OpenCores
URL https://opencores.org/ocsvn/wbddr3/wbddr3/trunk

Subversion Repositories wbddr3

[/] [wbddr3/] [trunk/] [rtl/] [wbddrsdram.v] - Blame information for rev 3

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 2 dgisselq
////////////////////////////////////////////////////////////////////////////////
2
//
3
// Filename:    wbddrsdram.v
4
//
5
// Project:     OpenArty, an entirely open SoC based upon the Arty platform
6
//
7
// Purpose:     
8
//
9
// Creator:     Dan Gisselquist, Ph.D.
10
//              Gisselquist Technology, LLC
11
//
12
////////////////////////////////////////////////////////////////////////////////
13
//
14
// Copyright (C) 2015-2016, Gisselquist Technology, LLC
15
//
16
// This program is free software (firmware): you can redistribute it and/or
17
// modify it under the terms of  the GNU General Public License as published
18
// by the Free Software Foundation, either version 3 of the License, or (at
19
// your option) any later version.
20
//
21
// This program is distributed in the hope that it will be useful, but WITHOUT
22
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
23
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
24
// for more details.
25
//
26
// You should have received a copy of the GNU General Public License along
27
// with this program.  (It's in the $(ROOT)/doc directory, run make with no
28
// target there if the PDF file isn't present.)  If not, see
29
// <http://www.gnu.org/licenses/> for a copy.
30
//
31
// License:     GPL, v3, as defined and found on www.gnu.org,
32
//              http://www.gnu.org/licenses/gpl.html
33
//
34
//
35
////////////////////////////////////////////////////////////////////////////////
36
//
37
//
38
 
39
// Possible commands to the DDR3 memory.  These consist of settings for the
40
// bits: o_wb_cs_n, o_wb_ras_n, o_wb_cas_n, and o_wb_we_n, respectively.
41
`define DDR_MRSET       4'b0000
42
`define DDR_REFRESH     4'b0001
43
`define DDR_PRECHARGE   4'b0010
44
`define DDR_ACTIVATE    4'b0011
45
`define DDR_WRITE       4'b0100
46
`define DDR_READ        4'b0101
47
`define DDR_NOOP        4'b0111
48
//`define       DDR_DESELECT    4'b1???
49
//
50
// In this controller, 24-bit commands tend to be passed around.  These 
51
// 'commands' are bit fields.  Here we specify the bits associated with
52
// the bit fields.
53 3 dgisselq
`define DDR_RSTDONE     26      // End the reset sequence?
54
`define DDR_RSTTIMER    25      // Does this reset command take multiple clocks?
55
`define DDR_RSTBIT      24      // Value to place on reset_n
56
`define DDR_CKEBIT      23      // Should this reset command set CKE?
57
`define DDR_CMDLEN      23
58 2 dgisselq
`define DDR_CSBIT       22
59
`define DDR_RASBIT      21
60
`define DDR_CASBIT      20
61
`define DDR_WEBIT       19
62 3 dgisselq
`define DDR_NOPTIMER    18      // Steal this from BA bits
63 2 dgisselq
`define DDR_BABITS      3       // BABITS are really from 18:16, they are 3 bits
64 3 dgisselq
`define DDR_ADDR_BITS   14
65 2 dgisselq
 
