| 1 |
201 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
| 2 |
36 |
dgisselq |
//
|
| 3 |
|
|
// Filename: wbdblpriarb.v
|
| 4 |
|
|
//
|
| 5 |
|
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
| 6 |
|
|
//
|
| 7 |
|
|
// Purpose: This should almost be identical to the priority arbiter, save
|
| 8 |
|
|
// for a simple diffence: it allows the arbitration of two
|
| 9 |
|
|
// separate wishbone buses. The purpose of this is to push the address
|
| 10 |
|
|
// resolution back one cycle, so that by the first clock visible to this
|
| 11 |
|
|
// core, it is known which of two parts of the bus the desired address
|
| 12 |
|
|
// will be on, save that we still use the arbiter since the underlying
|
| 13 |
|
|
// device doesn't know that there are two wishbone buses.
|
| 14 |
|
|
//
|
| 15 |
|
|
// So at this point we've deviated from the WB spec somewhat, by allowing
|
| 16 |
|
|
// two CYC and two STB lines. Everything else is the same. This allows
|
| 17 |
|
|
// (in this case the Zip CPU) to determine whether or not the access
|
| 18 |
|
|
// will be to the local ZipSystem bus or the external WB bus on the clock
|
| 19 |
|
|
// before the local bus access, otherwise peripherals were needing to do
|
| 20 |
|
|
// multiple device selection comparisons/test within a clock: 1) is this
|
| 21 |
|
|
// for the local or external bus, and 2) is this referencing me as a
|
| 22 |
|
|
// peripheral. This then caused the ZipCPU to fail all timing specs.
|
| 23 |
|
|
// By creating the two pairs of lines, CYC_A/STB_A and CYC_B/STB_B, the
|
| 24 |
|
|
// determination of local vs external can be made one clock earlier
|
| 25 |
|
|
// where there's still time for the logic, and the second comparison
|
| 26 |
|
|
// now has time to complete.
|
| 27 |
|
|
//
|
| 28 |
|
|
// So let me try to explain this again. To use this arbiter, one of the
|
| 29 |
|
|
// two masters sets CYC and STB before, only the master determines which
|
| 30 |
|
|
// of two address spaces the CYC and STB apply to before the clock and
|
| 31 |
|
|
// only sets the appropriate CYC and STB lines. Then, on the clock tick,
|
| 32 |
|
|
// the arbiter determines who gets *both* busses, as they both share every
|
| 33 |
|
|
// other WB line. Thus, only one of CYC_A and CYC_B going out will ever
|
| 34 |
|
|
// be high at a given time.
|
| 35 |
|
|
//
|
| 36 |
|
|
// Hopefully this makes more sense than it sounds. If not, check out the
|
| 37 |
|
|
// code below for a better explanation.
|
| 38 |
|
|
//
|
| 39 |
|
|
// 20150919 -- Added supported for the WB error signal.
|
| 40 |
|
|
//
|
| 41 |
|
|
//
|
| 42 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
| 43 |
69 |
dgisselq |
// Gisselquist Technology, LLC
|
| 44 |
36 |
dgisselq |
//
|
| 45 |
201 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
| 46 |
36 |
dgisselq |
//
|
| 47 |
201 |
dgisselq |
// Copyright (C) 2015,2017, Gisselquist Technology, LLC
|
| 48 |
36 |
dgisselq |
//
|
| 49 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
| 50 |
|
|
// modify it under the terms of the GNU General Public License as published
|
| 51 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
| 52 |
|
|
// your option) any later version.
|
| 53 |
|
|
//
|
| 54 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
| 55 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
| 56 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 57 |
|
|
// for more details.
|
| 58 |
|
|
//
|
| 59 |
201 |
dgisselq |
// You should have received a copy of the GNU General Public License along
|
| 60 |
|
|
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
|
| 61 |
|
|
// target there if the PDF file isn't present.) If not, see
|
| 62 |
|
|
// <http://www.gnu.org/licenses/> for a copy.
