1 |
39 |
zeus |
/////////////////////////////////////////////////////////////////////////
|
2 |
52 |
zeus |
// $Id: cpu.cc,v 1.230 2008/05/10 20:35:03 sshwarts Exp $
|
3 |
39 |
zeus |
/////////////////////////////////////////////////////////////////////////
|
4 |
|
|
//
|
5 |
|
|
// Copyright (C) 2001 MandrakeSoft S.A.
|
6 |
|
|
//
|
7 |
|
|
// MandrakeSoft S.A.
|
8 |
|
|
// 43, rue d'Aboukir
|
9 |
|
|
// 75002 Paris - France
|
10 |
|
|
// http://www.linux-mandrake.com/
|
11 |
|
|
// http://www.mandrakesoft.com/
|
12 |
|
|
//
|
13 |
|
|
// This library is free software; you can redistribute it and/or
|
14 |
|
|
// modify it under the terms of the GNU Lesser General Public
|
15 |
|
|
// License as published by the Free Software Foundation; either
|
16 |
|
|
// version 2 of the License, or (at your option) any later version.
|
17 |
|
|
//
|
18 |
|
|
// This library is distributed in the hope that it will be useful,
|
19 |
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
20 |
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
21 |
|
|
// Lesser General Public License for more details.
|
22 |
|
|
//
|
23 |
|
|
// You should have received a copy of the GNU Lesser General Public
|
24 |
|
|
// License along with this library; if not, write to the Free Software
|
25 |
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
26 |
|
|
/////////////////////////////////////////////////////////////////////////
|
27 |
|
|
|
28 |
|
|
#define NEED_CPU_REG_SHORTCUTS 1
|
29 |
|
|
#include "bochs.h"
|
30 |
|
|
#include "cpu.h"
|
31 |
|
|
#define LOG_THIS BX_CPU_THIS_PTR
|
32 |
|
|
|
33 |
|
|
#include "iodev/iodev.h"
|
34 |
|
|
|
35 |
|
|
#if BX_EXTERNAL_DEBUGGER
|
36 |
|
|
#include "extdb.h"
|
37 |
|
|
#endif
|
38 |
|
|
|
39 |
|
|
// Make code more tidy with a few macros.
|
40 |
|
|
#if BX_SUPPORT_X86_64==0
|
41 |
|
|
#define RIP EIP
|
42 |
|
|
#define RCX ECX
|
43 |
|
|
#endif
|
44 |
|
|
|
45 |
|
|
// ICACHE instrumentation code
|
46 |
|
|
#if BX_SUPPORT_ICACHE
|
47 |
|
|
|
48 |
|
|
#define InstrumentICACHE 0
|
49 |
|
|
|
50 |
|
|
#if InstrumentICACHE
|
51 |
|
|
static unsigned iCacheLookups=0;
|
52 |
|
|
static unsigned iCacheMisses=0;
|
53 |
|
|
|
54 |
|
|
#define InstrICache_StatsMask 0xffffff
|
55 |
|
|
|
56 |
|
|
#define InstrICache_Stats() {\
|
57 |
|
|
if ((iCacheLookups & InstrICache_StatsMask) == 0) { \
|
58 |
|
|
BX_INFO(("ICACHE lookups: %u, misses: %u, hit rate = %6.2f%% ", \
|
59 |
|
|
iCacheLookups, \
|
60 |
|
|
iCacheMisses, \
|
61 |
|
|
(iCacheLookups-iCacheMisses) * 100.0 / iCacheLookups)); \
|
62 |
|
|
iCacheLookups = iCacheMisses = 0; \
|
63 |
|
|
} \
|
64 |
|
|
}
|
65 |
|
|
#define InstrICache_Increment(v) (v)++
|
66 |
|
|
|
67 |
|
|
#else
|
68 |
|
|
#define InstrICache_Stats()
|
69 |
|
|
#define InstrICache_Increment(v)
|
70 |
|
|
#endif
|
71 |
|
|
|
72 |
|
|
#endif // BX_SUPPORT_ICACHE
|
73 |
|
|
|
74 |
|
|
// The CHECK_MAX_INSTRUCTIONS macro allows cpu_loop to execute a few
|
75 |
|
|
// instructions and then return so that the other processors have a chance to
|
76 |
|
|
// run. This is used by bochs internal debugger or when simulating
|
77 |
|
|
// multiple processors.
|
78 |
|
|
//
|
79 |
|
|
// If maximum instructions have been executed, return. The zero-count
|
80 |
|
|
// means run forever.
|
81 |
|
|
#if BX_SUPPORT_SMP || BX_DEBUGGER
|
82 |
|
|
#define CHECK_MAX_INSTRUCTIONS(count) \
|
83 |
|
|
if ((count) > 0) { \
|
84 |
|
|
(count)--; \
|
85 |
|
|
if ((count) == 0) return; \
|
86 |
|
|
}
|
87 |
|
|
#else
|
88 |
|
|
#define CHECK_MAX_INSTRUCTIONS(count)
|
89 |
|
|
#endif
|
90 |
|
|
|
91 |
|
|
void BX_CPU_C::cpu_loop(Bit32u max_instr_count)
|
92 |
|
|
{
|
93 |
|
|
#if BX_DEBUGGER
|
94 |
|
|
BX_CPU_THIS_PTR break_point = 0;
|
95 |
|
|
BX_CPU_THIS_PTR magic_break = 0;
|
96 |
|
|
BX_CPU_THIS_PTR stop_reason = STOP_NO_REASON;
|
97 |
|
|
#endif
|
98 |
|
|
|
99 |
|
|
if (setjmp(BX_CPU_THIS_PTR jmp_buf_env)) {
|
100 |
|
|
// only from exception function we can get here ...
|
101 |
|
|
BX_INSTR_NEW_INSTRUCTION(BX_CPU_ID);
|
102 |
|
|
BX_TICK1_IF_SINGLE_PROCESSOR();
|
103 |
|
|
#if BX_DEBUGGER || BX_EXTERNAL_DEBUGGER || BX_GDBSTUB
|
104 |
|
|
if (dbg_instruction_epilog()) return;
|
105 |
|
|
#endif
|
106 |
|
|
CHECK_MAX_INSTRUCTIONS(max_instr_count);
|
107 |
|
|
#if BX_GDBSTUB
|
108 |
|
|
if (bx_dbg.gdbstub_enabled) return;
|
109 |
|
|
#endif
|
110 |
|
|
}
|
111 |
|
|
|
112 |
|
|
// If the exception() routine has encountered a nasty fault scenario,
|
113 |
|
|
// the debugger may request that control is returned to it so that
|
114 |
|
|
// the situation may be examined.
|
115 |
|
|
#if BX_DEBUGGER
|
116 |
|
|
if (bx_guard.interrupt_requested) return;
|
117 |
|
|
#endif
|
118 |
|
|
|
119 |
|
|
// We get here either by a normal function call, or by a longjmp
|
120 |
|
|
// back from an exception() call. In either case, commit the
|
121 |
|
|
// new EIP/ESP, and set up other environmental fields. This code
|
122 |
|
|
// mirrors similar code below, after the interrupt() call.
|
123 |
|
|
BX_CPU_THIS_PTR prev_rip = RIP; // commit new EIP
|
124 |
|
|
BX_CPU_THIS_PTR speculative_rsp = 0;
|
125 |
|
|
BX_CPU_THIS_PTR EXT = 0;
|
126 |
|
|
BX_CPU_THIS_PTR errorno = 0;
|
127 |
|
|
|
128 |
|
|
while (1) {
|
129 |
|
|
|
130 |
|
|
// check on events which occurred for previous instructions (traps)
|
131 |
|
|
// and ones which are asynchronous to the CPU (hardware interrupts)
|
132 |
|
|
/*
|
133 |
|
|
* Zet: we don't handle external interrupts
|
134 |
|
|
*
|
135 |
|
|
if (BX_CPU_THIS_PTR async_event) {
|
136 |
|
|
if (handleAsyncEvent()) {
|
137 |
|
|
// If request to return to caller ASAP.