66 3 dgisselq
module  wbddrsdram(i_clk, i_reset,
67 2 dgisselq
                i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data,
68 3 dgisselq
                        o_wb_ack, o_wb_stall, o_wb_data,
69 2 dgisselq
                o_ddr_reset_n, o_ddr_cke,
70
                o_ddr_cs_n, o_ddr_ras_n, o_ddr_cas_n, o_ddr_we_n,
71
                o_ddr_dqs, o_ddr_dm, o_ddr_odt, o_ddr_bus_dir,
72
                o_ddr_addr, o_ddr_ba, o_ddr_data, i_ddr_data);
73 3 dgisselq
        parameter       CKREFI4 = 13'd6240, // 4 * 7.8us at 200 MHz clock
74
                        CKRFC = 140;
75
        input                   i_clk, i_reset;
76 2 dgisselq
        // Wishbone inputs
77
        input                   i_wb_cyc, i_wb_stb, i_wb_we;
78
        input           [25:0]   i_wb_addr;
79
        input           [31:0]   i_wb_data;
80
        // Wishbone outputs
81
        output  reg             o_wb_ack;
82
        output  reg             o_wb_stall;
83
        output  reg     [31:0]   o_wb_data;
84
        // DDR3 RAM Controller
85 3 dgisselq
        output  wire            o_ddr_reset_n, o_ddr_cke;
86 2 dgisselq
        // Control outputs
87
        output  reg             o_ddr_cs_n, o_ddr_ras_n, o_ddr_cas_n,o_ddr_we_n;
88
        // DQS outputs:set to 3'b010 when data is active, 3'b100 (i.e. 2'bzz) ow
89 3 dgisselq
        output  wire            o_ddr_dqs;
90
        output  reg             o_ddr_dm, o_ddr_odt, o_ddr_bus_dir;
91 2 dgisselq
        // Address outputs
92
        output  reg     [13:0]   o_ddr_addr;
93
        output  reg     [2:0]    o_ddr_ba;
94
        // And the data inputs and outputs
95
        output  reg     [31:0]   o_ddr_data;
96
        input                   i_ddr_data;
97
 
98 3 dgisselq
        reg             drive_dqs;
99
 
100
        // The pending transaction
101
        reg     [31:0]   r_data;
102
        reg             r_pending, r_we;
103
        reg     [25:0]   r_addr;
104
        reg     [14:0]   r_row;
105
        reg     [2:0]    r_bank;
106
        reg     [9:0]    r_col;
107
        reg     [1:0]    r_sub;
108
        reg             r_move; // It was accepted, and can move to next stage
109
 
110
        // Can the pending transaction be satisfied with the current (ongoing)
111
        // transaction?
112
        reg             m_move, m_match, m_continue, m_pending, m_we;
113
        reg     [25:0]   m_addr;
114
        reg     [14:0]   m_row;
115
        reg     [2:0]    m_bank;
116
        reg     [9:0]    m_col;
117
        reg     [1:0]    m_sub;
118
 
119
        // Can we preload the next bank?
120
        reg     [14:0]   r_nxt_row;
121
        reg     [2:0]    r_nxt_bank;
122
 
123 2 dgisselq
//
124
// tWTR = 7.5
125
// tRRD = 7.5
126
// tREFI= 7.8
127
// tFAW = 45
128
// tRTP = 7.5
129
// tCKE = 5.625
130
// tRFC = 160
131
// tRP  = 13.5
132
// tRAS = 36
133
// tRCD = 13.5
134
//
135
// RESET:
136
//      1. Hold o_reset_n = 1'b0; for 200 us, or 40,000 clocks (65536 perhaps?)
137
//              Hold cke low during this time as well
138
//              The clock should be free running into the chip during this time
139
//              Leave command in NOOP state: {cs,ras,cas,we} = 4'h7;
140
//              ODT must be held low
141
//      2. Hold cke low for another 500us, or 100,000 clocks
142
//      3. Raise CKE, continue outputting a NOOP for
143
//              tXPR, tDLLk, and tZQInit
144
//      4. Load MRS2, wait tMRD
145
//      4. Load MRS3, wait tMRD
146
//      4. Load MRS1, wait tMOD
147
// Before using the SDRAM, we'll need to program at least 3 of the mode
148
//      registers, if not all 4. 
149
//   tMOD clocks are required to program the mode registers, during which
150
//      time the RAM must be idle.
151
//
152
// NOOP: CS low, RAS, CAS, and WE high
153
 
