OpenCores
URL https://opencores.org/ocsvn/xulalx25soc/xulalx25soc/trunk

Subversion Repositories xulalx25soc

[/] [xulalx25soc/] [trunk/] [rtl/] [cpu/] [ziptimer.v] - Blame information for rev 86

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 21 dgisselq
///////////////////////////////////////////////////////////////////////////
2
//
3
// Filename:    ziptimer.v
4
//
5
// Project:     Zip CPU -- a small, lightweight, RISC CPU soft core
6
//
7
// Purpose:     A lighter weight implementation of the Zip Timer.
8
//
9
// Interface:
10
//      Two options:
11
//      1. One combined register for both control and value, and ...
12
//              The reload value is set any time the timer data value is "set".
13
//              Reading the register returns the timer value.  Controls are
14
//              set so that writing a value to the timer automatically starts
15
//              it counting down.
16
//      2. Two registers, one for control one for value.
17
//              The control register would have the reload value in it.
18
//      On the clock when the interface is set to zero the interrupt is set.
19
//              Hence setting the timer to zero will disable the timer without
20
//              setting any interrupts.  Thus setting it to five will count
21
//              5 clocks: 5, 4, 3, 2, 1, Interrupt.
22
//
23
//
24
//      Control bits:
25
//              (Start_n/Stop.  This bit has been dropped.  Writing to this
26
//                      timer any value but zero starts it.  Writing a zero
27
//                      clears and stops it.)
28
//              AutoReload.  If set, then on reset the timer automatically
29
//                      loads the last set value and starts over.  This is
30
//                      useful for distinguishing between a one-time interrupt
31
//                      timer, and a repetitive interval timer.
32
//              (INTEN.  Interrupt enable--reaching zero always creates an
33
//                      interrupt, so this control bit isn't needed.  The
34
//                      interrupt controller can be used to mask the interrupt.)
35
//              (COUNT-DOWN/UP: This timer is *only* a count-down timer.
36
//                      There is no means of setting it to count up.)
37
//      WatchDog
38
//              This timer can be implemented as a watchdog timer simply by
39
//              connecting the interrupt line to the reset line of the CPU.
40
//              When the timer then expires, it will trigger a CPU reset.
41
//
42
//
43
// Creator:     Dan Gisselquist, Ph.D.
44
//              Gisselquist Technology, LLC
45
//
46
///////////////////////////////////////////////////////////////////////////
47
//
48
// Copyright (C) 2015, Gisselquist Technology, LLC
49
//
50
// This program is free software (firmware): you can redistribute it and/or
51
// modify it under the terms of  the GNU General Public License as published
52
// by the Free Software Foundation, either version 3 of the License, or (at
53
// your option) any later version.
54
//
55
// This program is distributed in the hope that it will be useful, but WITHOUT
56
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
57
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
58
// for more details.
59
//
60
// License:     GPL, v3, as defined and found on www.gnu.org,
61
//              http://www.gnu.org/licenses/gpl.html
62
//
63
//
64
///////////////////////////////////////////////////////////////////////////
65
//
66
module  ziptimer(i_clk, i_rst, i_ce,
67
                i_wb_cyc, i_wb_stb, i_wb_we, i_wb_data,
68
                        o_wb_ack, o_wb_stall, o_wb_data,
69
                o_int);
70 65 dgisselq
        parameter       BW = 32, VW = (BW-1), RELOADABLE=1;
71 21 dgisselq
        input                   i_clk, i_rst, i_ce;
72
        // Wishbone inputs
73
        input                   i_wb_cyc, i_wb_stb, i_wb_we;
74
        input   [(BW-1):0]       i_wb_data;
75
        // Wishbone outputs
76
        output  reg                     o_wb_ack;
77
        output  wire                    o_wb_stall;
78
        output  wire    [(BW-1):0]       o_wb_data;
79
        // Interrupt line
80
        output  reg             o_int;
81
 
82 65 dgisselq
        reg                     r_running;
83 21 dgisselq
 
84
        wire    wb_write;
85
        assign  wb_write = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_we));
86
 
87 65 dgisselq
        wire    auto_reload;
88
        wire    [(VW-1):0]       reload_value;
89
 
90 21 dgisselq
        initial r_running = 1'b0;
91
        always @(posedge i_clk)
92
                if (i_rst)
93
                        r_running <= 1'b0;
94
                else if (wb_write)
95
                        r_running <= (|i_wb_data[(VW-1):0]);
96 65 dgisselq
                else if ((o_int)&&(~auto_reload))
97 21 dgisselq
                        r_running <= 1'b0;
98
 
99 65 dgisselq
        generate
100
        if (RELOADABLE != 0)
101
        begin
102
                reg     r_auto_reload;
103
                reg     [(VW-1):0]       r_reload_value;
104 21 dgisselq
 
105 65 dgisselq
                initial r_auto_reload = 1'b0;
106 21 dgisselq
 
107 65 dgisselq
                always @(posedge i_clk)
108
                        if (wb_write)
109
                                r_auto_reload <= (i_wb_data[(BW-1)]);
110 21 dgisselq
 
111 65 dgisselq
                assign  auto_reload = r_auto_reload;
112
 
113
                // If setting auto-reload mode, and the value to other
114
                // than zero, set the auto-reload value
115
                always @(posedge i_clk)
116
                        if ((wb_write)&&(i_wb_data[(BW-1)])&&(|i_wb_data[(VW-1):0]))
117
                                r_reload_value <= i_wb_data[(VW-1):0];
118
                assign  reload_value = r_reload_value;
119
        end else begin
120
                assign  auto_reload = 1'b0;
121
                assign  reload_value = 0;
122
        end endgenerate
123
 
124
 
125 21 dgisselq
        reg     [(VW-1):0]       r_value;
126
        initial r_value = 0;
127
        always @(posedge i_clk)
128
                if (wb_write)
129
                        r_value <= i_wb_data[(VW-1):0];
130
                else if ((r_running)&&(i_ce)&&(~o_int))
131
                        r_value <= r_value + {(VW){1'b1}}; // r_value - 1;
132 65 dgisselq
                else if ((r_running)&&(auto_reload)&&(o_int))
133
                        r_value <= reload_value;
134 21 dgisselq
 
135 65 dgisselq
        // Set the interrupt on our last tick, as we transition from one to
136
        // zero.
137 21 dgisselq
        initial o_int   = 1'b0;
138
        always @(posedge i_clk)
139 65 dgisselq
                if (i_rst)
140
                        o_int <= 1'b0;
141
                else if (i_ce)
142 21 dgisselq
                o_int <= (r_running)&&(r_value == { {(VW-1){1'b0}}, 1'b1 });
143
                else
144
                        o_int <= 1'b0;
145
 
146
        initial o_wb_ack = 1'b0;
147
        always @(posedge i_clk)
148
                o_wb_ack <= (i_wb_cyc)&&(i_wb_stb);
149
        assign  o_wb_stall = 1'b0;
150
 
151 65 dgisselq
        generate
152
        if (VW < BW-1)
153
                assign  o_wb_data = { auto_reload, {(BW-1-VW){1'b0}}, r_value };
154
        else
155
                assign  o_wb_data = { auto_reload, r_value };
156
        endgenerate
157 21 dgisselq
 
158
endmodule

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.