1 |
15 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
2 |
|
|
//
|
3 |
|
|
// Filename: txuartlite.v
|
4 |
|
|
//
|
5 |
|
|
// Project: wbuart32, a full featured UART with simulator
|
6 |
|
|
//
|
7 |
|
|
// Purpose: Transmit outputs over a single UART line. This particular UART
|
8 |
|
|
// implementation has been extremely simplified: it does not handle
|
9 |
|
|
// generating break conditions, nor does it handle anything other than the
|
10 |
|
|
// 8N1 (8 data bits, no parity, 1 stop bit) UART sub-protocol.
|
11 |
|
|
//
|
12 |
|
|
// To interface with this module, connect it to your system clock, and
|
13 |
|
|
// pass it the byte of data you wish to transmit. Strobe the i_wr line
|
14 |
|
|
// high for one cycle, and your data will be off. Wait until the 'o_busy'
|
15 |
|
|
// line is low before strobing the i_wr line again--this implementation
|
16 |
|
|
// has NO BUFFER, so strobing i_wr while the core is busy will just
|
17 |
18 |
dgisselq |
// get ignored. The output will be placed on the o_txuart output line.
|
18 |
15 |
dgisselq |
//
|
19 |
|
|
// (I often set both data and strobe on the same clock, and then just leave
|
20 |
|
|
// them set until the busy line is low. Then I move on to the next piece
|
21 |
|
|
// of data.)
|
22 |
|
|
//
|
23 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
24 |
|
|
// Gisselquist Technology, LLC
|
25 |
|
|
//
|
26 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
27 |
|
|
//
|
28 |
26 |
dgisselq |
// Copyright (C) 2015-2019, Gisselquist Technology, LLC
|
29 |
15 |
dgisselq |
//
|
30 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
31 |
|
|
// modify it under the terms of the GNU General Public License as published
|
32 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
33 |
|
|
// your option) any later version.
|
34 |
|
|
//
|
35 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
36 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
37 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
38 |
|
|
// for more details.
|
39 |
|
|
//
|
40 |
|
|
// You should have received a copy of the GNU General Public License along
|
41 |
|
|
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
|
42 |
|
|
// target there if the PDF file isn't present.) If not, see
|
43 |
|
|
// <http://www.gnu.org/licenses/> for a copy.
|
44 |
|
|
//
|
45 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
46 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
47 |
|
|
//
|
48 |
|
|
//
|
49 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
50 |
|
|
//
|
51 |
|
|
//
|
52 |
17 |
dgisselq |
`default_nettype none
|
53 |
15 |
dgisselq |
//
|
54 |
17 |
dgisselq |
`define TXUL_BIT_ZERO 4'h0
|
55 |
|
|
`define TXUL_BIT_ONE 4'h1
|
56 |
|
|
`define TXUL_BIT_TWO 4'h2
|
57 |
|
|
`define TXUL_BIT_THREE 4'h3
|
58 |
|
|
`define TXUL_BIT_FOUR 4'h4
|
59 |
|
|
`define TXUL_BIT_FIVE 4'h5
|
60 |
|
|
`define TXUL_BIT_SIX 4'h6
|
61 |
|
|
`define TXUL_BIT_SEVEN 4'h7
|
62 |
|
|
`define TXUL_STOP 4'h8
|
63 |
|
|
`define TXUL_IDLE 4'hf
|
64 |
15 |
dgisselq |
//
|
65 |
17 |
dgisselq |
//
|
66 |
15 |
dgisselq |
module txuartlite(i_clk, i_wr, i_data, o_uart_tx, o_busy);
|
67 |
21 |
dgisselq |
parameter [4:0] TIMING_BITS = 5'd24;
|
68 |
|
|
localparam TB = TIMING_BITS;
|
69 |
|
|
parameter [(TB-1):0] CLOCKS_PER_BAUD = 8; // 24'd868;
|
70 |
17 |
dgisselq |
input wire i_clk;
|
71 |
|
|
input wire i_wr;
|
72 |
|
|
input wire [7:0] i_data;
|
73 |
15 |
dgisselq |
// And the UART input line itself
|
74 |
|
|
output reg o_uart_tx;
|
75 |
|
|
// A line to tell others when we are ready to accept data. If
|
76 |
|
|
// (i_wr)&&(!o_busy) is ever true, then the core has accepted a byte
|
77 |
|
|
// for transmission.