154
//
155
// Reset logic should be simple, and is given as follows:
156
// note that it depends upon a ROM memory, reset_mem, and an address into that
157
// memory: reset_address.  Each memory location provides either a "command" to
158
// the DDR3 SDRAM, or a timer to wait until the next command.  Further, the
159
// timer commands indicate whether or not the command during the timer is to
160
// be set to idle, or whether the command is instead left as it was.
161 3 dgisselq
        reg             reset_override, reset_ztimer;
162 2 dgisselq
        reg     [3:0]    reset_address;
163 3 dgisselq
        reg     [(`DDR_CMDLEN-1):0]      reset_cmd, cmd, refresh_cmd;
164 2 dgisselq
        reg     [26:0]   reset_instruction;
165 3 dgisselq
        reg     [16:0]   reset_timer;
166
        initial reset_override = 1'b1;
167
        initial reset_address  = 4'h0;
168 2 dgisselq
        always @(posedge i_clk)
169
                if (i_reset)
170
                begin
171
                        reset_override <= 1'b1;
172 3 dgisselq
                        reset_cmd <= { `DDR_NOOP, reset_instruction[18:0]};
173 2 dgisselq
                end else if (!reset_ztimer)
174
                        ;
175 3 dgisselq
                else if (reset_instruction[`DDR_RSTDONE])
176 2 dgisselq
                        reset_override <= 1'b0;
177
                else if (reset_instruction[`DDR_RSTTIMER])
178
                begin
179 3 dgisselq
                        if (reset_instruction[`DDR_NOPTIMER])
180
                                reset_cmd <= { `DDR_NOOP, reset_instruction[18:0]};
181 2 dgisselq
                end else begin
182 3 dgisselq
                        reset_cmd <= reset_instruction[22:0];
183 2 dgisselq
                end
184
        always @(posedge i_clk)
185
                if (i_reset)
186
                        o_ddr_cke <= 1'b0;
187 3 dgisselq
                else if ((reset_override)&&(reset_ztimer))
188 2 dgisselq
                        o_ddr_cke <= reset_instruction[`DDR_CKEBIT];
189
 
190 3 dgisselq
        initial reset_ztimer = 1'b1;    // Is the timer zero?
191
        initial reset_timer = 17'h00;
192 2 dgisselq
        always @(posedge i_clk)
193
                if (i_reset)
194
                begin
195
                        reset_ztimer <= 1'b0;
196
                        reset_timer <= 17'h00;
197
                end else if (!reset_ztimer)
198
                begin
199
                        reset_ztimer <= (reset_timer == 17'h01);
200
                        reset_timer <= reset_timer - 17'h01;
201
                end else if (reset_instruction[`DDR_RSTTIMER])
202
                begin
203
                        reset_ztimer <= 1'b0;
204
                        reset_timer <= reset_instruction[16:0];
205
                end
206
 
207
 
208
        always @(posedge i_clk)
209 3 dgisselq
                case(reset_address) // RSTDONE, TIMER, CKE, ??
210 2 dgisselq
                4'h0: reset_instruction <= { 4'h4, `DDR_NOOP, 19'd40_000 };
211
                4'h1: reset_instruction <= { 4'h6, `DDR_NOOP, 19'd100_000 };
212
                4'h2: reset_instruction <= { 4'h7, `DDR_NOOP, 19'd40_000 };
213 3 dgisselq
                4'h3: reset_instruction <= { 4'h3, `DDR_MRSET, 3'h0, 3'h0, 1'b0, 3'h1, 1'b0, 1'b0, 3'h1, 1'b0, 1'b0, 2'b00 }; // MRS
214
                4'h4: reset_instruction <= { 4'h7, `DDR_NOOP, 19'd40_000 };
215
                4'h5: reset_instruction <= { 4'h3, `DDR_MRSET, 3'h2, 5'h0, 2'b00, 1'b0, 1'b0, 1'b1, 3'b0, 3'b0 }; // MRS2
216
                4'h6: reset_instruction <= { 4'h7, `DDR_NOOP, 19'd40_000 };
217
                4'h7: reset_instruction <= { 4'h3, `DDR_MRSET, 3'h1, 3'h0, 1'b0, 1'b1, 1'b0, 1'b0, 1'b0, 2'b0, 1'b1, 1'b0, 2'b0, 1'b1, 1'b1, 1'b0 }; // MRS1
218 2 dgisselq
                default:
219
                        reset_instruction <={4'hb, `DDR_NOOP, 19'd00_000 };
220
                endcase
221
                // reset_instruction <= reset_mem[reset_address];
222
 
