1 |
21 |
dgisselq |
///////////////////////////////////////////////////////////////////////////
|
2 |
|
|
//
|
3 |
|
|
// Filename: cpuops.v
|
4 |
|
|
//
|
5 |
|
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
6 |
|
|
//
|
7 |
|
|
// Purpose: This supports the instruction set reordering of operations
|
8 |
|
|
// created by the second generation instruction set, as well as
|
9 |
|
|
// the new operations of POPC (population count) and BREV (bit reversal).
|
10 |
|
|
//
|
11 |
|
|
//
|
12 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
13 |
|
|
// Gisselquist Technology, LLC
|
14 |
|
|
//
|
15 |
|
|
///////////////////////////////////////////////////////////////////////////
|
16 |
|
|
//
|
17 |
118 |
dgisselq |
// Copyright (C) 2015-2016, Gisselquist Technology, LLC
|
18 |
21 |
dgisselq |
//
|
19 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
20 |
|
|
// modify it under the terms of the GNU General Public License as published
|
21 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
22 |
|
|
// your option) any later version.
|
23 |
|
|
//
|
24 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
25 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
26 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
27 |
|
|
// for more details.
|
28 |
|
|
//
|
29 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
30 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
31 |
|
|
//
|
32 |
|
|
//
|
33 |
|
|
///////////////////////////////////////////////////////////////////////////
|
34 |
|
|
//
|
35 |
118 |
dgisselq |
`include "cpudefs.v"
|
36 |
|
|
//
|
37 |
|
|
module cpuops(i_clk,i_rst, i_ce, i_op, i_a, i_b, o_c, o_f, o_valid,
|
38 |
|
|
o_busy);
|
39 |
|
|
parameter IMPLEMENT_MPY = `OPT_MULTIPLY;
|
40 |
21 |
dgisselq |
input i_clk, i_rst, i_ce;
|
41 |
|
|
input [3:0] i_op;
|
42 |
|
|
input [31:0] i_a, i_b;
|
43 |
|
|
output reg [31:0] o_c;
|
44 |
|
|
output wire [3:0] o_f;
|
45 |
|
|
output reg o_valid;
|
46 |
|
|
output wire o_busy;
|
47 |
|
|
|
48 |
|
|
// Rotate-left pre-logic
|
49 |
|
|
wire [63:0] w_rol_tmp;
|
50 |
|
|
assign w_rol_tmp = { i_a, i_a } << i_b[4:0];
|
51 |
|
|
wire [31:0] w_rol_result;
|
52 |
|
|
assign w_rol_result = w_rol_tmp[63:32]; // Won't set flags
|
53 |
|
|
|
54 |
|
|
// Shift register pre-logic
|
55 |
113 |
dgisselq |
wire [32:0] w_lsr_result, w_asr_result, w_lsl_result;
|
56 |
|
|
wire signed [32:0] w_pre_asr_input, w_pre_asr_shifted;
|
57 |
|
|
assign w_pre_asr_input = { i_a, 1'b0 };
|
58 |
|
|
assign w_pre_asr_shifted = w_pre_asr_input >>> i_b[4:0];
|
59 |
21 |
dgisselq |
assign w_asr_result = (|i_b[31:5])? {(33){i_a[31]}}
|
60 |
113 |
dgisselq |
: w_pre_asr_shifted;// ASR
|
61 |
|
|