|
138 |
|
|
return;
|
139 |
|
|
}
|
140 |
|
|
}
|
141 |
|
|
*/
|
142 |
|
|
no_async_event:
|
143 |
|
|
|
144 |
|
|
Bit32u eipBiased = RIP + BX_CPU_THIS_PTR eipPageBias;
|
145 |
|
|
|
146 |
|
|
if (eipBiased >= BX_CPU_THIS_PTR eipPageWindowSize) {
|
147 |
|
|
prefetch();
|
148 |
|
|
eipBiased = RIP + BX_CPU_THIS_PTR eipPageBias;
|
149 |
|
|
}
|
150 |
|
|
|
151 |
|
|
#if BX_SUPPORT_ICACHE
|
152 |
|
|
bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrA20Page + eipBiased;
|
153 |
|
|
bxICacheEntry_c *entry = BX_CPU_THIS_PTR iCache.get_entry(pAddr);
|
154 |
|
|
bxInstruction_c *i = entry->i;
|
155 |
|
|
|
156 |
|
|
InstrICache_Increment(iCacheLookups);
|
157 |
|
|
InstrICache_Stats();
|
158 |
|
|
|
159 |
|
|
if ((entry->pAddr == pAddr) &&
|
160 |
|
|
(entry->writeStamp == *(BX_CPU_THIS_PTR currPageWriteStampPtr)))
|
161 |
|
|
{
|
162 |
|
|
// iCache hit. An instruction was found in the iCache.
|
163 |
|
|
#if BX_INSTRUMENTATION
|
164 |
|
|
BX_INSTR_OPCODE(BX_CPU_ID, BX_CPU_THIS_PTR eipFetchPtr + eipBiased,
|
165 |
|
|
i->ilen(), BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b, Is64BitMode());
|
166 |
|
|
#endif
|
167 |
|
|
}
|
168 |
|
|
else {
|
169 |
|
|
// iCache miss. No validated instruction with matching fetch parameters
|
170 |
|
|
// is in the iCache.
|
171 |
|
|
InstrICache_Increment(iCacheMisses);
|
172 |
|
|
serveICacheMiss(entry, eipBiased, pAddr);
|
173 |
|
|
i = entry->i;
|
174 |
|
|
}
|
175 |
|
|
#else
|
176 |
|
|
bxInstruction_c iStorage, *i = &iStorage;
|
177 |
|
|
unsigned remainingInPage = BX_CPU_THIS_PTR eipPageWindowSize - eipBiased;
|
178 |
|
|
const Bit8u *fetchPtr = BX_CPU_THIS_PTR eipFetchPtr + eipBiased;
|
179 |
|
|
fetchInstruction(i, fetchPtr, remainingInPage);
|
180 |
|
|
#endif
|
181 |
|
|
|
182 |
|
|
#if BX_SUPPORT_TRACE_CACHE
|
183 |
|
|
unsigned length = entry->ilen;
|
184 |
|
|
|
185 |
|
|
for(;;i++) {
|
186 |
|
|
#endif
|
187 |
|
|
// An instruction will have been fetched using either the normal case,
|
188 |
|
|
// or the boundary fetch (across pages), by this point.
|
189 |
|
|
BX_INSTR_FETCH_DECODE_COMPLETED(BX_CPU_ID, i);
|
190 |
|
|
|
191 |
|
|
#if BX_DEBUGGER || BX_EXTERNAL_DEBUGGER || BX_GDBSTUB
|
192 |
|
|
if (dbg_instruction_prolog()) return;
|
193 |
|
|
#endif
|
194 |
|
|
|
195 |
|
|
#if BX_DISASM
|
196 |
|
|
if (BX_CPU_THIS_PTR trace) {
|
197 |
|
|
// print the instruction that is about to be executed
|
198 |
|
|
debug_disasm_instruction(BX_CPU_THIS_PTR prev_rip);
|
199 |
|
|
}
|
200 |
|
|
#endif
|
201 |
|
|
|
202 |
|
|
// decoding instruction compeleted -> continue with execution
|
203 |
|
|
BX_INSTR_BEFORE_EXECUTION(BX_CPU_ID, i);
|
204 |
|
|
RIP += i->ilen();
|
205 |
|
|
BX_CPU_CALL_METHOD(i->execute, (i)); // might iterate repeat instruction
|
206 |
|
|
BX_CPU_THIS_PTR prev_rip = RIP; // commit new RIP
|
207 |
|
|
BX_INSTR_AFTER_EXECUTION(BX_CPU_ID, i);
|
208 |
|
|
BX_TICK1_IF_SINGLE_PROCESSOR();
|
209 |
|
|
|
210 |
|
|
// inform instrumentation about new instruction
|
211 |
|
|
BX_INSTR_NEW_INSTRUCTION(BX_CPU_ID);
|
212 |
|
|
|
213 |
|
|
// note instructions generating exceptions never reach this point
|
214 |
|
|
#if BX_DEBUGGER || BX_EXTERNAL_DEBUGGER || BX_GDBSTUB
|
215 |
|
|
if (dbg_instruction_epilog()) return;
|
216 |
|
|
#endif
|
217 |
|
|
|
218 |
|
|
CHECK_MAX_INSTRUCTIONS(max_instr_count);
|
219 |
|
|
|
220 |
|
|
#if BX_SUPPORT_TRACE_CACHE
|
221 |
|
|
if (BX_CPU_THIS_PTR async_event) {
|
222 |
|
|
// clear stop trace magic indication that probably was set by repeat or branch32/64
|
223 |
|
|
BX_CPU_THIS_PTR async_event &= ~BX_ASYNC_EVENT_STOP_TRACE;
|
224 |
|
|
break;
|
225 |
|
|
}
|
226 |
|
|
|
227 |
|
|
if (--length == 0) goto no_async_event;
|
228 |
|
|
}
|
229 |
|
|
#endif
|
230 |
|
|
} // while (1)
|
231 |
|
|
}
|
232 |
|
|
|
233 |
|
|
void BX_CPP_AttrRegparmN(2) BX_CPU_C::repeat(bxInstruction_c *i, BxExecutePtr_tR execute)
|
234 |
|
|
{
|
235 |
|
|
// non repeated instruction
|
236 |
|
|
if (! i->repUsedL()) {
|
237 |
|
|
BX_CPU_CALL_METHOD(execute, (i));
|
238 |
|
|
return;
|
239 |
|
|
}
|
240 |
|
|
|
241 |
|
|
#if BX_SUPPORT_X86_64
|
242 |
|
|
if (i->as64L()) {
|
243 |
|
|
while(1) {
|
244 |
|
|
if (RCX != 0) {
|
245 |
|
|
BX_CPU_CALL_METHOD(execute, (i));
|
246 |
|
|
BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
|
247 |
|
|
RCX --;
|
248 |
|
|
}
|
249 |
|
|
if (RCX == 0) return;
|
250 |
|
|
|
251 |
|
|
#if BX_DEBUGGER == 0
|
252 |
|
|
if (BX_CPU_THIS_PTR async_event)
|
253 |
|
|
#endif
|
254 |
|
|
break; // exit always if debugger enabled