223
        always @(posedge i_clk)
224
                if (i_reset)
225
                        reset_address <= 4'h0;
226
                else if (reset_ztimer)
227 3 dgisselq
                        reset_address <= reset_address + 4'h1;
228 2 dgisselq
//
229
// initial reset_mem =
230
//       0.     !DONE, TIMER,RESET_N=0, CKE=0, CMD = NOOP, TIMER = 200us ( 40,000)
231
//       1.     !DONE, TIMER,RESET_N=1, CKE=0, CMD = NOOP, TIMER = 500us (100,000)
232
//       2.     !DONE, TIMER,RESET_N=1, CKE=1, CMD = NOOP, TIMER = (Look me up)
233
//       3.     !DONE,!TIMER,RESET_N=1, CKE=1, CMD = MODE, MRS
234
//       4.     !DONE,!TIMER,RESET_N=1, CKE=1, CMD = NOOP, TIMER = tMRS
235
//       5.     !DONE,!TIMER,RESET_N=1, CKE=1, CMD = MODE, MRS3
236
//       6.     !DONE,!TIMER,RESET_N=1, CKE=1, CMD = NOOP, TIMER = tMRS
237
//       7.     !DONE,!TIMER,RESET_N=1, CKE=1, CMD = MODE, MRS1
238
//       8.     !DONE,!TIMER,RESET_N=1, CKE=1, CMD = NOOP, TIMER = tMRS
239
//       9.     !DONE,!TIMER,RESET_N=1, CKE=1, CMD = MODE, MRS1
240
//      10.     !DONE,!TIMER,RESET_N=1, CKE=1, CMD = NOOP, TIMER = tMOD
241
//      11.     !DONE,!TIMER,RESET_N=1, CKE=1, (Pre-charge all)
242
//      12.     !DONE,!TIMER,RESET_N=1, CKE=1, (wait)
243
//      13.     !DONE,!TIMER,RESET_N=1, CKE=1, (Auto-refresh)
244
//      14.     !DONE,!TIMER,RESET_N=1, CKE=1, (Auto-refresh)
245
//      15.     !DONE,!TIMER,RESET_N=1, CKE=1, (wait)
246
 
247
 
248
//
249
//
250
// Let's keep track of any open banks.  There are 8 of them to keep track of.
251
//
252
//      A precharge requires 3 clocks at 200MHz to complete, 2 clocks at 100MHz.
253
//      
254
//
255
//
256 3 dgisselq
        reg     need_refresh;
257 2 dgisselq
 
258 3 dgisselq
        wire    w_precharge_all;
259
        reg     banks_are_closing, all_banks_closed;
260 2 dgisselq
        reg     [2:0]    bank_status[7:0];
261
        always @(posedge i_clk)
262
        begin
263
                bank_status[0] = { bank_status[0][1:0], bank_status[0][0] };
264
                bank_status[1] = { bank_status[1][1:0], bank_status[1][0] };
265
                bank_status[2] = { bank_status[2][1:0], bank_status[2][0] };
266
                bank_status[3] = { bank_status[3][1:0], bank_status[3][0] };
267
                bank_status[4] = { bank_status[4][1:0], bank_status[4][0] };
268
                bank_status[5] = { bank_status[5][1:0], bank_status[5][0] };
269
                bank_status[6] = { bank_status[6][1:0], bank_status[6][0] };
270
                bank_status[7] = { bank_status[7][1:0], bank_status[7][0] };
271
                all_banks_closed <= (bank_status[0][1:0] == 2'b00)
272
                                        &&(bank_status[1][1:0] == 2'b00)
273
                                        &&(bank_status[2][1:0] == 2'b00)
274
                                        &&(bank_status[3][1:0] == 2'b00)
275
                                        &&(bank_status[4][1:0] == 2'b00)
276
                                        &&(bank_status[5][1:0] == 2'b00)
277
                                        &&(bank_status[6][1:0] == 2'b00)
278
                                        &&(bank_status[7][1:0] == 2'b00);
279
                if ((!reset_override)&&(need_refresh)||(w_precharge_all))
280
                begin
281
                        bank_status[0][0] = 1'b0;
282
                        bank_status[1][0] = 1'b0;
283
                        bank_status[2][0] = 1'b0;
284
                        bank_status[3][0] = 1'b0;
285
                        bank_status[4][0] = 1'b0;
286
                        bank_status[5][0] = 1'b0;
287
                        bank_status[6][0] = 1'b0;
288
                        bank_status[7][0] = 1'b0;
289
                        banks_are_closing <= 1'b1;
290
                end else if (need_close_bank)
291
                begin
292
                        bank_status[r_bank][0] = 1'b0;
293
                end else if (need_open_bank)
294
                begin
295
                        bank_status[r_bank][0] = 1'b1;
296
                        all_banks_closed <= 1'b0;
297
                        banks_are_closing <= 1'b0;
298
                end
299
        end
300
 
