| 1 |
69 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
| 2 |
|
|
//
|
| 3 |
82 |
dgisselq |
// Filename: pfcache.v
|
| 4 |
69 |
dgisselq |
//
|
| 5 |
|
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
| 6 |
|
|
//
|
| 7 |
|
|
// Purpose: Keeping our CPU fed with instructions, at one per clock and
|
| 8 |
209 |
dgisselq |
// with only a minimum number stalls. The entire cache may also
|
| 9 |
|
|
// be cleared (if necessary).
|
| 10 |
69 |
dgisselq |
//
|
| 11 |
209 |
dgisselq |
// This logic is driven by a couple realities:
|
| 12 |
|
|
// 1. It takes a clock to read from a block RAM address, and hence a clock
|
| 13 |
|
|
// to read from the cache.
|
| 14 |
|
|
// 2. It takes another clock to check that the tag matches
|
| 15 |
|
|
//
|
| 16 |
|
|
// Our goal will be to avoid this second check if at all possible.
|
| 17 |
|
|
// Hence, we'll test on the clock of any given request whether
|
| 18 |
|
|
// or not the request matches the last tag value, and on the next
|
| 19 |
|
|
// clock whether it new tag value (if it has changed). Hence,
|
| 20 |
|
|
// for anything found within the cache, there will be a one
|
| 21 |
|
|
// cycle delay on any branch.
|
| 22 |
|
|
//
|
| 23 |
|
|
//
|
| 24 |
|
|
// Address Words are separated into three components:
|
| 25 |
|
|
// [ Tag bits ] [ Cache line number ] [ Cache position w/in the line ]
|
| 26 |
|
|
//
|
| 27 |
|
|
// On any read from the cache, only the second two components are required.
|
| 28 |
|
|
// On any read from memory, the first two components will be fixed across
|
| 29 |
|
|
// the bus, and the third component will be adjusted from zero to its
|
| 30 |
|
|
// maximum value.
|
| 31 |
|
|
//
|
| 32 |
|
|
//
|
| 33 |
69 |
dgisselq |
// Creator: Dan Gisselquist, Ph.D.
|
| 34 |
|
|
// Gisselquist Technology, LLC
|
| 35 |
|
|
//
|
| 36 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
| 37 |
|
|
//
|
| 38 |
209 |
dgisselq |
// Copyright (C) 2015-2019, Gisselquist Technology, LLC
|
| 39 |
69 |
dgisselq |
//
|
| 40 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
| 41 |
|
|
// modify it under the terms of the GNU General Public License as published
|
| 42 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
| 43 |
|
|
// your option) any later version.
|
| 44 |
|
|
//
|
| 45 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
| 46 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
| 47 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 48 |
|
|
// for more details.
|
| 49 |
|
|
//
|
| 50 |
201 |
dgisselq |
// You should have received a copy of the GNU General Public License along
|
| 51 |
|
|
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
|
| 52 |
|
|
// target there if the PDF file isn't present.) If not, see
|
| 53 |
|
|
// <http://www.gnu.org/licenses/> for a copy.
|
| 54 |
|
|
//
|
| 55 |
69 |
dgisselq |
// License: GPL, v3, as defined and found on www.gnu.org,
|
| 56 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
| 57 |
|
|
//
|
| 58 |
|
|
//
|
| 59 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
| 60 |
|
|
//
|
| 61 |
201 |
dgisselq |
//
|
| 62 |
209 |
dgisselq |
`default_nettype none
|
| 63 |
|
|
