OpenCores
URL https://opencores.org/ocsvn/xilinx_virtex_fp_library/xilinx_virtex_fp_library/trunk

Subversion Repositories xilinx_virtex_fp_library

[/] [xilinx_virtex_fp_library/] [trunk/] [GeneralPrecMAF/] [Multiply_Accumulate.v] - Blame information for rev 12

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 5 constantin
`timescale 1ns / 1ps
2
//////////////////////////////////////////////////////////////////////////////////
3
// Company: 
4
// Engineer: 
5
// 
6
// Create Date:    17:53:05 10/15/2013 
7
// Design Name: 
8
// Module Name:    Multiply_Accumulate 
9
// Project Name: 
10
// Target Devices: 
11
// Tool versions: 
12
// Description: C ± A*B
13
//
14
// Dependencies: 
15
//
16
// Revision: 
17
// Revision 0.01 - File Created
18
// Additional Comments: 
19
//
20
//////////////////////////////////////////////////////////////////////////////////
21 9 constantin
module Multiply_Accumulate #(   parameter size_mantissa = 24,   //mantissa bits(1.M)
22
                                                                                parameter size_exponent = 8,    //exponent bits
23 3 constantin
                                                                                parameter size_counter  = 5,    //log2(size_mantissa) + 1 = 5
24 5 constantin
                                                                                parameter size_exception_field = 2,     // zero/normal numbers/infinity/NaN
25 3 constantin
                                                                                parameter zero                          = 00, //00
26
                                                                                parameter normal_number = 01, //01
27
                                                                                parameter infinity              = 10, //10
28 5 constantin
                                                                                parameter NaN                           = 11, //11
29
                                                                                parameter pipeline              = 0,
30
                                                                                parameter pipeline_pos  = 0,  //8 bits
31 3 constantin
 
32 5 constantin
                                                                                parameter size = size_exponent + size_mantissa + size_exception_field,
33
                                                                                parameter size_mul_mantissa = size_mantissa + size_mantissa,
34
                                                                                parameter size_mul_counter = size_counter + 1)
35
                                                                        (       input clk,
36
                                                                                input rst,
37
                                                                                input [size - 1:0] a_number_i,
38
                                                                                input [size - 1:0] b_number_i,
39
                                                                                input [size - 1:0] c_number_i,
40
                                                                                input sub,
41
                                                                                output[size - 1:0] resulting_number_o);
42
 
43 9 constantin
        parameter bias_0_bits = size_exponent - 1;
44
        parameter shift_mantissa_0_bits = size_mantissa-1'b1;
45 5 constantin
 
46 9 constantin
        wire [size_exception_field - 1 : 0] sp_case_a_number, sp_case_b_number, sp_case_c_number;
47 5 constantin
        wire [size_mantissa - 1 : 0] m_a_number, m_b_number, m_c_number;
48
        wire [size_exponent - 1 : 0] e_a_number, e_b_number, e_c_number;
49
        wire s_a_number, s_b_number, s_c_number;
50
 
51 9 constantin
        wire [size_exponent     : 0] ab_greater_exponent, c_greater_exponent;
52 5 constantin
 
53 9 constantin
        wire [size_exponent - 1 : 0] exp_difference;
54
        wire [size_exponent - 1 : 0] unadjusted_exponent;
55
        wire [size_exponent     : 0] exp_inter;
56
 
57
        wire [size_mul_mantissa - 1     : 0] m_ab_mantissa, c_mantissa;
58
        wire [size_exponent                     : 0] e_ab_number_inter, e_ab_number;
59
        wire [size_mul_counter - 1      : 0] lz_mul;
60
 
61
        wire zero_flag;
62 5 constantin
        wire sign_res;
63 9 constantin
        wire eff_op;
64
 
65
        wire [size_mantissa - 1         : 0] initial_rounding_bits, inter_rounding_bits, final_rounding_bits;
66
        wire [size_mul_mantissa + 1 : 0] normalized_mantissa, adder_mantissa;
67
        wire [size_mul_mantissa         : 0] unnormalized_mantissa;
68
        wire [size_mul_mantissa - 1 : 0] shifted_m_ab;
69
        wire [size_mul_mantissa - 1 : 0] m_c, m_ab;
70
 