|
78 |
|
|
output wire o_busy;
|
79 |
|
|
|
80 |
21 |
dgisselq |
reg [(TB-1):0] baud_counter;
|
81 |
15 |
dgisselq |
reg [3:0] state;
|
82 |
|
|
reg [7:0] lcl_data;
|
83 |
|
|
reg r_busy, zero_baud_counter;
|
84 |
|
|
|
85 |
|
|
initial r_busy = 1'b1;
|
86 |
17 |
dgisselq |
initial state = `TXUL_IDLE;
|
87 |
15 |
dgisselq |
always @(posedge i_clk)
|
88 |
|
|
begin
|
89 |
|
|
if (!zero_baud_counter)
|
90 |
|
|
// r_busy needs to be set coming into here
|
91 |
|
|
r_busy <= 1'b1;
|
92 |
21 |
dgisselq |
else if (state > `TXUL_STOP) // STATE_IDLE
|
93 |
15 |
dgisselq |
begin
|
94 |
21 |
dgisselq |
state <= `TXUL_IDLE;
|
95 |
15 |
dgisselq |
r_busy <= 1'b0;
|
96 |
|
|
if ((i_wr)&&(!r_busy))
|
97 |
|
|
begin // Immediately start us off with a start bit
|
98 |
|
|
r_busy <= 1'b1;
|
99 |
17 |
dgisselq |
state <= `TXUL_BIT_ZERO;
|
100 |
15 |
dgisselq |
end
|
101 |
|
|
end else begin
|
102 |
|
|
// One clock tick in each of these states ...
|
103 |
|
|
r_busy <= 1'b1;
|
104 |
17 |
dgisselq |
if (state <=`TXUL_STOP) // start bit, 8-d bits, stop-b
|
105 |
21 |
dgisselq |
state <= state + 1'b1;
|
106 |
15 |
dgisselq |
else
|
107 |
17 |
dgisselq |
state <= `TXUL_IDLE;
|
108 |
18 |
dgisselq |
end
|
109 |
15 |
dgisselq |
end
|
110 |
|
|
|
111 |
|
|
// o_busy
|
112 |
|
|
//
|
113 |
|
|
// This is a wire, designed to be true is we are ever busy above.
|
114 |
|
|
// originally, this was going to be true if we were ever not in the
|
115 |
|
|
// idle state. The logic has since become more complex, hence we have
|
116 |
|
|
// a register dedicated to this and just copy out that registers value.
|
117 |
|
|
assign o_busy = (r_busy);
|
118 |
|
|
|
119 |
|
|
|
120 |
|
|
// lcl_data
|
121 |
|
|
//
|
122 |
|
|
// This is our working copy of the i_data register which we use
|
123 |
|
|
// when transmitting. It is only of interest during transmit, and is
|
124 |
|
|
// allowed to be whatever at any other time. Hence, if r_busy isn't
|
125 |
|
|
// true, we can always set it. On the one clock where r_busy isn't
|
126 |
|
|
// true and i_wr is, we set it and r_busy is true thereafter.
|
127 |
|
|
// Then, on any zero_baud_counter (i.e. change between baud intervals)
|
128 |
|
|
// we simple logically shift the register right to grab the next bit.
|
129 |
|
|
initial lcl_data = 8'hff;
|
130 |
|
|
always @(posedge i_clk)
|
131 |
|
|
if ((i_wr)&&(!r_busy))
|
132 |
|
|
lcl_data <= i_data;
|
133 |
|
|
else if (zero_baud_counter)
|
134 |
|
|
lcl_data <= { 1'b1, lcl_data[7:1] };
|
135 |
|
|
|
136 |
|
|
// o_uart_tx
|
137 |
|
|
//
|
138 |
|
|
// This is the final result/output desired of this core. It's all
|
139 |
|
|
// centered about o_uart_tx. This is what finally needs to follow
|
140 |
|
|
// the UART protocol.