|
255 |
|
|
|
256 |
|
|
BX_TICK1_IF_SINGLE_PROCESSOR();
|
257 |
|
|
}
|
258 |
|
|
}
|
259 |
|
|
else
|
260 |
|
|
#endif
|
261 |
|
|
if (i->as32L()) {
|
262 |
|
|
while(1) {
|
263 |
|
|
if (ECX != 0) {
|
264 |
|
|
BX_CPU_CALL_METHOD(execute, (i));
|
265 |
|
|
BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
|
266 |
|
|
RCX = ECX - 1;
|
267 |
|
|
}
|
268 |
|
|
if (ECX == 0) return;
|
269 |
|
|
|
270 |
|
|
#if BX_DEBUGGER == 0
|
271 |
|
|
if (BX_CPU_THIS_PTR async_event)
|
272 |
|
|
#endif
|
273 |
|
|
break; // exit always if debugger enabled
|
274 |
|
|
|
275 |
|
|
BX_TICK1_IF_SINGLE_PROCESSOR();
|
276 |
|
|
}
|
277 |
|
|
}
|
278 |
|
|
else // 16bit addrsize
|
279 |
|
|
{
|
280 |
|
|
while(1) {
|
281 |
|
|
if (CX != 0) {
|
282 |
|
|
BX_CPU_CALL_METHOD(execute, (i));
|
283 |
|
|
BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
|
284 |
|
|
CX --;
|
285 |
|
|
}
|
286 |
|
|
if (CX == 0) return;
|
287 |
|
|
|
288 |
|
|
#if BX_DEBUGGER == 0
|
289 |
|
|
if (BX_CPU_THIS_PTR async_event)
|
290 |
|
|
#endif
|
291 |
|
|
break; // exit always if debugger enabled
|
292 |
|
|
|
293 |
|
|
BX_TICK1_IF_SINGLE_PROCESSOR();
|
294 |
|
|
}
|
295 |
|
|
}
|
296 |
|
|
|
297 |
|
|
RIP = BX_CPU_THIS_PTR prev_rip; // repeat loop not done, restore RIP
|
298 |
|
|
|
299 |
|
|
#if BX_SUPPORT_TRACE_CACHE
|
300 |
|
|
// assert magic async_event to stop trace execution
|
301 |
|
|
BX_CPU_THIS_PTR async_event |= BX_ASYNC_EVENT_STOP_TRACE;
|
302 |
|
|
#endif
|
303 |
|
|
}
|
304 |
|
|
|
305 |
|
|
void BX_CPP_AttrRegparmN(2) BX_CPU_C::repeat_ZFL(bxInstruction_c *i, BxExecutePtr_tR execute)
|
306 |
|
|
{
|
307 |
|
|
// non repeated instruction
|
308 |
|
|
if (! i->repUsedL()) {
|
309 |
|
|
BX_CPU_CALL_METHOD(execute, (i));
|
310 |
|
|
return;
|
311 |
|
|
}
|
312 |
|
|
|
313 |
|
|
unsigned rep = i->repUsedValue();
|
314 |
|
|
|
315 |
|
|
#if BX_SUPPORT_X86_64
|
316 |
|
|
if (i->as64L()) {
|
317 |
|
|
while(1) {
|
318 |
|
|
if (RCX != 0) {
|
319 |
|
|
BX_CPU_CALL_METHOD(execute, (i));
|
320 |
|
|
BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
|
321 |
|
|
RCX --;
|
322 |
|
|
}
|
323 |
|
|
if (rep==3 && get_ZF()==0) return;
|
324 |
|
|
if (rep==2 && get_ZF()!=0) return;
|
325 |
|
|
if (RCX == 0) return;
|
326 |
|
|
|
327 |
|
|
#if BX_DEBUGGER == 0
|
328 |
|
|
if (BX_CPU_THIS_PTR async_event)
|
329 |
|
|
#endif
|
330 |
|
|
break; // exit always if debugger enabled
|
331 |
|
|
|
332 |
|
|
BX_TICK1_IF_SINGLE_PROCESSOR();
|
333 |
|
|
}
|
334 |
|
|
}
|
335 |
|
|
else
|
336 |
|
|
#endif
|
337 |
|
|
if (i->as32L()) {
|
338 |
|
|
while(1) {
|
339 |
|
|
if (ECX != 0) {
|
340 |
|
|
BX_CPU_CALL_METHOD(execute, (i));
|
341 |
|
|
BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
|
342 |
|
|
RCX = ECX - 1;
|
343 |
|
|
}
|
344 |
|
|
if (rep==3 && get_ZF()==0) return;
|
345 |
|
|
if (rep==2 && get_ZF()!=0) return;
|
346 |
|
|
if (ECX == 0) return;
|
347 |
|
|
|
348 |
|
|
#if BX_DEBUGGER == 0
|
349 |
|
|
if (BX_CPU_THIS_PTR async_event)
|
350 |
|
|
#endif
|
351 |
|
|
break; // exit always if debugger enabled
|
352 |
|
|
|
353 |
|
|
BX_TICK1_IF_SINGLE_PROCESSOR();
|
354 |
|
|
}
|
355 |
|
|
}
|
356 |
|
|
else // 16bit addrsize
|
357 |
|
|
{
|
358 |
|
|
while(1) {
|
359 |
|
|
if (CX != 0) {
|
360 |
|
|
BX_CPU_CALL_METHOD(execute, (i));
|
361 |
|
|
BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
|
362 |
|
|
CX --;
|
363 |
|
|
}
|
364 |
|
|
if (rep==3 && get_ZF()==0) return;
|
365 |
|
|
if (rep==2 && get_ZF()!=0) return;
|
366 |
|
|
if (CX == 0) return;
|
367 |
|
|
|
368 |
|
|
#if BX_DEBUGGER == 0
|
369 |
|
|
if (BX_CPU_THIS_PTR async_event)
|
370 |
|
|
#endif
|
371 |
|
|
break; // exit always if debugger enabled
|
372 |
|
|
|
373 |
|
|
BX_TICK1_IF_SINGLE_PROCESSOR();
|
374 |
|
|
}
|
375 |
|
|
}
|
376 |
|
|
|
377 |
|
|
RIP = BX_CPU_THIS_PTR prev_rip; // repeat loop not done, restore RIP
|
378 |
|
|
|
379 |
|
|
#if BX_SUPPORT_TRACE_CACHE
|
380 |
|
|
// assert magic async_event to stop trace execution
|
381 |
|
|
BX_CPU_THIS_PTR async_event |= BX_ASYNC_EVENT_STOP_TRACE;
|
382 |
|
|
#endif
|
383 |
|
|
}
|
384 |
|
|
|
385 |
|
|
unsigned BX_CPU_C::handleAsyncEvent(void)
|
386 |
|
|
{
|
387 |
|
|
//
|
388 |
|
|
// This area is where we process special conditions and events.
|
389 |
|
|
//
|
390 |
|
|
if (BX_CPU_THIS_PTR debug_trap & BX_DEBUG_TRAP_SPECIAL) {
|
391 |
|
|
// I made up the bitmask above to mean HALT state.
|
392 |
|
|
// for one processor, pass the time as quickly as possible until
|
393 |
|
|
// an interrupt wakes up the CPU.