assign w_lsr_result = ((|i_b[31:6])||(i_b[5]&&(i_b[4:0]!=0)))? 33'h00
|
62 |
|
|
:((i_b[5])?{32'h0,i_a[31]}
|
63 |
|
|
|
64 |
|
|
: ( { i_a, 1'b0 } >> (i_b[4:0]) ));// LSR
|
65 |
|
|
assign w_lsl_result = ((|i_b[31:6])||(i_b[5]&&(i_b[4:0]!=0)))? 33'h00
|
66 |
|
|
:((i_b[5])?{i_a[0], 32'h0}
|
67 |
|
|
: ({1'b0, i_a } << i_b[4:0])); // LSL
|
68 |
21 |
dgisselq |
|
69 |
|
|
// Bit reversal pre-logic
|
70 |
|
|
wire [31:0] w_brev_result;
|
71 |
|
|
genvar k;
|
72 |
|
|
generate
|
73 |
|
|
for(k=0; k<32; k=k+1)
|
74 |
|
|
begin : bit_reversal_cpuop
|
75 |
|
|
assign w_brev_result[k] = i_b[31-k];
|
76 |
|
|
end endgenerate
|
77 |
|
|
|
78 |
|
|
// Popcount pre-logic
|
79 |
|
|
wire [31:0] w_popc_result;
|
80 |
|
|
assign w_popc_result[5:0]=
|
81 |
|
|
({5'h0,i_b[ 0]}+{5'h0,i_b[ 1]}+{5'h0,i_b[ 2]}+{5'h0,i_b[ 3]})
|
82 |
|
|
+({5'h0,i_b[ 4]}+{5'h0,i_b[ 5]}+{5'h0,i_b[ 6]}+{5'h0,i_b[ 7]})
|
83 |
|
|
+({5'h0,i_b[ 8]}+{5'h0,i_b[ 9]}+{5'h0,i_b[10]}+{5'h0,i_b[11]})
|
84 |
|
|
+({5'h0,i_b[12]}+{5'h0,i_b[13]}+{5'h0,i_b[14]}+{5'h0,i_b[15]})
|
85 |
|
|
+({5'h0,i_b[16]}+{5'h0,i_b[17]}+{5'h0,i_b[18]}+{5'h0,i_b[19]})
|
86 |
|
|
+({5'h0,i_b[20]}+{5'h0,i_b[21]}+{5'h0,i_b[22]}+{5'h0,i_b[23]})
|
87 |
|
|
+({5'h0,i_b[24]}+{5'h0,i_b[25]}+{5'h0,i_b[26]}+{5'h0,i_b[27]})
|
88 |
|
|
+({5'h0,i_b[28]}+{5'h0,i_b[29]}+{5'h0,i_b[30]}+{5'h0,i_b[31]});
|
89 |
|
|
assign w_popc_result[31:6] = 26'h00;
|
90 |
|
|
|
91 |
|
|
// Prelogic for our flags registers
|
92 |
|
|
wire z, n, v;
|
93 |
|
|
reg c, pre_sign, set_ovfl;
|
94 |
|
|
always @(posedge i_clk)
|
95 |
|
|
if (i_ce) // 1 LUT
|
96 |
|
|
set_ovfl =(((i_op==4'h0)&&(i_a[31] != i_b[31]))//SUB&CMP
|
97 |
|
|
||((i_op==4'h2)&&(i_a[31] == i_b[31])) // ADD
|
98 |
|
|
||(i_op == 4'h6) // LSL
|
99 |
|
|
||(i_op == 4'h5)); // LSR
|
100 |
|
|
|
101 |
118 |
dgisselq |
wire [63:0] mpy_result; // Where we dump the multiply result
|
102 |
|
|
reg mpyhi; // Return the high half of the multiply
|
103 |
|
|
wire mpybusy; // The multiply is busy if true
|
104 |
|
|
wire mpydone; // True if we'll be valid on the next clock;
|
105 |
21 |
dgisselq |
|
106 |
|
|
// A 4-way multiplexer can be done in one 6-LUT.
|
107 |
|
|
// A 16-way multiplexer can therefore be done in 4x 6-LUT's with
|
108 |
|
|
// the Xilinx multiplexer fabric that follows.
|
109 |
|
|
// Given that we wish to apply this multiplexer approach to 33-bits,
|
110 |
|
|
// this will cost a minimum of 132 6-LUTs.
|
111 |
118 |
dgisselq |
|
112 |
|
|
wire this_is_a_multiply_op;
|
113 |
|
|
assign this_is_a_multiply_op = (i_ce)&&((i_op[3:1]==3'h5)||(i_op[3:0]==4'h8));
|
114 |
|
|
|
115 |
21 |
dgisselq |
generate
|
116 |
|
|
if (IMPLEMENT_MPY == 0)
|
117 |
118 |
dgisselq |
begin // No multiply support.