301
        always @(posedge i_clk)
302 3 dgisselq
                // if (cmd[22:19] == `DDR_ACTIVATE)
303
                if (need_open_bank)
304
                        bank_address[activate_bank_cmd[18:16]]
305
                                <= activate_bank_cmd[14:0];
306 2 dgisselq
 
307
//
308
//
309
// Okay, let's investigate when we need to do a refresh.  Our plan will be to
310
// do 4 refreshes every tREFI*4 seconds.  tREFI = 7.8us, but its a parameter
311
// in the number of clocks so that we can handle both 100MHz and 200MHz clocks.
312
//
313
// Note that 160ns are needed between refresh commands (JEDEC, p172), or
314
// 320 clocks @200MHz, or equivalently 160 clocks @100MHz.  Thus to issue 4
315
// of these refresh cycles will require 4*320=1280 clocks@200 MHz.  After this
316
// time, no more refreshes will be needed for 6240 clocks.
317
//
318
// Let's think this through:
319
//      REFRESH_COST = (n*(320)+24)/(n*1560)
320
// 
321
//
322
//
323 3 dgisselq
        reg             midrefresh, refresh_clear, endrefresh;
324 2 dgisselq
        reg     [12:0]   refresh_clk;
325 3 dgisselq
        reg     [2:0]    midrefresh_hctr; // How many refresh cycles?
326
        reg     [8:0]    midrefresh_lctr; // How many clks in this refresh cycle
327 2 dgisselq
        always @(posedge i_clk)
328 3 dgisselq
                if ((reset_override)||(refresh_clear))
329 2 dgisselq
                        refresh_clk <= CKREFI4;
330
                else if (|refresh_clk)
331
                        refresh_clk <= refresh_clk-1;
332
        always @(posedge i_clk)
333
                need_refresh <= (refresh_clk == 0)||(midrefresh);
334
        always @(posedge i_clk)
335
                if (!need_refresh)
336 3 dgisselq
                        refresh_cmd <= { `DDR_NOOP, 19'h00 };
337 2 dgisselq
                else if (~banks_are_closing)
338 3 dgisselq
                        refresh_cmd <= { `DDR_PRECHARGE, 3'h0, 5'h0, 1'b1, 10'h00 };
339 2 dgisselq
                else if (~all_banks_closed)
340 3 dgisselq
                        refresh_cmd <= { `DDR_NOOP, 19'h00 };
341 2 dgisselq
                else
342 3 dgisselq
                        refresh_cmd <= { `DDR_REFRESH, 19'h00 };
343 2 dgisselq
        always @(posedge i_clk)
344 3 dgisselq
                midrefresh <= (need_refresh)&&(all_banks_closed)&&(~refresh_clear);
345 2 dgisselq
 