|
394 |
|
|
while (1)
|
395 |
|
|
{
|
396 |
|
|
if ((BX_CPU_INTR && (BX_CPU_THIS_PTR get_IF() || (BX_CPU_THIS_PTR debug_trap & BX_DEBUG_TRAP_MWAIT_IF))) ||
|
397 |
|
|
BX_CPU_THIS_PTR nmi_pending || BX_CPU_THIS_PTR smi_pending)
|
398 |
|
|
{
|
399 |
|
|
// interrupt ends the HALT condition
|
400 |
|
|
#if BX_SUPPORT_MONITOR_MWAIT
|
401 |
|
|
if (BX_CPU_THIS_PTR debug_trap & BX_DEBUG_TRAP_MWAIT)
|
402 |
|
|
BX_MEM(0)->clear_monitor(BX_CPU_THIS_PTR bx_cpuid);
|
403 |
|
|
#endif
|
404 |
|
|
BX_CPU_THIS_PTR debug_trap = 0; // clear traps for after resume
|
405 |
|
|
BX_CPU_THIS_PTR inhibit_mask = 0; // clear inhibits for after resume
|
406 |
|
|
break;
|
407 |
|
|
}
|
408 |
|
|
if ((BX_CPU_THIS_PTR debug_trap & BX_DEBUG_TRAP_SPECIAL) == 0) {
|
409 |
|
|
BX_INFO(("handleAsyncEvent: reset detected in HLT state"));
|
410 |
|
|
break;
|
411 |
|
|
}
|
412 |
|
|
|
413 |
|
|
// for multiprocessor simulation, even if this CPU is halted we still
|
414 |
|
|
// must give the others a chance to simulate. If an interrupt has
|
415 |
|
|
// arrived, then clear the HALT condition; otherwise just return from
|
416 |
|
|
// the CPU loop with stop_reason STOP_CPU_HALTED.
|
417 |
|
|
#if BX_SUPPORT_SMP
|
418 |
|
|
if (BX_SMP_PROCESSORS > 1) {
|
419 |
|
|
// HALT condition remains, return so other CPUs have a chance
|
420 |
|
|
#if BX_DEBUGGER
|
421 |
|
|
BX_CPU_THIS_PTR stop_reason = STOP_CPU_HALTED;
|
422 |
|
|
#endif
|
423 |
|
|
return 1; // Return to caller of cpu_loop.
|
424 |
|
|
}
|
425 |
|
|
#endif
|
426 |
|
|
|
427 |
|
|
#if BX_DEBUGGER
|
428 |
|
|
if (bx_guard.interrupt_requested)
|
429 |
|
|
return 1; // Return to caller of cpu_loop.
|
430 |
|
|
#endif
|
431 |
|
|
|
432 |
|
|
BX_TICK1();
|
433 |
|
|
}
|
434 |
|
|
} else if (bx_pc_system.kill_bochs_request) {
|
435 |
|
|
// setting kill_bochs_request causes the cpu loop to return ASAP.
|
436 |
|
|
return 1; // Return to caller of cpu_loop.
|
437 |
|
|
}
|
438 |
|
|
|
439 |
|
|
// Priority 1: Hardware Reset and Machine Checks
|
440 |
|
|
// RESET
|
441 |
|
|
// Machine Check
|
442 |
|
|
// (bochs doesn't support these)
|
443 |
|
|
|
444 |
|
|
// Priority 2: Trap on Task Switch
|
445 |
|
|
// T flag in TSS is set
|
446 |
|
|
if (BX_CPU_THIS_PTR debug_trap & 0x00008000) {
|
447 |
|
|
BX_CPU_THIS_PTR dr6 |= BX_CPU_THIS_PTR debug_trap;
|
448 |
|
|
exception(BX_DB_EXCEPTION, 0, 0); // no error, not interrupt
|
449 |
|
|
}
|
450 |
|
|
|
451 |
|
|
// Priority 3: External Hardware Interventions
|
452 |
|
|
// FLUSH
|
453 |
|
|
// STOPCLK
|
454 |
|
|
// SMI
|
455 |
|
|
// INIT
|
456 |
|
|
// (bochs doesn't support these)
|
457 |
|
|
if (BX_CPU_THIS_PTR smi_pending && ! BX_CPU_THIS_PTR smm_mode())
|
458 |
|
|
{
|
459 |
|
|
// clear SMI pending flag and disable NMI when SMM was accepted
|
460 |
|
|
BX_CPU_THIS_PTR smi_pending = 0;
|
461 |
|
|
BX_CPU_THIS_PTR nmi_disable = 1;
|
462 |
|
|
enter_system_management_mode();
|
463 |
|
|
}
|
464 |
|
|
|
465 |
|
|
// Priority 4: Traps on Previous Instruction
|
466 |
|
|
// Breakpoints
|
467 |
|
|
// Debug Trap Exceptions (TF flag set or data/IO breakpoint)
|
468 |
|
|
if (BX_CPU_THIS_PTR debug_trap &&
|
469 |
|
|
!(BX_CPU_THIS_PTR inhibit_mask & BX_INHIBIT_DEBUG))
|
470 |
|
|
{
|
471 |
|
|
// A trap may be inhibited on this boundary due to an instruction
|
472 |
|
|
// which loaded SS. If so we clear the inhibit_mask below
|
473 |
|
|
// and don't execute this code until the next boundary.
|
474 |
|
|
// Commit debug events to DR6
|
475 |
|
|
BX_CPU_THIS_PTR dr6 |= BX_CPU_THIS_PTR debug_trap;
|
476 |
|
|
exception(BX_DB_EXCEPTION, 0, 0); // no error, not interrupt
|
477 |
|
|
}
|
478 |
|
|
|
479 |
|
|
// Priority 5: External Interrupts
|
480 |
|
|
// NMI Interrupts
|
481 |
|
|
// Maskable Hardware Interrupts
|
482 |
|
|
if (BX_CPU_THIS_PTR inhibit_mask & BX_INHIBIT_INTERRUPTS) {
|
483 |
|
|
// Processing external interrupts is inhibited on this
|
484 |
|
|
// boundary because of certain instructions like STI.
|
485 |
|
|
// inhibit_mask is cleared below, in which case we will have
|
486 |
|
|
// an opportunity to check interrupts on the next instruction
|
487 |
|
|
// boundary.
|
488 |
|
|
}
|
489 |
|
|
else if (BX_CPU_THIS_PTR nmi_pending) {
|
490 |
|
|
BX_CPU_THIS_PTR nmi_pending = 0;
|
491 |
|
|
BX_CPU_THIS_PTR nmi_disable = 1;
|
492 |
|
|
BX_CPU_THIS_PTR errorno = 0;
|
493 |
|
|
BX_CPU_THIS_PTR EXT = 1; /* external event */
|
494 |
|
|
BX_INSTR_HWINTERRUPT(BX_CPU_ID, 2, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, RIP);
|
495 |
|
|
interrupt(2, 0, 0, 0);
|
496 |
|
|
}
|
497 |
|
|
else if (BX_CPU_INTR && BX_CPU_THIS_PTR get_IF() && BX_DBG_ASYNC_INTR)
|
498 |
|
|
{
|
499 |
|
|
Bit8u vector;
|
500 |
|
|
|
501 |
|
|
// NOTE: similar code in ::take_irq()
|
502 |
|
|
#if BX_SUPPORT_APIC
|
503 |
|
|
if (BX_CPU_THIS_PTR local_apic.INTR)
|
504 |
|
|
vector = BX_CPU_THIS_PTR local_apic.acknowledge_int();
|
505 |
|
|
else
|
506 |
|
|
#endif
|
507 |
|
|
// if no local APIC, always acknowledge the PIC.