|
118 |
|
|
assign mpy_result = 63'h00;
|
119 |
|
|
end else if (IMPLEMENT_MPY == 1)
|
120 |
|
|
begin // Our single clock option (no extra clocks)
|
121 |
|
|
wire signed [63:0] w_mpy_a_input, w_mpy_b_input;
|
122 |
|
|
assign w_mpy_a_input = {{(32){(i_a[31])&(i_op[0])}},i_a[31:0]};
|
123 |
|
|
assign w_mpy_b_input = {{(32){(i_b[31])&(i_op[0])}},i_b[31:0]};
|
124 |
|
|
assign mpy_result = w_mpy_a_input * w_mpy_b_input;
|
125 |
|
|
assign mpybusy = 1'b0;
|
126 |
|
|
assign mpydone = 1'b0;
|
127 |
|
|
always @(*) mpyhi = 1'b0; // Not needed
|
128 |
|
|
end else if (IMPLEMENT_MPY == 2)
|
129 |
|
|
begin // Our two clock option (ALU must pause for 1 clock)
|
130 |
|
|
reg signed [63:0] r_mpy_a_input, r_mpy_b_input;
|
131 |
21 |
dgisselq |
always @(posedge i_clk)
|
132 |
|
|
begin
|
133 |
118 |
dgisselq |
r_mpy_a_input <={{(32){(i_a[31])&(i_op[0])}},i_a[31:0]};
|
134 |
|
|
r_mpy_b_input <={{(32){(i_b[31])&(i_op[0])}},i_b[31:0]};
|
135 |
21 |
dgisselq |
end
|
136 |
|
|
|
137 |
118 |
dgisselq |
assign mpy_result = r_mpy_a_input * r_mpy_b_input;
|
138 |
|
|
assign mpybusy = 1'b0;
|
139 |
21 |
dgisselq |
|
140 |
118 |
dgisselq |
initial mpypipe = 1'b0;
|
141 |
|
|
reg mpypipe;
|
142 |
21 |
dgisselq |
always @(posedge i_clk)
|
143 |
118 |
dgisselq |
if (i_rst)
|
144 |
|
|
mpypipe <= 1'b0;
|
145 |
|
|
else
|
146 |
|
|
mpypipe <= (this_is_a_multiply_op);
|
147 |
|
|
|
148 |
|
|
assign mpydone = mpypipe; // this_is_a_multiply_op;
|
149 |
|
|
always @(posedge i_clk)
|
150 |
|
|
if (this_is_a_multiply_op)
|
151 |
|
|
mpyhi = i_op[1];
|
152 |
|
|
end else if (IMPLEMENT_MPY == 3)
|
153 |
|
|
begin // Our three clock option (ALU pauses for 2 clocks)
|
154 |
|
|
reg signed [63:0] r_smpy_result;
|
155 |
|
|
reg [63:0] r_umpy_result;
|
156 |
|
|
reg signed [31:0] r_mpy_a_input, r_mpy_b_input;
|
157 |
|
|
reg [1:0] mpypipe;
|
158 |
|
|
reg [1:0] r_sgn;
|
159 |
|
|
|
160 |
|
|
initial mpypipe = 2'b0;
|
161 |
|
|
always @(posedge i_clk)
|
162 |
|
|
if (i_rst)
|
163 |
|
|
mpypipe <= 2'b0;
|
164 |
|
|
else
|
165 |
|
|
mpypipe <= { mpypipe[0], this_is_a_multiply_op };
|
166 |
|
|
|
167 |
|
|
// First clock
|
168 |
|
|
always @(posedge i_clk)
|
169 |
|
|
begin
|
170 |
|
|
r_mpy_a_input <= i_a[31:0];
|
171 |
|
|
r_mpy_b_input <= i_b[31:0];
|
172 |
|
|
r_sgn <= { r_sgn[0], i_op[0] };
|
173 |
|
|
end
|
174 |
|
|
|
175 |
|
|
// Second clock
|
176 |
|
|
`ifdef VERILATOR
|
177 |
|
|
wire signed [63:0] s_mpy_a_input, s_mpy_b_input;
|
178 |
|
|
wire [63:0] u_mpy_a_input, u_mpy_b_input;
|
179 |
|
|
|
180 |
|
|
assign s_mpy_a_input = {{(32){r_mpy_a_input[31]}},r_mpy_a_input};
|
181 |