//
|
| 64 |
|
|
module pfcache(i_clk, i_reset, i_new_pc, i_clear_cache,
|
| 65 |
69 |
dgisselq |
// i_early_branch, i_from_addr,
|
| 66 |
209 |
dgisselq |
i_stall_n, i_pc, o_insn, o_pc, o_valid,
|
| 67 |
69 |
dgisselq |
o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data,
|
| 68 |
|
|
i_wb_ack, i_wb_stall, i_wb_err, i_wb_data,
|
| 69 |
209 |
dgisselq |
o_illegal
|
| 70 |
|
|
`ifdef NOT_YET_READY
|
| 71 |
|
|
, i_mmu_ack, i_mmu_we, i_mmu_paddr
|
| 72 |
|
|
`endif
|
| 73 |
|
|
`ifdef FORMAL
|
| 74 |
|
|
, f_pc_wb
|
| 75 |
|
|
`endif
|
| 76 |
|
|
);
|
| 77 |
|
|
`ifdef FORMAL
|
| 78 |
|
|
parameter LGCACHELEN = 4, ADDRESS_WIDTH=30,
|
| 79 |
|
|
LGLINES=2; // Log of the number of separate cache lines
|
| 80 |
|
|
`else
|
| 81 |
|
|
parameter LGCACHELEN = 12, ADDRESS_WIDTH=30,
|
| 82 |
|
|
LGLINES=6; // Log of the number of separate cache lines
|
| 83 |
|
|
`endif
|
| 84 |
|
|
localparam CACHELEN=(1<<LGCACHELEN); //Wrd Size of our cache memory
|
| 85 |
194 |
dgisselq |
localparam CW=LGCACHELEN; // Short hand for LGCACHELEN
|
| 86 |
209 |
dgisselq |
localparam LS=LGCACHELEN-LGLINES; // Size of a cache line
|
| 87 |
194 |
dgisselq |
localparam BUSW = 32; // Number of data lines on the bus
|
| 88 |
|
|
localparam AW=ADDRESS_WIDTH; // Shorthand for ADDRESS_WIDTH
|
| 89 |
69 |
dgisselq |
//
|
| 90 |
209 |
dgisselq |
input wire i_clk, i_reset;
|
| 91 |
|
|
//
|
| 92 |
|
|
// The interface with the rest of the CPU
|
| 93 |
|
|
input wire i_new_pc;
|
| 94 |
|
|
input wire i_clear_cache;
|
| 95 |
|
|
input wire i_stall_n;
|
| 96 |
|
|
input wire [(AW+1):0] i_pc;
|
| 97 |
|
|
output wire [(BUSW-1):0] o_insn;
|
| 98 |
|
|
output wire [(AW+1):0] o_pc;
|
| 99 |
|
|
output wire o_valid;
|
| 100 |
|
|
//
|
| 101 |
|
|
// The wishbone bus interface
|
| 102 |
|
|
output reg o_wb_cyc, o_wb_stb;
|
| 103 |
|
|
output wire o_wb_we;
|
| 104 |
69 |
dgisselq |
output reg [(AW-1):0] o_wb_addr;
|
| 105 |
|
|
output wire [(BUSW-1):0] o_wb_data;
|
| 106 |
|
|
//
|
| 107 |
209 |
dgisselq |
input wire i_wb_ack, i_wb_stall, i_wb_err;
|
| 108 |
|
|
input wire [(BUSW-1):0] i_wb_data;
|
| 109 |
69 |
dgisselq |
//
|
| 110 |
209 |
dgisselq |
// o_illegal will be true if this instruction was the result of a
|
| 111 |
|
|
// bus error (This is also part of the CPU interface)
|
| 112 |
69 |
dgisselq |
output reg o_illegal;
|
| 113 |
209 |
dgisselq |
//
|
| 114 |
|
|
`ifdef NOT_YET_READY
|
| 115 |
|
|
input wire i_mmu_ack, i_mmu_we;
|
| 116 |
|
|
input wire [(PAW-1):0] i_mmu_paddr;
|
| 117 |
|
|
`endif
|
| 118 |
69 |
dgisselq |
|
| 119 |
|
|
// Fixed bus outputs: we read from the bus only, never write.
|
| 120 |
|
|
// Thus the output data is ... irrelevant and don't care. We set it
|
| 121 |
|
|
// to zero just to set it to something.
|
| 122 |
|
|
assign o_wb_we = 1'b0;
|
| 123 |
|
|
assign o_wb_data = 0;
|
| 124 |
|
|
|
| 125 |
209 |
dgisselq |
`ifdef NOT_YET_READY
|
| 126 |
|
|
// These wires will be used below as part of the cache invalidation
|
| 127 |
|
|
// routine, should the MMU be used. This allows us to snoop on the
|
| 128 |
|
|
// physical side of the MMU bus, and invalidate any results should
|
| 129 |
|
|
// we need to do so.