|
508 |
|
|
vector = DEV_pic_iac(); // may set INTR with next interrupt
|
509 |
|
|
BX_CPU_THIS_PTR errorno = 0;
|
510 |
|
|
BX_CPU_THIS_PTR EXT = 1; /* external event */
|
511 |
|
|
BX_INSTR_HWINTERRUPT(BX_CPU_ID, vector,
|
512 |
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, RIP);
|
513 |
|
|
interrupt(vector, 0, 0, 0);
|
514 |
|
|
// Set up environment, as would be when this main cpu loop gets
|
515 |
|
|
// invoked. At the end of normal instructions, we always commmit
|
516 |
|
|
// the new EIP/ESP values. But here, we call interrupt() much like
|
517 |
|
|
// it was a sofware interrupt instruction, and need to effect the
|
518 |
|
|
// commit here. This code mirrors similar code above.
|
519 |
|
|
BX_CPU_THIS_PTR prev_rip = RIP; // commit new RIP
|
520 |
|
|
BX_CPU_THIS_PTR speculative_rsp = 0;
|
521 |
|
|
BX_CPU_THIS_PTR EXT = 0;
|
522 |
|
|
BX_CPU_THIS_PTR errorno = 0;
|
523 |
|
|
}
|
524 |
|
|
else if (BX_HRQ && BX_DBG_ASYNC_DMA) {
|
525 |
|
|
// NOTE: similar code in ::take_dma()
|
526 |
|
|
// assert Hold Acknowledge (HLDA) and go into a bus hold state
|
527 |
|
|
DEV_dma_raise_hlda();
|
528 |
|
|
}
|
529 |
|
|
|
530 |
|
|
// Priority 6: Faults from fetching next instruction
|
531 |
|
|
// Code breakpoint fault
|
532 |
|
|
// Code segment limit violation (priority 7 on 486/Pentium)
|
533 |
|
|
// Code page fault (priority 7 on 486/Pentium)
|
534 |
|
|
// (handled in main decode loop)
|
535 |
|
|
|
536 |
|
|
// Priority 7: Faults from decoding next instruction
|
537 |
|
|
// Instruction length > 15 bytes
|
538 |
|
|
// Illegal opcode
|
539 |
|
|
// Coprocessor not available
|
540 |
|
|
// (handled in main decode loop etc)
|
541 |
|
|
|
542 |
|
|
// Priority 8: Faults on executing an instruction
|
543 |
|
|
// Floating point execution
|
544 |
|
|
// Overflow
|
545 |
|
|
// Bound error
|
546 |
|
|
// Invalid TSS
|
547 |
|
|
// Segment not present
|
548 |
|
|
// Stack fault
|
549 |
|
|
// General protection
|
550 |
|
|
// Data page fault
|
551 |
|
|
// Alignment check
|
552 |
|
|
// (handled by rest of the code)
|
553 |
|
|
|
554 |
|
|
if (BX_CPU_THIS_PTR get_TF())
|
555 |
|
|
{
|
556 |
|
|
// TF is set before execution of next instruction. Schedule
|
557 |
|
|
// a debug trap (#DB) after execution. After completion of
|
558 |
|
|
// next instruction, the code above will invoke the trap.
|
559 |
|
|
BX_CPU_THIS_PTR debug_trap |= 0x00004000; // BS flag in DR6
|
560 |
|
|
}
|
561 |
|
|
|
562 |
|
|
// Now we can handle things which are synchronous to instruction
|
563 |
|
|
// execution.
|
564 |
|
|
if (BX_CPU_THIS_PTR get_RF()) {
|
565 |
|
|
BX_CPU_THIS_PTR clear_RF();
|
566 |
|
|
}
|
567 |
|
|
#if BX_X86_DEBUGGER
|
568 |
|
|
else {
|
569 |
|
|
// only bother comparing if any breakpoints enabled
|
570 |
|
|
if (BX_CPU_THIS_PTR dr7 & 0x000000ff) {
|
571 |
|
|
bx_address iaddr = get_laddr(BX_SEG_REG_CS, BX_CPU_THIS_PTR prev_rip);
|
572 |
|
|
Bit32u dr6_bits = hwdebug_compare(iaddr, 1, BX_HWDebugInstruction, BX_HWDebugInstruction);
|
573 |
|
|
if (dr6_bits)
|
574 |
|
|
{
|
575 |
|
|
// Add to the list of debug events thus far.
|
576 |
|
|
BX_CPU_THIS_PTR async_event = 1;
|
577 |
|
|
BX_CPU_THIS_PTR debug_trap |= dr6_bits;
|
578 |
|
|
// If debug events are not inhibited on this boundary,
|
579 |
|
|
// fire off a debug fault. Otherwise handle it on the next
|
580 |
|
|
// boundary. (becomes a trap)
|
581 |
|
|
if (! (BX_CPU_THIS_PTR inhibit_mask & BX_INHIBIT_DEBUG)) {
|
582 |
|
|
// Commit debug events to DR6
|
583 |
|
|
BX_CPU_THIS_PTR dr6 = BX_CPU_THIS_PTR debug_trap;
|
584 |
|
|
exception(BX_DB_EXCEPTION, 0, 0); // no error, not interrupt
|
585 |
|
|
}
|
586 |
|
|
}
|
587 |
|
|
}
|
588 |
|
|
}
|
589 |
|
|
#endif
|
590 |
|
|
|
591 |
|
|
// We have ignored processing of external interrupts and
|
592 |
|
|
// debug events on this boundary. Reset the mask so they
|
593 |
|
|
// will be processed on the next boundary.
|
594 |
|
|
BX_CPU_THIS_PTR inhibit_mask = 0;
|
595 |
|
|
|
596 |
|
|
if (!(BX_CPU_INTR ||
|
597 |
|
|
BX_CPU_THIS_PTR debug_trap ||
|
598 |
|
|
BX_HRQ ||
|
599 |
|
|
BX_CPU_THIS_PTR get_TF()
|
600 |
|
|
#if BX_X86_DEBUGGER
|
601 |
|
|
|| (BX_CPU_THIS_PTR dr7 & 0xff)
|
602 |
|
|
#endif
|
603 |
|
|
))
|
604 |
|
|
BX_CPU_THIS_PTR async_event = 0;
|
605 |
|
|
|
606 |
|
|
return 0; // Continue executing cpu_loop.
|
607 |
|
|
}
|
608 |
|
|
|
609 |
|
|
|
610 |
|
|
// boundaries of consideration:
|
611 |
|
|
//
|
612 |
|
|
// * physical memory boundary: 1024k (1Megabyte) (increments of...)
|
613 |
|
|
// * A20 boundary: 1024k (1Megabyte)
|
614 |
|
|
// * page boundary: 4k
|
615 |
|
|
// * ROM boundary: 2k (dont care since we are only reading)
|
616 |
|
|
// * segment boundary: any
|
617 |
|
|
|
618 |
|
|
void BX_CPU_C::prefetch(void)
|
619 |
|
|
{
|
620 |
|
|
bx_address temp_rip = RIP;
|
621 |
|
|
bx_address laddr = BX_CPU_THIS_PTR get_laddr(BX_SEG_REG_CS, temp_rip);
|
622 |
|
|
bx_phy_address pAddr;
|
623 |
|
|
unsigned pageOffset = PAGE_OFFSET(laddr);
|
624 |
|
|
|
625 |
|
|
// Calculate RIP at the beginning of the page.