71 5 constantin
        wire [size_exception_field - 1 : 0] sp_case_result_o;
72 9 constantin
        wire [size_mantissa - 2 : 0] final_mantissa;
73
        wire [size_exponent - 1 : 0] final_exponent;
74
        wire [size_mantissa : 0] rounded_mantissa;
75
 
76 3 constantin
 
77 9 constantin
        assign m_a_number                       = {1'b1, a_number_i[size_mantissa - 2 :0]};
78 5 constantin
        assign m_b_number                       = {1'b1, b_number_i[size_mantissa - 2 :0]};
79
        assign m_c_number                       = {1'b1, c_number_i[size_mantissa - 2 :0]};
80
        assign e_a_number                       = a_number_i[size_mantissa + size_exponent - 1 : size_mantissa - 1];
81
        assign e_b_number                       = b_number_i[size_mantissa + size_exponent - 1 : size_mantissa - 1];
82
        assign e_c_number                       = c_number_i[size_mantissa + size_exponent - 1 : size_mantissa - 1];
83
        assign s_a_number                       = a_number_i[size - size_exception_field - 1];
84
        assign s_b_number                       = b_number_i[size - size_exception_field - 1];
85
        assign s_c_number                       = c_number_i[size - size_exception_field - 1];
86
        assign sp_case_a_number = a_number_i[size - 1 : size - size_exception_field];
87
        assign sp_case_b_number = b_number_i[size - 1 : size - size_exception_field];
88
        assign sp_case_c_number = c_number_i[size - 1 : size - size_exception_field];
89 3 constantin
 
90 5 constantin
 
91
        //instantiate multiply component
92
        multiply #(     .size_mantissa(size_mantissa),
93
                                        .size_counter(size_counter),
94
                                        .size_mul_mantissa(size_mul_mantissa))
95
                multiply_instance (     .a_mantissa_i(m_a_number),
96
                                                                        .b_mantissa_i(m_b_number),
97 9 constantin
                                                                        .mul_mantissa(m_ab_mantissa));
98 5 constantin
 
99 9 constantin
        assign c_mantissa       = {1'b0,m_c_number, {(shift_mantissa_0_bits){1'b0}}};
100
        assign e_ab_number_inter = e_a_number + e_b_number;
101 12 constantin
        assign e_ab_number = e_ab_number_inter  - {(bias_0_bits){1'b1}};
102 5 constantin
 
103 9 constantin
        //find the greater exponent
104
        assign ab_greater_exponent = e_ab_number - e_c_number;
105
        assign c_greater_exponent = e_c_number - e_ab_number;
106 5 constantin
 
107 9 constantin
        //find the difference between exponents
108
        assign exp_difference   = (ab_greater_exponent[size_exponent])? c_greater_exponent[size_exponent - 1 : 0] : ab_greater_exponent[size_exponent - 1 : 0];
109
        assign exp_inter                = (c_greater_exponent[size_exponent])? {1'b0, e_ab_number} : {1'b0, e_c_number};
110 5 constantin
 
111 9 constantin
        //set shifter always on m_ab_number
112
        assign {m_c, m_ab} = (ab_greater_exponent[size_exponent])? {c_mantissa, m_ab_mantissa} :
113
                                                        {m_ab_mantissa, c_mantissa};
114 5 constantin
 
115 9 constantin
        //shift m_ab_number                             
116 5 constantin
        shifter #(      .INPUT_SIZE(size_mul_mantissa),
117 9 constantin
                                .SHIFT_SIZE(size_exponent),
118
                                .OUTPUT_SIZE(size_mul_mantissa + size_mantissa),
119
                                .DIRECTION(1'b0), //0=right, 1=left
120
                                .PIPELINE(pipeline),
121
                                .POSITION(pipeline_pos))
122
                m_b_shifter_instance(   .a(m_ab),//mantissa
123
                                                                .arith(1'b0),//logical shift
124
                                                                .shft(exp_difference),
125
                                                                .shifted_a({shifted_m_ab, initial_rounding_bits}));
126 5 constantin
 
127
 
128
        //instantiate effective_op component
129
        effective_op effective_op_instance(     .sign_a(s_a_number),
130
                                                                                                        .sign_b(s_b_number),
131
                                                                                                        .sign_c(s_c_number),
132
                                                                                                        .sub(sub),
133 9 constantin
                                                                                                        .eff_sub(eff_op));
134
 