|
141 |
|
|
//
|
142 |
|
|
initial o_uart_tx = 1'b1;
|
143 |
|
|
always @(posedge i_clk)
|
144 |
|
|
if ((i_wr)&&(!r_busy))
|
145 |
|
|
o_uart_tx <= 1'b0; // Set the start bit on writes
|
146 |
|
|
else if (zero_baud_counter) // Set the data bit.
|
147 |
|
|
o_uart_tx <= lcl_data[0];
|
148 |
|
|
|
149 |
|
|
|
150 |
|
|
// All of the above logic is driven by the baud counter. Bits must last
|
151 |
|
|
// CLOCKS_PER_BAUD in length, and this baud counter is what we use to
|
152 |
|
|
// make certain of that.
|
153 |
|
|
//
|
154 |
|
|
// The basic logic is this: at the beginning of a bit interval, start
|
155 |
|
|
// the baud counter and set it to count CLOCKS_PER_BAUD. When it gets
|
156 |
|
|
// to zero, restart it.
|
157 |
|
|
//
|
158 |
|
|
// However, comparing a 28'bit number to zero can be rather complex--
|
159 |
|
|
// especially if we wish to do anything else on that same clock. For
|
160 |
|
|
// that reason, we create "zero_baud_counter". zero_baud_counter is
|
161 |
|
|
// nothing more than a flag that is true anytime baud_counter is zero.
|
162 |
|
|
// It's true when the logic (above) needs to step to the next bit.
|
163 |
|
|
// Simple enough?
|
164 |
|
|
//
|
165 |
|
|
// I wish we could stop there, but there are some other (ugly)
|
166 |
|
|
// conditions to deal with that offer exceptions to this basic logic.
|
167 |
|
|
//
|
168 |
|
|
// 1. When the user has commanded a BREAK across the line, we need to
|
169 |
|
|
// wait several baud intervals following the break before we start
|
170 |
|
|
// transmitting, to give any receiver a chance to recognize that we are
|
171 |
|
|
// out of the break condition, and to know that the next bit will be
|
172 |
|
|
// a stop bit.
|
173 |
|
|
//
|
174 |
|
|
// 2. A reset is similar to a break condition--on both we wait several
|
175 |
|
|
// baud intervals before allowing a start bit.
|
176 |
|
|
//
|
177 |
|
|
// 3. In the idle state, we stop our counter--so that upon a request
|
178 |
|
|
// to transmit when idle we can start transmitting immediately, rather
|
179 |
|
|
// than waiting for the end of the next (fictitious and arbitrary) baud
|
180 |
|
|
// interval.
|
181 |
|
|
//
|
182 |
17 |
dgisselq |
// When (i_wr)&&(!r_busy)&&(state == `TXUL_IDLE) then we're not only in
|
183 |
15 |
dgisselq |
// the idle state, but we also just accepted a command to start writing
|
184 |
|
|
// the next word. At this point, the baud counter needs to be reset
|
185 |
|
|
// to the number of CLOCKS_PER_BAUD, and zero_baud_counter set to zero.
|
186 |
|
|
//
|
187 |
|
|
// The logic is a bit twisted here, in that it will only check for the
|
188 |
|
|
// above condition when zero_baud_counter is false--so as to make
|
189 |
|
|
// certain the STOP bit is complete.