346
        always @(posedge i_clk)
347 3 dgisselq
                if (!midrefresh)
348 2 dgisselq
                        midrefresh_hctr <= 3'h4;
349
                else if ((midrefresh_lctr == 0)&&(|midrefresh_hctr))
350
                        midrefresh_hctr <= midrefresh_hctr - 1;
351
        always @(posedge i_clk)
352 3 dgisselq
                if ((!need_refresh)||(!midrefresh))
353 2 dgisselq
                        endrefresh <= 1'b0;
354
                else if (midrefresh_hctr == 3'h0)
355
                        endrefresh <= 1'b1;
356
        always @(posedge i_clk)
357 3 dgisselq
                if (!midrefresh)
358 2 dgisselq
                        midrefresh_lctr <= CKRFC;
359
                else if (midrefresh_lctr == 0)
360
                        midrefresh_lctr <= 0;
361
                else
362
                        midrefresh_lctr <= CKRFC;
363
 
364
        always @(posedge i_clk)
365 3 dgisselq
                refresh_clear <= (need_refresh)&&(endrefresh)&&(midrefresh_lctr == 0);
366 2 dgisselq
 
367
 
368
//
369
//
370
//      Let's track: when will our bus be active?  When will we be reading or
371
//      writing?
372
//
373
//
374 3 dgisselq
        reg     [8:0]    bus_active, bus_read;
375 2 dgisselq
        reg     [1:0]    bus_subaddr     [8:0];
376 3 dgisselq
        initial bus_active = 0;
377 2 dgisselq
        always @(posedge i_clk)
378
        begin
379
                bus_active[8:0] <= { bus_active[7:0], 1'b0 };
380
                bus_read[8:0]   <= { bus_read[7:0], 1'b0 }; // Drive the d-bus?
381 3 dgisselq
                //bus_mask[8:0] <= { bus_mask[7:0], 1'b1 }; // Write this value?
382 2 dgisselq
                bus_subaddr[8]  <= bus_subaddr[7];
383
                bus_subaddr[7]  <= bus_subaddr[6];
384
                bus_subaddr[6]  <= bus_subaddr[5];
385
                bus_subaddr[5]  <= bus_subaddr[4];
386
                bus_subaddr[4]  <= bus_subaddr[3];
387
                bus_subaddr[3]  <= bus_subaddr[2];
388
                bus_subaddr[2]  <= bus_subaddr[1];
389
                bus_subaddr[1]  <= bus_subaddr[0];
390
                bus_subaddr[0]  <= 2'h3;
391 3 dgisselq
                if (cmd[22:19] == `DDR_READ)
392 2 dgisselq
                begin
393
                        bus_active[3:0]<= 4'hf; // Once per clock
394
                        bus_read[3:0]  <= 4'hf; // These will be reads
395
                        bus_subaddr[3] <= 2'h0;
396
                        bus_subaddr[2] <= 2'h1;
397
                        bus_subaddr[1] <= 2'h2;
398 3 dgisselq
                end else if (cmd == `DDR_WRITE)
399 2 dgisselq
                begin
400
                        bus_active[3:0] <= 4'hf;
401
                        // bus_read[7:4] = 4'h0;
402
                        bus_subaddr[3] <= 2'h0;
403
                        bus_subaddr[2] <= 2'h1;
404
                        bus_subaddr[1] <= 2'h2;
405
                end
406
        end
407
 
408
        always @(posedge i_clk)
409 3 dgisselq
                drive_dqs <= (~bus_read[8])&&(|bus_active[8:7]);
410 2 dgisselq
 
411
//
412
//
413
// Now, let's see, can we issue a read command?
414
//
415
//
416
        always @(posedge i_clk)
417
        begin
418
                if ((i_wb_stb)&&(~o_wb_stall))
419
                begin
420 3 dgisselq
                        r_pending <= 1'b1;
421 2 dgisselq
                        o_wb_stall <= 1'b1;
422
                end else if ((r_move)||(m_move))
423
                begin
424 3 dgisselq
                        r_pending <= 1'b0;
425 2 dgisselq
                        o_wb_stall <= 1'b0;
426
                end
427
 