135 5 constantin
        //instantiate accumulate component
136 9 constantin
        accumulate #(.size_mul_mantissa(size_mul_mantissa))
137
                accumulate_instance (   .m_a(m_c),
138
                                                                .m_b(shifted_m_ab),
139
                                                                .eff_op(eff_op),
140
                                                                .adder_mantissa(adder_mantissa));
141
 
142
        //compute unnormalized_mantissa
143
        assign {unnormalized_mantissa, inter_rounding_bits} =
144
                                (adder_mantissa[size_mul_mantissa + 1])?        ({~adder_mantissa[size_mul_mantissa : 0], ~initial_rounding_bits}) :
145
                                                                                                                        ({adder_mantissa[size_mul_mantissa      : 0], initial_rounding_bits});
146
 
147 5 constantin
        //instantiate leading_zeros component
148
        leading_zeros #(        .SIZE_INT(size_mul_mantissa + 1'b1),
149
                                                        .SIZE_COUNTER(size_mul_counter),
150
                                                        .PIPELINE(pipeline))
151 9 constantin
                leading_zeros_instance( .a(unnormalized_mantissa[size_mul_mantissa : 0]),
152
                                                                                .ovf(unnormalized_mantissa[size_mul_mantissa]),
153 5 constantin
                                                                                .lz(lz_mul));
154
 
155
        //instantiate shifter component
156 9 constantin
        shifter #(      .INPUT_SIZE(size_mul_mantissa + size_mantissa + 1),
157 5 constantin
                                        .SHIFT_SIZE(size_mul_counter),
158 9 constantin
                                        .OUTPUT_SIZE(size_mul_mantissa + size_mantissa + 2),
159 5 constantin
                                        .DIRECTION(1'b1),
160
                                        .PIPELINE(pipeline),
161
                                        .POSITION(pipeline_pos))
162 9 constantin
                shifter_instance(       .a({unnormalized_mantissa, inter_rounding_bits}),
163 5 constantin
                                                                .arith(1'b0),
164
                                                                .shft(lz_mul),
165 9 constantin
                                                                .shifted_a({normalized_mantissa, final_rounding_bits}));
166
 
167
        //instantiate rounding_component
168
        rounding #(     .SIZE_MOST_S_MANTISSA(size_mantissa+1),
169
                                .SIZE_LEAST_S_MANTISSA(size_mul_mantissa+2))
170
                rounding_instance(      .unrounded_mantissa({1'b0, normalized_mantissa[size_mul_mantissa+1 : size_mantissa + 2]}),
171
                                    .dummy_bits({normalized_mantissa[size_mantissa + 1 : 0],final_rounding_bits}),
172
                                    .rounded_mantissa(rounded_mantissa));
173
 
174 5 constantin
        //instantiate special_cases_mul_acc component
175
        special_cases_mul_acc   #(      .size_exception_field(size_exception_field),
176
                                                                                .zero(zero),
177
                                                                                .normal_number(normal_number),
178
                                                                                .infinity(infinity),
179
                                                                                .NaN(NaN))
180
                special_cases_mul_acc_instance  (       .sp_case_a_number(sp_case_a_number),
181
                                                                                                                .sp_case_b_number(sp_case_b_number),
182
                                                                                                                .sp_case_c_number(sp_case_c_number),
183
                                                                                                                .sp_case_result_o(sp_case_result_o));
184 9 constantin
 
185
        //set zero_flag in case of equal numbers
186
        assign zero_flag = ~(|(rounded_mantissa));
187 5 constantin
 
188
        //compute resulted_sign
189 9 constantin
        assign sign_res =       (eff_op)?       (!c_greater_exponent[size_exponent]?
190
                                                                                (!ab_greater_exponent[size_exponent]? ~adder_mantissa[size_mul_mantissa+1] : s_c_number) : ~(s_b_number^s_a_number)) : s_c_number;
191 5 constantin
 
192 9 constantin
        assign final_mantissa = (rounded_mantissa[size_mantissa])?
193
                                                                        (rounded_mantissa[size_mantissa : 1]) :
194
                                                                        (rounded_mantissa[size_mantissa-1: 0]);
195
 
196
        assign unadjusted_exponent = exp_inter - lz_mul;
197
        assign final_exponent = unadjusted_exponent + 2'd2;
198
        assign resulting_number_o = (zero_flag)? {size{1'b0}} :{sp_case_result_o, sign_res, final_exponent, final_mantissa};
199 5 constantin
endmodule

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.