|
190 |
21 |
dgisselq |
initial zero_baud_counter = 1'b1;
|
191 |
|
|
initial baud_counter = 0;
|
192 |
15 |
dgisselq |
always @(posedge i_clk)
|
193 |
|
|
begin
|
194 |
26 |
dgisselq |
zero_baud_counter <= (baud_counter == 1);
|
195 |
17 |
dgisselq |
if (state == `TXUL_IDLE)
|
196 |
15 |
dgisselq |
begin
|
197 |
26 |
dgisselq |
baud_counter <= 0;
|
198 |
15 |
dgisselq |
zero_baud_counter <= 1'b1;
|
199 |
|
|
if ((i_wr)&&(!r_busy))
|
200 |
|
|
begin
|
201 |
26 |
dgisselq |
baud_counter <= CLOCKS_PER_BAUD - 1'b1;
|
202 |
15 |
dgisselq |
zero_baud_counter <= 1'b0;
|
203 |
|
|
end
|
204 |
21 |
dgisselq |
end else if ((zero_baud_counter)&&(state == 4'h9))
|
205 |
|
|
begin
|
206 |
|
|
baud_counter <= 0;
|
207 |
|
|
zero_baud_counter <= 1'b1;
|
208 |
15 |
dgisselq |
end else if (!zero_baud_counter)
|
209 |
26 |
dgisselq |
baud_counter <= baud_counter - 1'b1;
|
210 |
15 |
dgisselq |
else
|
211 |
26 |
dgisselq |
baud_counter <= CLOCKS_PER_BAUD - 1'b1;
|
212 |
15 |
dgisselq |
end
|
213 |
18 |
dgisselq |
|
214 |
|
|
//
|
215 |
|
|
//
|
216 |
|
|
// FORMAL METHODS
|
217 |
|
|
//
|
218 |
|
|
//
|
219 |
|
|
//
|
220 |
|
|
`ifdef FORMAL
|
221 |
|
|
|
222 |
|
|
`ifdef TXUARTLITE
|
223 |
|
|
`define ASSUME assume
|
224 |
|
|
`else
|
225 |
|
|
`define ASSUME assert
|
226 |
|
|
`endif
|
227 |
|
|
|
228 |
|
|
// Setup
|
229 |
|
|
|
230 |
|
|
reg f_past_valid, f_last_clk;
|
231 |
|
|
|
232 |
|
|
initial f_past_valid = 1'b0;
|
233 |
|
|
always @(posedge i_clk)
|
234 |
|
|
f_past_valid <= 1'b1;
|
235 |
|
|
|
236 |
21 |
dgisselq |
initial `ASSUME(!i_wr);
|
237 |
18 |
dgisselq |
always @(posedge i_clk)
|
238 |
|
|
if ((f_past_valid)&&($past(i_wr))&&($past(o_busy)))
|
239 |
|
|
begin
|
240 |
|
|
`ASSUME(i_wr == $past(i_wr));
|
241 |
|
|
`ASSUME(i_data == $past(i_data));
|
242 |
|
|
end
|
243 |
|
|
|
244 |
|
|
// Check the baud counter
|
245 |
|
|
always @(posedge i_clk)
|
246 |
21 |
dgisselq |
assert(zero_baud_counter == (baud_counter == 0));
|
247 |
18 |
dgisselq |
|
248 |
|
|
always @(posedge i_clk)
|
249 |
|
|
if ((f_past_valid)&&($past(baud_counter != 0))&&($past(state != `TXUL_IDLE)))
|
250 |
|
|
assert(baud_counter == $past(baud_counter - 1'b1));
|
251 |
|
|
|
252 |
|
|
always @(posedge i_clk)
|
253 |
|
|
if ((f_past_valid)&&(!$past(zero_baud_counter))&&($past(state != `TXUL_IDLE)))
|
254 |
|
|
assert($stable(o_uart_tx));
|
255 |
|
|
|
256 |
21 |
dgisselq |
reg [(TB-1):0] f_baud_count;
|
257 |
18 |
dgisselq |
initial f_baud_count = 1'b0;
|
258 |
|
|
always @(posedge i_clk)
|
259 |
|
|
if (zero_baud_counter)
|
260 |
|
|
f_baud_count <= 0;
|
261 |
|
|
else
|
262 |
|
|
f_baud_count <= f_baud_count + 1'b1;
|
263 |
|
|
|
264 |
|
|