|
| 63 |
|
|
//
|
| 64 |
36 |
dgisselq |
// License: GPL, v3, as defined and found on www.gnu.org,
|
| 65 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
| 66 |
|
|
//
|
| 67 |
|
|
//
|
| 68 |
201 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
| 69 |
36 |
dgisselq |
//
|
| 70 |
201 |
dgisselq |
//
|
| 71 |
|
|
module wbdblpriarb(i_clk, i_rst,
|
| 72 |
36 |
dgisselq |
// Bus A
|
| 73 |
201 |
dgisselq |
i_a_cyc_a,i_a_cyc_b,i_a_stb_a,i_a_stb_b,i_a_we,i_a_adr, i_a_dat, i_a_sel, o_a_ack, o_a_stall, o_a_err,
|
| 74 |
36 |
dgisselq |
// Bus B
|
| 75 |
201 |
dgisselq |
i_b_cyc_a,i_b_cyc_b,i_b_stb_a,i_b_stb_b,i_b_we,i_b_adr, i_b_dat, i_b_sel, o_b_ack, o_b_stall, o_b_err,
|
| 76 |
36 |
dgisselq |
// Both buses
|
| 77 |
201 |
dgisselq |
o_cyc_a, o_cyc_b, o_stb_a, o_stb_b, o_we, o_adr, o_dat, o_sel,
|
| 78 |
36 |
dgisselq |
i_ack, i_stall, i_err);
|
| 79 |
|
|
parameter DW=32, AW=32;
|
| 80 |
|
|
// Wishbone doesn't use an i_ce signal. While it could, they dislike
|
| 81 |
|
|
// what it would (might) do to the synchronous reset signal, i_rst.
|
| 82 |
|
|
input i_clk, i_rst;
|
| 83 |
|
|
// Bus A
|
| 84 |
|
|
input i_a_cyc_a, i_a_cyc_b, i_a_stb_a, i_a_stb_b, i_a_we;
|
| 85 |
|
|
input [(AW-1):0] i_a_adr;
|
| 86 |
|
|
input [(DW-1):0] i_a_dat;
|
| 87 |
201 |
dgisselq |
input [(DW/8-1):0] i_a_sel;
|
| 88 |
36 |
dgisselq |
output wire o_a_ack, o_a_stall, o_a_err;
|
| 89 |
|
|
// Bus B
|
| 90 |
|
|
input i_b_cyc_a, i_b_cyc_b, i_b_stb_a, i_b_stb_b, i_b_we;
|
| 91 |
|
|
input [(AW-1):0] i_b_adr;
|
| 92 |
|
|
input [(DW-1):0] i_b_dat;
|
| 93 |
201 |
dgisselq |
input [(DW/8-1):0] i_b_sel;
|
| 94 |
36 |
dgisselq |
output wire o_b_ack, o_b_stall, o_b_err;
|
| 95 |
201 |
dgisselq |
//
|
| 96 |
36 |
dgisselq |
output wire o_cyc_a,o_cyc_b, o_stb_a, o_stb_b, o_we;
|
| 97 |
|
|
output wire [(AW-1):0] o_adr;
|
| 98 |
|
|
output wire [(DW-1):0] o_dat;
|
| 99 |
201 |
dgisselq |
output wire [(DW/8-1):0] o_sel;
|
| 100 |
36 |
dgisselq |
input i_ack, i_stall, i_err;
|
| 101 |
|
|
|
| 102 |
|
|
// All of our logic is really captured in the 'r_a_owner' register.
|
| 103 |
|
|
// This register determines who owns the bus. If no one is requesting
|
| 104 |
201 |
dgisselq |
// the bus, ownership goes to A on the next clock. Otherwise, if B is
|
| 105 |
36 |
dgisselq |
// requesting the bus and A is not, then ownership goes to not A on
|
| 106 |
|
|
// the next clock. (Sounds simple ...)
|
| 107 |
|
|
//
|
| 108 |
|
|
// The CYC logic is here to make certain that, by the time we determine
|
| 109 |
|
|
// who the bus owner is, we can do so based upon determined criteria.
|
| 110 |
201 |
dgisselq |
assign o_cyc_a = ((r_a_owner) ? i_a_cyc_a : i_b_cyc_a);
|
| 111 |
|
|
assign o_cyc_b = ((r_a_owner) ? i_a_cyc_b : i_b_cyc_b);
|
| 112 |
36 |
dgisselq |
reg r_a_owner;
|
| 113 |
|
|
initial r_a_owner = 1'b1;
|
| 114 |
|
|
always @(posedge i_clk)
|
| 115 |
|
|
if (i_rst)
|
| 116 |
|
|
r_a_owner <= 1'b1;
|
| 117 |
|
|
else if ((~o_cyc_a)&&(~o_cyc_b))
|
| 118 |
|
|
r_a_owner <= ((i_b_cyc_a)||(i_b_cyc_b))? 1'b0:1'b1;
|
| 119 |
|
|
|
| 120 |
|
|
|
| 121 |
201 |
dgisselq |
assign o_we = (r_a_owner) ? i_a_we : i_b_we;
|
| 122 |
|
|
`ifdef ZERO_ON_IDLE
|
| 123 |
|
|
//
|
| 124 |
|
|
// ZERO_ON_IDLE uses more logic than the alternative. It should be
|
| 125 |
|
|
// useful for reducing power, as these circuits tend to drive wires
|
| 126 |
|
|
// all the way across the design, but it may also slow down the master
|
| 127 |
|
|
// clock. I've used it as an option when using VERILATOR, 'cause
|
| 128 |
|
|
// zeroing things on idle can make them stand out all the more when
|
| 129 |
|
|
// staring at wires and dumps and such.