|
626 |
|
|
BX_CPU_THIS_PTR eipPageBias = pageOffset - RIP;
|
627 |
|
|
BX_CPU_THIS_PTR eipPageWindowSize = 4096;
|
628 |
|
|
|
629 |
|
|
#if BX_SUPPORT_X86_64
|
630 |
|
|
if (Is64BitMode()) {
|
631 |
|
|
if (! IsCanonical(RIP)) {
|
632 |
|
|
BX_ERROR(("prefetch: #GP(0): RIP crossed canonical boundary"));
|
633 |
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
634 |
|
|
}
|
635 |
|
|
}
|
636 |
|
|
else
|
637 |
|
|
#endif
|
638 |
|
|
{
|
639 |
|
|
Bit32u temp_limit = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled;
|
640 |
|
|
if (((Bit32u) temp_rip) > temp_limit) {
|
641 |
|
|
BX_ERROR(("prefetch: EIP [%08x] > CS.limit [%08x]", (Bit32u) temp_rip, temp_limit));
|
642 |
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
643 |
|
|
}
|
644 |
|
|
if (temp_limit + BX_CPU_THIS_PTR eipPageBias < 4096) {
|
645 |
|
|
BX_CPU_THIS_PTR eipPageWindowSize = temp_limit + BX_CPU_THIS_PTR eipPageBias + 1;
|
646 |
|
|
}
|
647 |
|
|
}
|
648 |
|
|
|
649 |
|
|
bx_address lpf = LPFOf(laddr);
|
650 |
|
|
unsigned TLB_index = BX_TLB_INDEX_OF(lpf, 0);
|
651 |
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[TLB_index];
|
652 |
|
|
Bit8u *fetchPtr = 0;
|
653 |
|
|
|
654 |
|
|
if (tlbEntry->lpf == lpf && (tlbEntry->accessBits & (0x01 << CPL))) {
|
655 |
|
|
pAddr = A20ADDR(tlbEntry->ppf | pageOffset);
|
656 |
|
|
#if BX_SupportGuest2HostTLB
|
657 |
|
|
fetchPtr = (Bit8u*) (tlbEntry->hostPageAddr);
|
658 |
|
|
#endif
|
659 |
|
|
}
|
660 |
|
|
else {
|
661 |
|
|
if (BX_CPU_THIS_PTR cr0.get_PG()) {
|
662 |
|
|
pAddr = translate_linear(laddr, CPL, BX_READ, CODE_ACCESS);
|
663 |
|
|
pAddr = A20ADDR(pAddr);
|
664 |
|
|
}
|
665 |
|
|
else {
|
666 |
|
|
pAddr = A20ADDR(laddr);
|
667 |
|
|
}
|
668 |
|
|
}
|
669 |
|
|
|
670 |
|
|
BX_CPU_THIS_PTR pAddrA20Page = LPFOf(pAddr);
|
671 |
|
|
|
672 |
|
|
if (fetchPtr) {
|
673 |
|
|
BX_CPU_THIS_PTR eipFetchPtr = fetchPtr;
|
674 |
|
|
}
|
675 |
|
|
else {
|
676 |
|
|
BX_CPU_THIS_PTR eipFetchPtr = BX_MEM(0)->getHostMemAddr(BX_CPU_THIS,
|
677 |
|
|
BX_CPU_THIS_PTR pAddrA20Page, BX_READ, CODE_ACCESS);
|
678 |
|
|
}
|
679 |
|
|
|
680 |
|
|
// Sanity checks
|
681 |
|
|
if (! BX_CPU_THIS_PTR eipFetchPtr) {
|
682 |
|
|
if (pAddr >= BX_MEM(0)->get_memory_len()) {
|
683 |
|
|
BX_PANIC(("prefetch: running in bogus memory, pAddr=0x" FMT_PHY_ADDRX, pAddr));
|
684 |
|
|
}
|
685 |
|
|
else {
|
686 |
|
|
BX_PANIC(("prefetch: getHostMemAddr vetoed direct read, pAddr=0x" FMT_PHY_ADDRX, pAddr));
|
687 |
|
|
}
|
688 |
|
|
}
|
689 |
|
|
|
690 |
|
|
#if BX_SUPPORT_ICACHE
|
691 |
|
|
BX_CPU_THIS_PTR currPageWriteStampPtr = pageWriteStampTable.getPageWriteStampPtr(pAddr);
|
692 |
|
|
Bit32u pageWriteStamp = *(BX_CPU_THIS_PTR currPageWriteStampPtr);
|
693 |
|
|
pageWriteStamp &= ~ICacheWriteStampFetchModeMask; // Clear out old fetch mode bits
|
694 |
|
|
pageWriteStamp |= BX_CPU_THIS_PTR fetchModeMask; // And add new ones
|
695 |
|
|
pageWriteStampTable.setPageWriteStamp(pAddr, pageWriteStamp);
|
696 |
|
|
#endif
|
697 |
|
|
}
|
698 |
|
|
|
699 |
|
|
void BX_CPU_C::boundaryFetch(const Bit8u *fetchPtr, unsigned remainingInPage, bxInstruction_c *i)
|
700 |
|
|
{
|
701 |
|
|
unsigned j;
|
702 |
|
|
Bit8u fetchBuffer[16]; // Really only need 15
|
703 |
|
|
unsigned ret;
|
704 |
|
|
|
705 |
|
|
if (remainingInPage >= 15) {
|
706 |
|
|
BX_ERROR(("boundaryFetch #GP(0): too many instruction prefixes"));
|
707 |
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
708 |
|
|
}
|
709 |
|
|
|
710 |
|
|
// Read all leftover bytes in current page up to boundary.
|
711 |
|
|
for (j=0; j<remainingInPage; j++) {
|
712 |
|
|
fetchBuffer[j] = *fetchPtr++;
|
713 |
|
|
}
|
714 |
|
|
|
715 |
|
|
// The 2nd chunk of the instruction is on the next page.
|
716 |
|
|
// Set RIP to the 0th byte of the 2nd page, and force a
|
717 |
|
|
// prefetch so direct access of that physical page is possible, and
|
718 |
|
|
// all the associated info is updated.
|
719 |
|
|
RIP += remainingInPage;
|
720 |
|
|
prefetch();
|
721 |
|
|
|
722 |
|
|
unsigned fetchBufferLimit = 15;
|
723 |
|
|
if (BX_CPU_THIS_PTR eipPageWindowSize < 15) {
|
724 |
|
|
BX_DEBUG(("boundaryFetch: small window size after prefetch - %d bytes", BX_CPU_THIS_PTR eipPageWindowSize));
|
725 |
|
|
fetchBufferLimit = BX_CPU_THIS_PTR eipPageWindowSize;
|
726 |
|
|
}
|
727 |
|
|
|
728 |
|
|
// We can fetch straight from the 0th byte, which is eipFetchPtr;
|
729 |
|
|
fetchPtr = BX_CPU_THIS_PTR eipFetchPtr;
|
730 |
|
|
|
731 |
|
|
// read leftover bytes in next page
|
732 |
|
|
for (; j<fetchBufferLimit; j++) {
|
733 |
|
|
fetchBuffer[j] = *fetchPtr++;
|
734 |
|
|
}
|
735 |
|
|
#if BX_SUPPORT_X86_64
|
736 |
|
|
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64)
|
737 |
|
|
ret = fetchDecode64(fetchBuffer, i, fetchBufferLimit);
|
738 |
|
|
else
|
739 |
|
|
#endif
|
740 |
|
|
ret = fetchDecode32(fetchBuffer, i, fetchBufferLimit);
|
741 |
|
|
|
742 |
|
|
if (ret==0) {
|
743 |
|
|
BX_INFO(("boundaryFetch #GP(0): failed to complete instruction decoding"));
|
744 |
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
745 |
|
|
}
|
746 |
|
|
|
747 |
|
|
// Restore EIP since we fudged it to start at the 2nd page boundary.