always @(posedge i_clk)
|
265 |
|
|
assert(f_baud_count < CLOCKS_PER_BAUD);
|
266 |
|
|
|
267 |
|
|
always @(posedge i_clk)
|
268 |
|
|
if (baud_counter != 0)
|
269 |
|
|
assert(o_busy);
|
270 |
|
|
|
271 |
|
|
reg [9:0] f_txbits;
|
272 |
|
|
initial f_txbits = 0;
|
273 |
|
|
always @(posedge i_clk)
|
274 |
|
|
if (zero_baud_counter)
|
275 |
|
|
f_txbits <= { o_uart_tx, f_txbits[9:1] };
|
276 |
|
|
|
277 |
21 |
dgisselq |
always @(posedge i_clk)
|
278 |
|
|
if ((f_past_valid)&&(!$past(zero_baud_counter))
|
279 |
|
|
&&(!$past(state==`TXUL_IDLE)))
|
280 |
|
|
assert(state == $past(state));
|
281 |
|
|
|
282 |
18 |
dgisselq |
reg [3:0] f_bitcount;
|
283 |
|
|
initial f_bitcount = 0;
|
284 |
|
|
always @(posedge i_clk)
|
285 |
|
|
if ((!f_past_valid)||(!$past(f_past_valid)))
|
286 |
|
|
f_bitcount <= 0;
|
287 |
|
|
else if ((state == `TXUL_IDLE)&&(zero_baud_counter))
|
288 |
|
|
f_bitcount <= 0;
|
289 |
|
|
else if (zero_baud_counter)
|
290 |
|
|
f_bitcount <= f_bitcount + 1'b1;
|
291 |
|
|
|
292 |
|
|
always @(posedge i_clk)
|
293 |
|
|
assert(f_bitcount <= 4'ha);
|
294 |
|
|
|
295 |
|
|
reg [7:0] f_request_tx_data;
|
296 |
|
|
always @(posedge i_clk)
|
297 |
|
|
if ((i_wr)&&(!o_busy))
|
298 |
|
|
f_request_tx_data <= i_data;
|
299 |
|
|
|
300 |
|
|
wire [3:0] subcount;
|
301 |
|
|
assign subcount = 10-f_bitcount;
|
302 |
|
|
always @(posedge i_clk)
|
303 |
|
|
if (f_bitcount > 0)
|
304 |
|
|
assert(!f_txbits[subcount]);
|
305 |
|
|
|
306 |
|
|
always @(posedge i_clk)
|
307 |
|
|
if (f_bitcount == 4'ha)
|
308 |
|
|
begin
|
309 |
|
|
assert(f_txbits[8:1] == f_request_tx_data);
|
310 |
|
|
assert( f_txbits[9]);
|
311 |
|
|
end
|
312 |
|
|
|
313 |
|
|
always @(posedge i_clk)
|
314 |
|
|
assert((state <= `TXUL_STOP + 1'b1)||(state == `TXUL_IDLE));
|
315 |
|
|
|
316 |
21 |
dgisselq |
always @(posedge i_clk)
|
317 |
|
|
if ((f_past_valid)&&($past(f_past_valid))&&($past(o_busy)))
|
318 |
|
|
cover(!o_busy);
|
319 |
|
|
|
320 |
18 |
dgisselq |
`endif // FORMAL
|
321 |
21 |
dgisselq |
`ifdef VERIFIC_SVA
|
322 |
|
|
reg [7:0] fsv_data;
|
323 |
|
|
|
324 |
|
|
//
|
325 |
|
|
// Grab a copy of the data any time we are sent a new byte to transmit
|
326 |
|
|
// We'll use this in a moment to compare the item transmitted against
|
327 |
|
|
// what is supposed to be transmitted
|
328 |
|
|
//
|
329 |
|
|
always @(posedge i_clk)
|
330 |
|
|
if ((i_wr)&&(!o_busy))
|
331 |
|
|
fsv_data <= i_data;
|
332 |
|
|
|
333 |
|
|
//
|
334 |
|
|
// One baud interval
|
335 |
|
|
//
|
336 |
|
|
// 1. The UART output is constant at DAT
|
337 |
|
|
// 2. The internal state remains constant at ST
|
338 |
|
|
// 3. CKS = the number of clocks per bit.