428
                if (~o_wb_stall)
429
                begin
430
                        r_we   <= i_wb_we;
431
                        r_addr <= i_wb_addr;
432
                        r_data <= i_wb_data;
433
                        r_row  <= i_wb_addr[25:11];
434
                        r_bank <= i_wb_addr[10:8];
435
                        r_col  <= { i_wb_addr[7:2], 2'b00 }; // 9:2
436
                        r_sub  <= i_wb_addr[1:0];
437
 
438
                        // pre-emptive work
439
                        r_nxt_row  <= i_wb_addr[25:11]+15'h1;
440
                        r_nxt_bank <= i_wb_addr[10:8]+3'h1;
441
                end
442
        end
443
 
444 3 dgisselq
        reg     [2:0]    bank_active[7:0];
445
        reg     [14:0]   bank_address[7:0];
446
 
447
        reg     [(`DDR_CMDLEN-1):0]      close_bank_cmd, activate_bank_cmd, rw_cmd;
448
        reg     need_close_bank, need_close_this_bank,
449
                        last_close_bank, maybe_close_next_bank,
450
                need_open_bank, last_open_bank, maybe_open_next_bank,
451
                valid_bank, last_valid_bank;
452 2 dgisselq
        always @(posedge i_clk)
453
        begin
454
                need_close_bank <= (r_pending)&&(bank_active[r_bank][0])
455
                        &&(r_row != bank_address[r_bank])&&(!last_close_bank);
456
                need_close_this_bank <= (r_pending)&&(bank_active[r_bank][0])
457
                        &&(r_row != bank_address[r_bank]);
458
                last_close_bank <= need_close_bank;
459
 
460
                maybe_close_next_bank <= (r_pending)
461
                        &&(bank_active[r_nxt_bank][0])
462
                        &&(r_nxt_row != bank_address[r_nxt_bank])
463
                        &&(!need_close_this_bank);
464
 
465
                close_bank_cmd <= (maybe_close_next_bank)
466 3 dgisselq
                                ? { `DDR_PRECHARGE, r_nxt_bank, r_nxt_row[14:10], 1'b0, r_nxt_row[9:0] }
467 2 dgisselq
                                : { `DDR_PRECHARGE, r_bank, r_row[15:11], 1'b0, r_row[9:0] };
468
 
469
 
470 3 dgisselq
                need_open_bank <= (r_pending)&&(bank_active[r_bank][1:0]==2'b00)
471 2 dgisselq
                        &&(!last_open_bank);
472
                last_open_bank <= need_open_bank;
473
 
474
                maybe_open_next_bank <= (r_pending)
475 3 dgisselq
                        &&(bank_active[r_nxt_bank][1:0] == 2'b00)
476 2 dgisselq
                        &&(!need_open_bank)&&(!need_close_bank);
477
 
478
                activate_bank_cmd <= (maybe_open_next_bank)
479 3 dgisselq
                                ? { `DDR_ACTIVATE,r_nxt_bank,1'b0,r_nxt_row[14:0] }
480
                                : { `DDR_ACTIVATE, r_bank, 1'b0,r_row[14:0] };
481 2 dgisselq
 
482
 
483
 
484 3 dgisselq
                valid_bank <= (r_pending)&&(bank_active[r_bank][1:0]==2'b11)
485 2 dgisselq
                                &&(bank_address[r_bank]==r_row)
486
                                &&(!last_valid_bank);
487 3 dgisselq
                last_valid_bank <= valid_bank;
488 2 dgisselq
 
489
                rw_cmd[`DDR_CSBIT:`DDR_WEBIT] <= (~r_pending)?`DDR_NOOP:((r_we)?`DDR_WRITE:`DDR_READ);
490 3 dgisselq
                rw_cmd[`DDR_WEBIT-1:0] <= { r_bank, 5'h0, 1'b0, r_col };
491 2 dgisselq
        end
492
 