|
| 130 |
|
|
wire mmu_inval;
|
| 131 |
|
|
wire [(PAW-CW-1):0] mmu_mskaddr;
|
| 132 |
|
|
`endif
|
| 133 |
|
|
`ifdef FORMAL
|
| 134 |
|
|
output wire [AW-1:0] f_pc_wb;
|
| 135 |
|
|
assign f_pc_wb = i_pc[AW+1:2];
|
| 136 |
|
|
`endif
|
| 137 |
|
|
|
| 138 |
|
|
|
| 139 |
176 |
dgisselq |
wire r_v;
|
| 140 |
69 |
dgisselq |
reg [(BUSW-1):0] cache [0:((1<<CW)-1)];
|
| 141 |
209 |
dgisselq |
reg [(AW-CW-1):0] cache_tags [0:((1<<(LGLINES))-1)];
|
| 142 |
|
|
reg [((1<<(LGLINES))-1):0] valid_mask;
|
| 143 |
69 |
dgisselq |
|
| 144 |
209 |
dgisselq |
reg r_v_from_pc, r_v_from_last, r_new_request;
|
| 145 |
|
|
reg rvsrc;
|
| 146 |
|
|
wire w_v_from_pc, w_v_from_last;
|
| 147 |
|
|
reg [(AW+1):0] lastpc;
|
| 148 |
|
|
reg [(CW-1):0] wraddr;
|
| 149 |
176 |
dgisselq |
reg [(AW-1):CW] tagvalipc, tagvallst;
|
| 150 |
|
|
wire [(AW-1):CW] tagval;
|
| 151 |
209 |
dgisselq |
wire [(AW-1):LS] lasttag;
|
| 152 |
129 |
dgisselq |
reg illegal_valid;
|
| 153 |
209 |
dgisselq |
reg [(AW-1):LS] illegal_cache;
|
| 154 |
69 |
dgisselq |
|
| 155 |
176 |
dgisselq |
// initial o_i = 32'h76_00_00_00; // A NOOP instruction
|
| 156 |
|
|
// initial o_pc = 0;
|
| 157 |
|
|
reg [(BUSW-1):0] r_pc_cache, r_last_cache;
|
| 158 |
209 |
dgisselq |
reg [(AW+1):0] r_pc, r_lastpc;
|
| 159 |
|
|
reg isrc;
|
| 160 |
|
|
reg [1:0] delay;
|
| 161 |
|
|
reg svmask, last_ack, needload, last_addr,
|
| 162 |
|
|
bus_abort;
|
| 163 |
|
|
reg [(LGLINES-1):0] saddr;
|
| 164 |
|
|
|
| 165 |
|
|
wire w_advance;
|
| 166 |
|
|
assign w_advance = (i_new_pc)||((r_v)&&(i_stall_n));
|
| 167 |
|
|
|
| 168 |
|
|
/////////////////////////////////////////////////
|
| 169 |
|
|
//
|
| 170 |
|
|
// Read the instruction from the cache
|
| 171 |
|
|
//
|
| 172 |
|
|
/////////////////////////////////////////////////
|
| 173 |
|
|
//
|
| 174 |
|
|
//
|
| 175 |
|
|
// We'll read two values from the cache, the first is the value if
|
| 176 |
|
|
// i_pc contains the address we want, the second is the value we'd read
|
| 177 |
|
|
// if lastpc (i.e. $past(i_pc)) was the address we wanted.
|
| 178 |
|
|
initial r_pc = 0;
|
| 179 |
|
|
initial r_lastpc = 0;
|
| 180 |
69 |
dgisselq |
always @(posedge i_clk)
|
| 181 |
176 |
dgisselq |
begin
|
| 182 |
|
|
// We don't have the logic to select what to read, we must
|
| 183 |
|
|
// read both the value at i_pc and lastpc. cache[i_pc] is
|
| 184 |
209 |
dgisselq |
// the value we return if the last cache request was in the
|
| 185 |
|
|
// cache on the last clock, cacne[lastpc] is the value we
|
| 186 |
|
|
// return if we've been stalled, weren't valid, or had to wait
|
| 187 |
|
|
// a clock or two.
|
| 188 |
176 |
dgisselq |
//
|
| 189 |
209 |
dgisselq |
// Part of the issue here is that i_pc is going to increment
|
| 190 |
|
|
// on this clock before we know whether or not the cache entry
|
| 191 |
|
|
// we've just read is valid. We can't stop this. Hence, we
|
| 192 |
|
|
// need to read from the lastpc entry.
|
| 193 |
|
|
//
|
| 194 |
|
|
//
|
| 195 |
|
|
// Here we keep track of which answer we want/need.
|
| 196 |
|
|
// If we reported a valid value to the CPU on the last clock,
|
| 197 |
|
|
// and the CPU wasn't stalled, then we want to use i_pc.
|
| 198 |
|
|
// Likewise if the CPU gave us an i_new_pc request, then we'll
|
| 199 |
|
|
// want to return the value associated with reading the cache
|
| 200 |
|
|
// at i_pc.
|
| 201 |
|
|
isrc <= w_advance;
|
| 202 |
69 |
dgisselq |
|
| 203 |
209 |
dgisselq |
// Here we read both cache entries, at i_pc and lastpc.