|
|
assign s_mpy_b_input = {{(32){r_mpy_b_input[31]}},r_mpy_b_input};
|
182 |
|
|
assign u_mpy_a_input = {32'h00,r_mpy_a_input};
|
183 |
|
|
assign u_mpy_b_input = {32'h00,r_mpy_b_input};
|
184 |
|
|
always @(posedge i_clk)
|
185 |
|
|
r_smpy_result = s_mpy_a_input * s_mpy_b_input;
|
186 |
|
|
always @(posedge i_clk)
|
187 |
|
|
r_umpy_result = u_mpy_a_input * u_mpy_b_input;
|
188 |
|
|
`else
|
189 |
|
|
|
190 |
|
|
wire [31:0] u_mpy_a_input, u_mpy_b_input;
|
191 |
|
|
|
192 |
|
|
assign u_mpy_a_input = r_mpy_a_input;
|
193 |
|
|
assign u_mpy_b_input = r_mpy_b_input;
|
194 |
|
|
|
195 |
|
|
always @(posedge i_clk)
|
196 |
|
|
r_smpy_result = r_mpy_a_input * r_mpy_b_input;
|
197 |
|
|
always @(posedge i_clk)
|
198 |
|
|
r_umpy_result = u_mpy_a_input * u_mpy_b_input;
|
199 |
52 |
dgisselq |
`endif
|
200 |
118 |
dgisselq |
|
201 |
|
|
always @(posedge i_clk)
|
202 |
|
|
if (this_is_a_multiply_op)
|
203 |
|
|
mpyhi = i_op[1];
|
204 |
|
|
assign mpybusy = mpypipe[0];
|
205 |
|
|
assign mpy_result = (r_sgn[1])?r_smpy_result:r_umpy_result;
|
206 |
|
|
assign mpydone = mpypipe[1];
|
207 |
|
|
|
208 |
|
|
// Results are then set on the third clock
|
209 |
|
|
end else // if (IMPLEMENT_MPY <= 4)
|
210 |
|
|
begin // The three clock option
|
211 |
52 |
dgisselq |
reg [63:0] r_mpy_result;
|
212 |
118 |
dgisselq |
reg [31:0] r_mpy_a_input, r_mpy_b_input;
|
213 |
|
|
reg r_mpy_signed;
|
214 |
|
|
reg [2:0] mpypipe;
|
215 |
52 |
dgisselq |
|
216 |
118 |
dgisselq |
// First clock, latch in the inputs
|
217 |
|
|
always @(posedge i_clk)
|
218 |
|
|
begin
|
219 |
|
|
// mpypipe indicates we have a multiply in the
|
220 |
|
|
// pipeline. In this case, the multiply
|
221 |
|
|
// pipeline is a two stage pipeline, so we need
|
222 |
|
|
// two bits in the pipe.
|
223 |
|
|
if (i_rst)
|
224 |
|
|
mpypipe <= 3'h0;
|
225 |
|
|
else begin
|
226 |
|
|
mpypipe[0] <= this_is_a_multiply_op;
|
227 |
52 |
dgisselq |
mpypipe[1] <= mpypipe[0];
|
228 |
118 |
dgisselq |
mpypipe[2] <= mpypipe[1];
|
229 |
52 |
dgisselq |
end
|
230 |
|
|
|
231 |
118 |
dgisselq |
if (i_op[0]) // i.e. if signed multiply
|
232 |
52 |
dgisselq |
begin
|
233 |
118 |
dgisselq |
r_mpy_a_input <= {(~i_a[31]),i_a[30:0]};
|
234 |
|
|
r_mpy_b_input <= {(~i_b[31]),i_b[30:0]};
|
235 |
|
|
end else begin
|
236 |
|
|
r_mpy_a_input <= i_a[31:0];
|
237 |
|
|
r_mpy_b_input <= i_b[31:0];
|
238 |
52 |
dgisselq |
end
|
239 |
118 |
dgisselq |
// The signed bit really only matters in the
|
240 |
|
|
// case of 64 bit multiply. We'll keep track
|
241 |
|
|
// of it, though, and pretend in all other
|
242 |
|
|
// cases.