|
748 |
|
|
RIP = BX_CPU_THIS_PTR prev_rip;
|
749 |
|
|
|
750 |
|
|
// Since we cross an instruction boundary, note that we need a prefetch()
|
751 |
|
|
// again on the next instruction. Perhaps we can optimize this to
|
752 |
|
|
// eliminate the extra prefetch() since we do it above, but have to
|
753 |
|
|
// think about repeated instructions, etc.
|
754 |
|
|
invalidate_prefetch_q();
|
755 |
|
|
|
756 |
|
|
BX_INSTR_OPCODE(BX_CPU_ID, fetchBuffer, i->ilen(),
|
757 |
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b, Is64BitMode());
|
758 |
|
|
}
|
759 |
|
|
|
760 |
|
|
void BX_CPU_C::deliver_NMI(void)
|
761 |
|
|
{
|
762 |
|
|
BX_CPU_THIS_PTR nmi_pending = 1;
|
763 |
|
|
BX_CPU_THIS_PTR async_event = 1;
|
764 |
|
|
}
|
765 |
|
|
|
766 |
|
|
void BX_CPU_C::deliver_SMI(void)
|
767 |
|
|
{
|
768 |
|
|
BX_CPU_THIS_PTR smi_pending = 1;
|
769 |
|
|
BX_CPU_THIS_PTR async_event = 1;
|
770 |
|
|
}
|
771 |
|
|
|
772 |
|
|
#if BX_EXTERNAL_DEBUGGER
|
773 |
|
|
void BX_CPU_C::ask(int level, const char *prefix, const char *fmt, va_list ap)
|
774 |
|
|
{
|
775 |
|
|
char buf1[1024];
|
776 |
|
|
vsprintf (buf1, fmt, ap);
|
777 |
|
|
printf ("%s %s\n", prefix, buf1);
|
778 |
|
|
trap_debugger(1, BX_CPU_THIS);
|
779 |
|
|
}
|
780 |
|
|
#endif
|
781 |
|
|
|
782 |
|
|
#if BX_DEBUGGER || BX_EXTERNAL_DEBUGGER || BX_GDBSTUB
|
783 |
|
|
bx_bool BX_CPU_C::dbg_instruction_prolog(void)
|
784 |
|
|
{
|
785 |
|
|
#if BX_DEBUGGER
|
786 |
|
|
if(dbg_check_begin_instr_bpoint()) return 1;
|
787 |
|
|
#endif
|
788 |
|
|
|
789 |
|
|
#if BX_EXTERNAL_DEBUGGER
|
790 |
|
|
bx_external_debugger(BX_CPU_THIS);
|
791 |
|
|
#endif
|
792 |
|
|
|
793 |
|
|
return 0;
|
794 |
|
|
}
|
795 |
|
|
|
796 |
|
|
bx_bool BX_CPU_C::dbg_instruction_epilog(void)
|
797 |
|
|
{
|
798 |
|
|
#if BX_DEBUGGER
|
799 |
|
|
if (dbg_check_end_instr_bpoint()) return 1;
|
800 |
|
|
#endif
|
801 |
|
|
|
802 |
|
|
#if BX_GDBSTUB
|
803 |
|
|
if (bx_dbg.gdbstub_enabled) {
|
804 |
|
|
unsigned reason = bx_gdbstub_check(EIP);
|
805 |
|
|
if (reason != GDBSTUB_STOP_NO_REASON) return 1;
|
806 |
|
|
}
|
807 |
|
|
#endif
|
808 |
|
|
|
809 |
|
|
return 0;
|
810 |
|
|
}
|
811 |
|
|
#endif // BX_DEBUGGER || BX_EXTERNAL_DEBUGGER || BX_GDBSTUB
|
812 |
|
|
|
813 |
|
|
#if BX_DEBUGGER
|
814 |
|
|
extern unsigned dbg_show_mask;
|
815 |
|
|
|
816 |
|
|
bx_bool BX_CPU_C::dbg_check_begin_instr_bpoint(void)
|
817 |
|
|
{
|
818 |
|
|
Bit64u tt = bx_pc_system.time_ticks();
|
819 |
|
|
bx_address debug_eip = RIP;
|
820 |
|
|
Bit16u cs = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
|
821 |
|
|
|
822 |
|
|
BX_CPU_THIS_PTR guard_found.cs = cs;
|
823 |
|
|
BX_CPU_THIS_PTR guard_found.eip = debug_eip;
|
824 |
|
|
BX_CPU_THIS_PTR guard_found.laddr = BX_CPU_THIS_PTR get_laddr(BX_SEG_REG_CS, debug_eip);
|
825 |
|
|
BX_CPU_THIS_PTR guard_found.is_32bit_code =
|
826 |
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b;
|
827 |
|
|
BX_CPU_THIS_PTR guard_found.is_64bit_code = Is64BitMode();
|
828 |
|
|
|
829 |
|
|
// support for 'show' command in debugger
|
830 |
|
|
if(dbg_show_mask) {
|
831 |
|
|
int rv = bx_dbg_show_symbolic();
|
832 |
|
|
if (rv) return(rv);
|
833 |
|
|
}
|
834 |
|
|
|
835 |
|
|
// see if debugger is looking for iaddr breakpoint of any type
|
836 |
|
|
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_ALL) {
|
837 |
|
|
#if (BX_DBG_MAX_VIR_BPOINTS > 0)
|
838 |
|
|
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_VIR) {
|
839 |
|
|
if ((BX_CPU_THIS_PTR guard_found.icount!=0) ||
|
840 |
|
|
(tt != BX_CPU_THIS_PTR guard_found.time_tick))
|
841 |
|
|
{
|
842 |
|
|
for (unsigned i=0; i<bx_guard.iaddr.num_virtual; i++) {
|
843 |
|
|
if (bx_guard.iaddr.vir[i].enabled &&
|
844 |
|
|
(bx_guard.iaddr.vir[i].cs == cs) &&
|
845 |
|
|
(bx_guard.iaddr.vir[i].eip == debug_eip))
|
846 |
|
|
{
|
847 |
|
|
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_VIR;
|
848 |
|
|
BX_CPU_THIS_PTR guard_found.iaddr_index = i;
|
849 |
|
|
BX_CPU_THIS_PTR guard_found.time_tick = tt;
|
850 |
|
|
return(1); // on a breakpoint
|
851 |
|
|
}
|
852 |
|
|
}
|
853 |
|
|
}
|
854 |
|
|
}
|
855 |
|
|
#endif
|
856 |
|
|
#if (BX_DBG_MAX_LIN_BPOINTS > 0)
|
857 |
|
|
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_LIN) {
|
858 |
|
|
if ((BX_CPU_THIS_PTR guard_found.icount!=0) ||
|
859 |
|
|
(tt != BX_CPU_THIS_PTR guard_found.time_tick))
|
860 |
|
|
{
|
861 |
|
|
for (unsigned i=0; i<bx_guard.iaddr.num_linear; i++) {
|
862 |
|
|
if (bx_guard.iaddr.lin[i].enabled &&
|
863 |
|
|
(bx_guard.iaddr.lin[i].addr == BX_CPU_THIS_PTR guard_found.laddr))
|
864 |
|
|
{
|
865 |
|
|
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_LIN;
|
866 |
|
|
BX_CPU_THIS_PTR guard_found.iaddr_index = i;
|
867 |
|
|
BX_CPU_THIS_PTR guard_found.time_tick = tt;
|
868 |
|
|
return(1); // on a breakpoint
|
869 |
|
|
}
|
870 |
|
|
}
|
871 |
|
|
}
|
872 |
|
|
}
|
873 |
|
|
#endif
|
874 |
|
|
#if (BX_DBG_MAX_PHY_BPOINTS > 0)
|
875 |
|
|
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_PHY) {
|
876 |
|
|
bx_phy_address phy;
|
877 |
|
|
bx_bool valid = dbg_xlate_linear2phy(BX_CPU_THIS_PTR guard_found.laddr, &phy);
|
878 |
|
|
// The "guard_found.icount!=0" condition allows you to step or
|
879 |
|
|
// continue beyond a breakpoint. Bryce tried removing it once,
|
880 |
|
|
// and once you get to a breakpoint you are stuck there forever.