|
| 130 |
|
|
//
|
| 131 |
|
|
wire o_cyc, o_stb;
|
| 132 |
|
|
assign o_cyc = ((o_cyc_a)||(o_cyc_b));
|
| 133 |
|
|
assign o_stb = (o_cyc)&&((o_stb_a)||(o_stb_b));
|
| 134 |
|
|
assign o_stb_a = (r_a_owner) ? (i_a_stb_a)&&(o_cyc_a) : (i_b_stb_a)&&(o_cyc_a);
|
| 135 |
|
|
assign o_stb_b = (r_a_owner) ? (i_a_stb_b)&&(o_cyc_b) : (i_b_stb_b)&&(o_cyc_b);
|
| 136 |
|
|
assign o_adr = ((o_stb_a)|(o_stb_b))?((r_a_owner) ? i_a_adr : i_b_adr):0;
|
| 137 |
|
|
assign o_dat = (o_stb)?((r_a_owner) ? i_a_dat : i_b_dat):0;
|
| 138 |
|
|
assign o_sel = (o_stb)?((r_a_owner) ? i_a_sel : i_b_sel):0;
|
| 139 |
|
|
assign o_a_ack = (o_cyc)&&( r_a_owner) ? i_ack : 1'b0;
|
| 140 |
|
|
assign o_b_ack = (o_cyc)&&(~r_a_owner) ? i_ack : 1'b0;
|
| 141 |
|
|
assign o_a_stall = (o_cyc)&&( r_a_owner) ? i_stall : 1'b1;
|
| 142 |
|
|
assign o_b_stall = (o_cyc)&&(~r_a_owner) ? i_stall : 1'b1;
|
| 143 |
|
|
assign o_a_err = (o_cyc)&&( r_a_owner) ? i_err : 1'b0;
|
| 144 |
|
|
assign o_b_err = (o_cyc)&&(~r_a_owner) ? i_err : 1'b0;
|
| 145 |
|
|
`else
|
| 146 |
36 |
dgisselq |
// Realistically, if neither master owns the bus, the output is a
|
| 147 |
|
|
// don't care. Thus we trigger off whether or not 'A' owns the bus.
|
| 148 |
201 |
dgisselq |
// If 'B' owns it all we care is that 'A' does not. Likewise, if
|
| 149 |
36 |
dgisselq |
// neither owns the bus than the values on these various lines are
|
| 150 |
|
|
// irrelevant.
|
| 151 |
|
|
assign o_stb_a = (r_a_owner) ? i_a_stb_a : i_b_stb_a;
|
| 152 |
|
|
assign o_stb_b = (r_a_owner) ? i_a_stb_b : i_b_stb_b;
|
| 153 |
|
|
assign o_we = (r_a_owner) ? i_a_we : i_b_we;
|
| 154 |
|
|
assign o_adr = (r_a_owner) ? i_a_adr : i_b_adr;
|
| 155 |
|
|
assign o_dat = (r_a_owner) ? i_a_dat : i_b_dat;
|
| 156 |
201 |
dgisselq |
assign o_sel = (r_a_owner) ? i_a_sel : i_b_sel;
|
| 157 |
36 |
dgisselq |
|
| 158 |
|
|
// We cannot allow the return acknowledgement to ever go high if
|
| 159 |
|
|
// the master in question does not own the bus. Hence we force it
|
| 160 |
|
|
// low if the particular master doesn't own the bus.
|
| 161 |
|
|
assign o_a_ack = ( r_a_owner) ? i_ack : 1'b0;
|
| 162 |
|
|
assign o_b_ack = (~r_a_owner) ? i_ack : 1'b0;
|
| 163 |
|
|
|
| 164 |
|
|
// Stall must be asserted on the same cycle the input master asserts
|
| 165 |
|
|
// the bus, if the bus isn't granted to him.
|
| 166 |
|
|
assign o_a_stall = ( r_a_owner) ? i_stall : 1'b1;
|
| 167 |
|
|
assign o_b_stall = (~r_a_owner) ? i_stall : 1'b1;
|
| 168 |
|
|
|
| 169 |
|
|
//
|
| 170 |
|
|
// These error lines will be implemented soon, as soon as the rest of
|
| 171 |
|
|
// the Zip CPU is ready to support them.
|
| 172 |
|
|
//
|
| 173 |
|
|
assign o_a_err = ( r_a_owner) ? i_err : 1'b0;
|
| 174 |
|
|
assign o_b_err = (~r_a_owner) ? i_err : 1'b0;
|
| 175 |
201 |
dgisselq |
`endif
|
| 176 |
36 |
dgisselq |
|
| 177 |
|
|
endmodule
|
| 178 |
|
|
|