|
243 |
|
|
r_mpy_signed <= i_op[0];
|
244 |
52 |
dgisselq |
|
245 |
118 |
dgisselq |
if (this_is_a_multiply_op)
|
246 |
|
|
mpyhi = i_op[1];
|
247 |
|
|
end
|
248 |
21 |
dgisselq |
|
249 |
118 |
dgisselq |
assign mpybusy = |mpypipe[1:0];
|
250 |
|
|
assign mpydone = mpypipe[2];
|
251 |
|
|
|
252 |
|
|
// Second clock, do the multiplies, get the "partial
|
253 |
|
|
// products". Here, we break our input up into two
|
254 |
|
|
// halves,
|
255 |
21 |
dgisselq |
//
|
256 |
118 |
dgisselq |
// A = (2^16 ah + al)
|
257 |
|
|
// B = (2^16 bh + bl)
|
258 |
21 |
dgisselq |
//
|
259 |
118 |
dgisselq |
// and use these to compute partial products.
|
260 |
|
|
//
|
261 |
|
|
// AB = (2^32 ah*bh + 2^16 (ah*bl + al*bh) + (al*bl)
|
262 |
|
|
//
|
263 |
|
|
// Since we're following the FOIL algorithm to get here,
|
264 |
|
|
// we'll name these partial products according to FOIL.
|
265 |
|
|
//
|
266 |
|
|
// The trick is what happens if A or B is signed. In
|
267 |
|
|
// those cases, the real value of A will not be given by
|
268 |
|
|
// A = (2^16 ah + al)
|
269 |
|
|
// but rather
|
270 |
|
|
// A = (2^16 ah[31^] + al) - 2^31
|
271 |
|
|
// (where we have flipped the sign bit of A)
|
272 |
|
|
// and so ...
|
273 |
|
|
//
|
274 |
|
|
// AB= (2^16 ah + al - 2^31) * (2^16 bh + bl - 2^31)
|
275 |
|
|
// = 2^32(ah*bh)
|
276 |
|
|
// +2^16 (ah*bl+al*bh)
|
277 |
|
|
// +(al*bl)
|
278 |
|
|
// - 2^31 (2^16 bh+bl + 2^16 ah+al)
|
279 |
|
|
// - 2^62
|
280 |
|
|
// = 2^32(ah*bh)
|
281 |
|
|
// +2^16 (ah*bl+al*bh)
|
282 |
|
|
// +(al*bl)
|
283 |
|
|
// - 2^31 (2^16 bh+bl + 2^16 ah+al + 2^31)
|
284 |
|
|
//
|
285 |
|
|
reg [31:0] pp_f, pp_l; // F and L from FOIL
|
286 |
|
|
reg [32:0] pp_oi; // The O and I from FOIL
|
287 |
|
|
reg [32:0] pp_s;
|
288 |
21 |
dgisselq |
always @(posedge i_clk)
|
289 |
|
|
begin
|
290 |
118 |
dgisselq |
pp_f<=r_mpy_a_input[31:16]*r_mpy_b_input[31:16];
|
291 |
|
|
pp_oi<=r_mpy_a_input[31:16]*r_mpy_b_input[15: 0]
|
292 |
|
|
+ r_mpy_a_input[15: 0]*r_mpy_b_input[31:16];
|
293 |
|
|
pp_l<=r_mpy_a_input[15: 0]*r_mpy_b_input[15: 0];
|
294 |
|
|
// And a special one for the sign
|
295 |
|
|
if (r_mpy_signed)
|
296 |
|
|
pp_s <= 32'h8000_0000-(
|
297 |
|
|
r_mpy_a_input[31:0]
|
298 |
|
|
+ r_mpy_b_input[31:0]);
|
299 |
|
|
else
|
300 |
|
|
pp_s <= 33'h0;
|
301 |
|
|
end
|
302 |
21 |
dgisselq |
|
303 |
118 |
dgisselq |
// Third clock, add the results and produce a product
|
304 |
21 |
dgisselq |
always @(posedge i_clk)
|
305 |
118 |
dgisselq |
begin
|
306 |
|
|
r_mpy_result[15:0] <= pp_l[15:0];
|
307 |
|
|
r_mpy_result[63:16] <=
|
308 |
|
|