|
339 |
|
|
//
|
340 |
|
|
// Everything stays constant during the CKS clocks with the exception
|
341 |
|
|
// of (zero_baud_counter), which is *only* raised on the last clock
|
342 |
|
|
// interval
|
343 |
|
|
sequence BAUD_INTERVAL(CKS, DAT, SR, ST);
|
344 |
|
|
((o_uart_tx == DAT)&&(state == ST)
|
345 |
|
|
&&(lcl_data == SR)
|
346 |
|
|
&&(!zero_baud_counter))[*(CKS-1)]
|
347 |
|
|
##1 (o_uart_tx == DAT)&&(state == ST)
|
348 |
|
|
&&(lcl_data == SR)
|
349 |
|
|
&&(zero_baud_counter);
|
350 |
|
|
endsequence
|
351 |
|
|
|
352 |
|
|
//
|
353 |
|
|
// One byte transmitted
|
354 |
|
|
//
|
355 |
|
|
// DATA = the byte that is sent
|
356 |
|
|
// CKS = the number of clocks per bit
|
357 |
|
|
//
|
358 |
|
|
sequence SEND(CKS, DATA);
|
359 |
|
|
BAUD_INTERVAL(CKS, 1'b0, DATA, 4'h0)
|
360 |
|
|
##1 BAUD_INTERVAL(CKS, DATA[0], {{(1){1'b1}},DATA[7:1]}, 4'h1)
|
361 |
|
|
##1 BAUD_INTERVAL(CKS, DATA[1], {{(2){1'b1}},DATA[7:2]}, 4'h2)
|
362 |
|
|
##1 BAUD_INTERVAL(CKS, DATA[2], {{(3){1'b1}},DATA[7:3]}, 4'h3)
|
363 |
|
|
##1 BAUD_INTERVAL(CKS, DATA[3], {{(4){1'b1}},DATA[7:4]}, 4'h4)
|
364 |
|
|
##1 BAUD_INTERVAL(CKS, DATA[4], {{(5){1'b1}},DATA[7:5]}, 4'h5)
|
365 |
|
|
##1 BAUD_INTERVAL(CKS, DATA[5], {{(6){1'b1}},DATA[7:6]}, 4'h6)
|
366 |
|
|
##1 BAUD_INTERVAL(CKS, DATA[6], {{(7){1'b1}},DATA[7:7]}, 4'h7)
|
367 |
|
|
##1 BAUD_INTERVAL(CKS, DATA[7], 8'hff, 4'h8)
|
368 |
|
|
##1 BAUD_INTERVAL(CKS, 1'b1, 8'hff, 4'h9);
|
369 |
|
|
endsequence
|
370 |
|
|
|
371 |
|
|
//
|
372 |
|
|
// Transmit one byte
|
373 |
|
|
//
|
374 |
|
|
// Once the byte is transmitted, make certain we return to
|
375 |
|
|
// idle
|
376 |
|
|
//
|
377 |
|
|
assert property (
|
378 |
|
|
@(posedge i_clk)
|
379 |
|
|
(i_wr)&&(!o_busy)
|
380 |
|
|
|=> ((o_busy) throughout SEND(CLOCKS_PER_BAUD,fsv_data))
|
381 |
|
|
##1 (!o_busy)&&(o_uart_tx)&&(zero_baud_counter));
|
382 |
|
|
|
383 |
|
|
assume property (
|
384 |
|
|
@(posedge i_clk)
|
385 |
|
|
(i_wr)&&(o_busy) |=>
|
386 |
|
|
(i_wr)&&(o_busy)&&($stable(i_data)));
|
387 |
|
|
|
388 |
|
|
//
|
389 |
|
|
// Make certain that o_busy is true any time zero_baud_counter is
|
390 |
|
|
// non-zero
|
391 |
|
|
//
|
392 |
|
|
always @(*)
|
393 |
|
|
assert((o_busy)||(zero_baud_counter) );
|
394 |
|
|
|
395 |
|
|
// If and only if zero_baud_counter is true, baud_counter must be zero
|
396 |
|
|
// Insist on that relationship here.
|
397 |
|
|
always @(*)
|
398 |
|
|
assert(zero_baud_counter == (baud_counter == 0));
|
399 |
|
|
|
400 |
|
|
// To make certain baud_counter stays below CLOCKS_PER_BAUD
|
401 |
|
|
always @(*)
|
402 |
|
|
assert(baud_counter < CLOCKS_PER_BAUD);
|
403 |
|
|
|
404 |
|
|
//
|
405 |
|
|
// Insist that we are only ever in a valid state
|
406 |
|
|
always @(*)
|
407 |
|
|
assert((state <= `TXUL_STOP+1'b1)||(state == `TXUL_IDLE));
|
408 |
|
|
|
409 |
|
|
`endif // Verific SVA
|
410 |
15 |
dgisselq |
endmodule
|
411 |
|
|
|