493
 
494
        // Match registers, to see if we can move forward without sending a
495
        // new command
496
        always @(posedge i_clk)
497
        begin
498
                if (r_move)
499
                begin
500
                        m_pending <= r_pending;
501
                        m_we   <= r_we;
502
                        m_addr <= r_addr;
503
                        m_row  <= r_row;
504
                        m_bank <= r_bank;
505
                        m_col  <= r_col;
506
                        m_sub  <= r_sub;
507
                end else if (m_match)
508
                        m_sub <= r_sub;
509
 
510 3 dgisselq
                m_match <= (m_pending)&&(r_pending)&&(r_we == m_we)
511 2 dgisselq
                                &&(r_row == m_row)&&(r_bank == m_bank)
512
                                &&(r_col == m_col)
513
                                &&(r_sub > m_sub);
514 3 dgisselq
                m_continue <= (m_pending)&&(r_pending)&&(r_we == m_we)
515 2 dgisselq
                                &&(r_row == m_row)&&(r_bank == m_bank)
516 3 dgisselq
                                &&(r_col == m_col+10'h1);
517
                // m_nextbank <= (m_pending)&&(r_pending)&&(r_we == m_we)
518
                //              &&(r_row == m_row)&&(r_bank == m_bank);
519 2 dgisselq
        end
520
 
521
//
522
//
523
// Okay, let's look at the last assignment in our chain.  It should look
524
// something like:
525
        always @(posedge i_clk)
526 3 dgisselq
                o_ddr_reset_n <= (~reset_override)||(reset_instruction[`DDR_RSTBIT]);
527 2 dgisselq
        always @(posedge i_clk)
528 3 dgisselq
                o_ddr_cke <= (~reset_override)||(reset_instruction[`DDR_CKEBIT]);
529 2 dgisselq
        always @(posedge i_clk)
530
        begin
531
                r_move <= 1'b0;
532
                if (reset_override)
533 3 dgisselq
                        cmd <= reset_cmd[`DDR_CSBIT:0];
534 2 dgisselq
                else if (need_refresh)
535
                begin
536
                        cmd <= refresh_cmd; // The command from the refresh logc
537
                end else if (need_close_bank)
538
                        cmd <= close_bank_cmd;
539
                else if (need_open_bank)
540
                        cmd <= activate_bank_cmd;
541
                else if ((valid_bank)&&(bus_active[2:0]==3'h0))
542
                begin
543
                        cmd <= rw_cmd;
544
                        r_move <= 1'b1;
545
                end else
546 3 dgisselq
                        cmd <= { `DDR_NOOP, rw_cmd[20:0] };
547 2 dgisselq
        end
548
 
549 3 dgisselq
        reg     [31:0]   bus_data[8:0];
550
 
551
        assign  o_ddr_cs_n  = cmd[`DDR_CSBIT];
552
        assign  o_ddr_ras_n = cmd[`DDR_RASBIT];
553
        assign  o_ddr_cas_n = cmd[`DDR_CASBIT];
554
        assign  o_ddr_we_n  = cmd[`DDR_WEBIT];
555 2 dgisselq
        assign  o_ddr_dqs   = drive_dqs;
556 3 dgisselq
        assign  o_ddr_addr  = cmd[(`DDR_ADDR_BITS-1):0];
557
        assign  o_ddr_ba    = cmd[(`DDR_BABITS+`DDR_ADDR_BITS-1):`DDR_ADDR_BITS];
558 2 dgisselq
        assign  o_ddr_data  = bus_data[8];
559 3 dgisselq
        assign  w_precharge_all = (cmd[`DDR_CSBIT:`DDR_WEBIT]==`DDR_PRECHARGE)
560 2 dgisselq
                                &&(o_ddr_addr[10]); // 5 bits
561
 
562
        // Need to set o_wb_dqs high one clock prior to any read.
563
        // As per spec, ODT = 0 during reads
564 3 dgisselq
        assign  o_ddr_bus_dir = bus_read[8];
565 2 dgisselq
        assign  o_ddr_odt = o_ddr_bus_dir;
566
 
567
 
568
endmodule

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.