|
881 |
|
|
// Not pretty.
|
882 |
|
|
if (valid && ((BX_CPU_THIS_PTR guard_found.icount!=0) ||
|
883 |
|
|
(tt != BX_CPU_THIS_PTR guard_found.time_tick)))
|
884 |
|
|
{
|
885 |
|
|
for (unsigned i=0; i<bx_guard.iaddr.num_physical; i++) {
|
886 |
|
|
if (bx_guard.iaddr.phy[i].enabled && (bx_guard.iaddr.phy[i].addr == phy))
|
887 |
|
|
{
|
888 |
|
|
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_PHY;
|
889 |
|
|
BX_CPU_THIS_PTR guard_found.iaddr_index = i;
|
890 |
|
|
BX_CPU_THIS_PTR guard_found.time_tick = tt;
|
891 |
|
|
return(1); // on a breakpoint
|
892 |
|
|
}
|
893 |
|
|
}
|
894 |
|
|
}
|
895 |
|
|
}
|
896 |
|
|
#endif
|
897 |
|
|
}
|
898 |
|
|
|
899 |
|
|
return(0); // not on a breakpoint
|
900 |
|
|
}
|
901 |
|
|
|
902 |
|
|
bx_bool BX_CPU_C::dbg_check_end_instr_bpoint(void)
|
903 |
|
|
{
|
904 |
|
|
BX_CPU_THIS_PTR guard_found.icount++;
|
905 |
|
|
BX_CPU_THIS_PTR guard_found.cs =
|
906 |
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
|
907 |
|
|
BX_CPU_THIS_PTR guard_found.eip = RIP;
|
908 |
|
|
BX_CPU_THIS_PTR guard_found.laddr = BX_CPU_THIS_PTR get_laddr(BX_SEG_REG_CS, RIP);
|
909 |
|
|
BX_CPU_THIS_PTR guard_found.is_32bit_code =
|
910 |
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b;
|
911 |
|
|
BX_CPU_THIS_PTR guard_found.is_64bit_code = Is64BitMode();
|
912 |
|
|
|
913 |
|
|
// Check if we hit read/write or time breakpoint
|
914 |
|
|
if (BX_CPU_THIS_PTR break_point) {
|
915 |
|
|
switch (BX_CPU_THIS_PTR break_point) {
|
916 |
|
|
case BREAK_POINT_TIME:
|
917 |
|
|
BX_INFO(("[" FMT_LL "d] Caught time breakpoint", bx_pc_system.time_ticks()));
|
918 |
|
|
BX_CPU_THIS_PTR stop_reason = STOP_TIME_BREAK_POINT;
|
919 |
|
|
return(1); // on a breakpoint
|
920 |
|
|
case BREAK_POINT_READ:
|
921 |
|
|
BX_INFO(("[" FMT_LL "d] Caught read watch point", bx_pc_system.time_ticks()));
|
922 |
|
|
BX_CPU_THIS_PTR stop_reason = STOP_READ_WATCH_POINT;
|
923 |
|
|
return(1); // on a breakpoint
|
924 |
|
|
case BREAK_POINT_WRITE:
|
925 |
|
|
BX_INFO(("[" FMT_LL "d] Caught write watch point", bx_pc_system.time_ticks()));
|
926 |
|
|
BX_CPU_THIS_PTR stop_reason = STOP_WRITE_WATCH_POINT;
|
927 |
|
|
return(1); // on a breakpoint
|
928 |
|
|
default:
|
929 |
|
|
BX_PANIC(("Weird break point condition"));
|
930 |
|
|
}
|
931 |
|
|
}
|
932 |
|
|
|
933 |
|
|
if (BX_CPU_THIS_PTR magic_break) {
|
934 |
|
|
BX_INFO(("[" FMT_LL "d] Stopped on MAGIC BREAKPOINT", bx_pc_system.time_ticks()));
|
935 |
|
|
BX_CPU_THIS_PTR stop_reason = STOP_MAGIC_BREAK_POINT;
|
936 |
|
|
return(1); // on a breakpoint
|
937 |
|
|
}
|
938 |
|
|
|
939 |
|
|
// convenient point to see if user typed Ctrl-C
|
940 |
|
|
if (bx_guard.interrupt_requested &&
|
941 |
|
|
(bx_guard.guard_for & BX_DBG_GUARD_CTRL_C))
|
942 |
|
|
{
|
943 |
|
|
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_CTRL_C;
|
944 |
|
|
return(1); // Ctrl-C pressed
|
945 |
|
|
}
|
946 |
|
|
|
947 |
|
|
return(0); // no breakpoint
|
948 |
|
|
}
|
949 |
|
|
|
950 |
|
|
void BX_CPU_C::dbg_take_irq(void)
|
951 |
|
|
{
|
952 |
|
|
// NOTE: similar code in ::cpu_loop()
|
953 |
|
|
|
954 |
|
|
if (BX_CPU_INTR && BX_CPU_THIS_PTR get_IF()) {
|
955 |
|
|
if (setjmp(BX_CPU_THIS_PTR jmp_buf_env) == 0) {
|
956 |
|
|
// normal return from setjmp setup
|
957 |
|
|
unsigned vector = DEV_pic_iac(); // may set INTR with next interrupt
|
958 |
|
|
BX_CPU_THIS_PTR errorno = 0;
|
959 |
|
|
BX_CPU_THIS_PTR EXT = 1; // external event
|
960 |
|
|
BX_CPU_THIS_PTR async_event = 1; // set in case INTR is triggered
|
961 |
|
|
interrupt(vector, 0, 0, 0);
|
962 |
|
|
}
|
963 |
|
|
}
|
964 |
|
|
}
|
965 |
|
|
|
966 |
|
|
void BX_CPU_C::dbg_force_interrupt(unsigned vector)
|
967 |
|
|
{
|
968 |
|
|
// Used to force simulator to take an interrupt, without
|
969 |
|
|
// regard to IF
|
970 |
|
|
|
971 |
|
|
if (setjmp(BX_CPU_THIS_PTR jmp_buf_env) == 0) {
|
972 |
|
|
// normal return from setjmp setup
|
973 |
|
|
BX_CPU_THIS_PTR errorno = 0;
|
974 |
|
|
BX_CPU_THIS_PTR EXT = 1; // external event
|
975 |
|
|
BX_CPU_THIS_PTR async_event = 1; // probably don't need this
|
976 |
|
|
interrupt(vector, 0, 0, 0);
|
977 |
|
|
}
|
978 |
|
|
}
|
979 |
|
|
|
980 |
|
|
void BX_CPU_C::dbg_take_dma(void)
|
981 |
|
|
{
|
982 |
|
|
// NOTE: similar code in ::cpu_loop()
|
983 |
|
|
if (BX_HRQ) {
|
984 |
|
|
BX_CPU_THIS_PTR async_event = 1; // set in case INTR is triggered
|
985 |
|
|
DEV_dma_raise_hlda();
|
986 |
|
|
}
|
987 |
|
|
}
|
988 |
|
|
|
989 |
|
|
#endif // #if BX_DEBUGGER
|