{ 32'h00, pp_l[31:16] }
|
309 |
|
|
+ { 15'h00, pp_oi }
|
310 |
|
|
+ { pp_s, 15'h00 }
|
311 |
|
|
+ { pp_f, 16'h00 };
|
312 |
|
|
end
|
313 |
21 |
dgisselq |
|
314 |
118 |
dgisselq |
assign mpy_result = r_mpy_result;
|
315 |
|
|
// Fourth clock -- results are clocked into writeback
|
316 |
|
|
end
|
317 |
|
|
endgenerate // All possible multiply results have been determined
|
318 |
21 |
dgisselq |
|
319 |
118 |
dgisselq |
//
|
320 |
|
|
// The master ALU case statement
|
321 |
|
|
//
|
322 |
|
|
always @(posedge i_clk)
|
323 |
|
|
if (i_ce)
|
324 |
|
|
begin
|
325 |
|
|
pre_sign <= (i_a[31]);
|
326 |
|
|
c <= 1'b0;
|
327 |
|
|
casez(i_op)
|
328 |
|
|
4'b0000:{c,o_c } <= {1'b0,i_a}-{1'b0,i_b};// CMP/SUB
|
329 |
|
|
4'b0001: o_c <= i_a & i_b; // BTST/And
|
330 |
|
|
4'b0010:{c,o_c } <= i_a + i_b; // Add
|
331 |
|
|
4'b0011: o_c <= i_a | i_b; // Or
|
332 |
|
|
4'b0100: o_c <= i_a ^ i_b; // Xor
|
333 |
|
|
4'b0101:{o_c,c } <= w_lsr_result[32:0]; // LSR
|
334 |
|
|
4'b0110:{c,o_c } <= w_lsl_result[32:0]; // LSL
|
335 |
|
|
4'b0111:{o_c,c } <= w_asr_result[32:0]; // ASR
|
336 |
|
|
4'b1000: o_c <= mpy_result[31:0]; // MPY
|
337 |
|
|
4'b1001: o_c <= { i_a[31:16], i_b[15:0] }; // LODILO
|
338 |
|
|
4'b1010: o_c <= mpy_result[63:32]; // MPYHU
|
339 |
|
|
4'b1011: o_c <= mpy_result[63:32]; // MPYHS
|
340 |
|
|
4'b1100: o_c <= w_brev_result; // BREV
|
341 |
|
|
4'b1101: o_c <= w_popc_result; // POPC
|
342 |
|
|
4'b1110: o_c <= w_rol_result; // ROL
|
343 |
|
|
default: o_c <= i_b; // MOV, LDI
|
344 |
|
|
endcase
|
345 |
|
|
end else // if (mpydone)
|
346 |
|
|
o_c <= (mpyhi)?mpy_result[63:32]:mpy_result[31:0];
|
347 |
21 |
dgisselq |
|
348 |
118 |
dgisselq |
reg r_busy;
|
349 |
|
|
initial r_busy = 1'b0;
|
350 |
|
|
always @(posedge i_clk)
|
351 |
|
|
if (i_rst)
|
352 |
|
|
r_busy <= 1'b0;
|
353 |
|
|
else
|
354 |
|
|
r_busy <= ((IMPLEMENT_MPY > 1)
|
355 |
|
|
&&(this_is_a_multiply_op))||mpybusy;
|
356 |
|
|
assign o_busy = (r_busy); // ||((IMPLEMENT_MPY>1)&&(this_is_a_multiply_op));
|
357 |
|
|
|
358 |
|
|
|
359 |
21 |
dgisselq |
assign z = (o_c == 32'h0000);
|
360 |
|
|
assign n = (o_c[31]);
|
361 |
|
|
assign v = (set_ovfl)&&(pre_sign != o_c[31]);
|
362 |
|
|
|
363 |
|
|
assign o_f = { v, n, c, z };
|
364 |
|
|
|
365 |
|
|
initial o_valid = 1'b0;
|
366 |
|
|
always @(posedge i_clk)
|
367 |
|
|
if (i_rst)
|
368 |
|
|
o_valid <= 1'b0;
|
369 |
118 |
dgisselq |
else if (IMPLEMENT_MPY <= 1)
|
370 |
|
|
o_valid <= (i_ce);
|
371 |
21 |
dgisselq |
else
|
372 |
118 |
dgisselq |
o_valid <=((i_ce)&&(!this_is_a_multiply_op))||(mpydone);
|
373 |
|
|
|
374 |
21 |
dgisselq |
endmodule
|