b0;
|
| 780 |
|
|
cmd_b[20] <= 1'b1;
|
| 781 |
|
|
cmd_c[20] <= 1'b1;
|
| 782 |
|
|
cmd_d[20] <= 1'b1;
|
| 783 |
2 |
dgisselq |
end else
|
| 784 |
18 |
dgisselq |
cmd_a[20] <= 1'b1; // Disable maintenance timeslot
|
| 785 |
2 |
dgisselq |
end
|
| 786 |
|
|
|
| 787 |
18 |
dgisselq |
`define LGFIFOLN 3
|
| 788 |
|
|
`define FIFOLEN 8
|
| 789 |
7 |
dgisselq |
reg [(`LGFIFOLN-1):0] bus_fifo_head, bus_fifo_tail;
|
| 790 |
18 |
dgisselq |
reg [127:0] bus_fifo_data [0:(`FIFOLEN-1)];
|
| 791 |
|
|
reg [15:0] bus_fifo_sel [0:(`FIFOLEN-1)];
|
| 792 |
7 |
dgisselq |
reg pre_ack;
|
| 793 |
3 |
dgisselq |
|
| 794 |
7 |
dgisselq |
// The bus R/W FIFO
|
| 795 |
|
|
wire w_bus_fifo_read_next_transaction;
|
| 796 |
16 |
dgisselq |
assign w_bus_fifo_read_next_transaction = (bus_ack[BUSREG]);
|
| 797 |
7 |
dgisselq |
always @(posedge i_clk)
|
| 798 |
|
|
begin
|
| 799 |
|
|
pre_ack <= 1'b0;
|
| 800 |
13 |
dgisselq |
if (reset_override)
|
| 801 |
7 |
dgisselq |
begin
|
| 802 |
13 |
dgisselq |
bus_fifo_head <= {(`LGFIFOLN){1'b0}};
|
| 803 |
|
|
bus_fifo_tail <= {(`LGFIFOLN){1'b0}};
|
| 804 |
7 |
dgisselq |
end else begin
|
| 805 |
13 |
dgisselq |
if ((s_pending)&&(!pipe_stall))
|
| 806 |
|
|
bus_fifo_head <= bus_fifo_head + 1'b1;
|
| 807 |
7 |
dgisselq |
|
| 808 |
|
|
if (w_bus_fifo_read_next_transaction)
|
| 809 |
|
|
begin
|
| 810 |
13 |
dgisselq |
bus_fifo_tail <= bus_fifo_tail + 1'b1;
|
| 811 |
7 |
dgisselq |
pre_ack <= 1'b1;
|
| 812 |
|
|
end
|
| 813 |
|
|
end
|
| 814 |
9 |
dgisselq |
bus_fifo_data[bus_fifo_head] <= s_data;
|
| 815 |
16 |
dgisselq |
bus_fifo_sel[bus_fifo_head] <= s_sel;
|
| 816 |
7 |
dgisselq |
end
|
| 817 |
|
|
|
| 818 |
|
|
|
| 819 |
|
|
always @(posedge i_clk)
|
| 820 |
|
|
o_ddr_data <= bus_fifo_data[bus_fifo_tail];
|
| 821 |
16 |
dgisselq |
always @(posedge i_clk)
|
| 822 |
|
|
ddr_dm <= (bus_ack[BUSREG])? bus_fifo_sel[bus_fifo_tail]
|
| 823 |
18 |
dgisselq |
: ((!bus_read[BUSREG])? 16'hffff: 16'h0000);
|
| 824 |
16 |
dgisselq |
always @(posedge i_clk)
|
| 825 |
18 |
dgisselq |
begin
|
| 826 |
|
|
drive_dqs[1] <= (bus_active[(BUSREG)])
|
| 827 |
|
|
&&(!bus_read[(BUSREG)]);
|
| 828 |
|
|
drive_dqs[0] <= (bus_active[BUSREG:(BUSREG-1)] != 2'b00)
|
| 829 |
|
|
&&(bus_read[BUSREG:(BUSREG-1)] == 2'b00);
|
| 830 |
|
|
//
|
| 831 |
|
|
// Is the strobe on during the last clock?
|
| 832 |
|
|
o_ddr_bus_oe[0] <= (|bus_active[BUSREG:(BUSREG-1)])&&(!bus_read[BUSREG]);
|
| 833 |
|
|
// Is data transmitting the bus throughout?
|
| 834 |
|
|
o_ddr_bus_oe[1] <= (bus_active[BUSREG])&&(!bus_read[BUSREG]);
|
| 835 |
|
|
end
|
| 836 |
2 |
dgisselq |
|
| 837 |
18 |
dgisselq |
// First command
|
| 838 |
|
|
assign o_ddr_cmd_a = { cmd_a, drive_dqs[1], ddr_dm[15:12], drive_dqs[0] };
|
| 839 |
|
|
// Second command (of four)
|
| 840 |
|
|
assign o_ddr_cmd_b = { cmd_b, drive_dqs[1], ddr_dm[11: 8], drive_dqs[0] };
|
| 841 |
|
|
// Third command (of four)
|
| 842 |
|
|
assign o_ddr_cmd_c = { cmd_c, drive_dqs[1], ddr_dm[ 7: 4], drive_dqs[0] };
|
| 843 |
|
|
// Fourth command (of four)--occupies the last timeslot
|
| 844 |
|
|
assign o_ddr_cmd_d = { cmd_d, drive_dqs[0], ddr_dm[ 3: 0], drive_dqs[0] };
|
| 845 |
2 |
dgisselq |
|
| 846 |
16 |
dgisselq |
assign w_precharge_all = (cmd_a[`DDR_CSBIT:`DDR_WEBIT]==`DDR_PRECHARGE)
|
| 847 |
|
|
&&(cmd_a[10]);
|
| 848 |
|
|
|
| 849 |
13 |
dgisselq |
always @(posedge i_clk)
|
| 850 |
7 |
dgisselq |
o_wb_ack <= pre_ack;
|
| 851 |
|
|
always @(posedge i_clk)
|
| 852 |
|
|
o_wb_data <= i_ddr_data;
|
| 853 |
4 |
dgisselq |
|
| 854 |
2 |
dgisselq |
endmodule
|