|
| 204 |
|
|
// We'll select from among these cache possibilities on the
|
| 205 |
|
|
// next clock
|
| 206 |
|
|
r_pc_cache <= cache[i_pc[(CW+1):2]];
|
| 207 |
|
|
r_last_cache <= cache[lastpc[(CW+1):2]];
|
| 208 |
|
|
//
|
| 209 |
|
|
// Let's also register(delay) the r_pc and r_lastpc values
|
| 210 |
|
|
// for the next clock, so we can accurately report the address
|
| 211 |
|
|
// of the cache value we just looked up.
|
| 212 |
176 |
dgisselq |
r_pc <= i_pc;
|
| 213 |
|
|
r_lastpc <= lastpc;
|
| 214 |
|
|
end
|
| 215 |
|
|
|
| 216 |
209 |
dgisselq |
// On our next clock, our result with either be the registered i_pc
|
| 217 |
|
|
// value from the last clock (if isrc), otherwise r_lastpc
|
| 218 |
|
|
assign o_pc = (isrc) ? r_pc : r_lastpc;
|
| 219 |
|
|
// The same applies for determining what the next output instruction
|
| 220 |
|
|
// will be. We just read it in the last clock, now we just need to
|
| 221 |
|
|
// select between the two possibilities we just read.
|
| 222 |
|
|
assign o_insn= (isrc) ? r_pc_cache : r_last_cache;
|
| 223 |
|
|
|
| 224 |
|
|
|
| 225 |
|
|
/////////////////////////////////////////////////
|
| 226 |
|
|
//
|
| 227 |
|
|
// Read the tag value associated with this tcache line
|
| 228 |
|
|
//
|
| 229 |
|
|
/////////////////////////////////////////////////
|
| 230 |
|
|
//
|
| 231 |
|
|
//
|
| 232 |
|
|
|
| 233 |
|
|
//
|
| 234 |
|
|
// Read the tag value associated with this i_pc value
|
| 235 |
176 |
dgisselq |
initial tagvalipc = 0;
|
| 236 |
|
|
always @(posedge i_clk)
|
| 237 |
209 |
dgisselq |
tagvalipc <= cache_tags[i_pc[(CW+1):LS+2]];
|
| 238 |
|
|
|
| 239 |
|
|
|
| 240 |
|
|
//
|
| 241 |
|
|
// Read the tag value associated with the lastpc value, from what
|
| 242 |
|
|
// i_pc was when we could not tell if this value was in our cache or
|
| 243 |
|
|
// not, or perhaps from when we determined that i was not in the cache.
|
| 244 |
176 |
dgisselq |
initial tagvallst = 0;
|
| 245 |
|
|
always @(posedge i_clk)
|
| 246 |
209 |
dgisselq |
tagvallst <= cache_tags[lastpc[(CW+1):LS+2]];
|
| 247 |
69 |
dgisselq |
|
| 248 |
209 |
dgisselq |
// Select from between these two values on the next clock
|
| 249 |
|
|
assign tagval = (isrc)?tagvalipc : tagvallst;
|
| 250 |
|
|
|
| 251 |
69 |
dgisselq |
// i_pc will only increment when everything else isn't stalled, thus
|
| 252 |
|
|
// we can set it without worrying about that. Doing this enables
|
| 253 |
|
|
// us to work in spite of stalls. For example, if the next address
|
| 254 |
|
|
// isn't valid, but the decoder is stalled, get the next address
|
| 255 |
|
|
// anyway.
|
| 256 |
|
|
initial lastpc = 0;
|
| 257 |
|
|
always @(posedge i_clk)
|
| 258 |
209 |
dgisselq |
if (w_advance)
|
| 259 |
|
|
lastpc <= i_pc;
|
| 260 |
69 |
dgisselq |
|
| 261 |
209 |
dgisselq |
assign lasttag = lastpc[(AW+1):LS+2];
|
| 262 |
69 |
dgisselq |
|
| 263 |
209 |
dgisselq |
/////////////////////////////////////////////////
|
| 264 |
|
|
//
|
| 265 |
|
|
// Use the tag value to determine if our output instruction will be
|
| 266 |
|
|
// valid.
|
| 267 |
|
|
//
|
| 268 |
|
|
/////////////////////////////////////////////////
|
| 269 |
|
|
//
|
| 270 |
|
|
//
|
| 271 |
|
|
assign w_v_from_pc = ((i_pc[(AW+1):LS+2] == lasttag)
|
| 272 |
|
|
&&(tagval == i_pc[(AW+1):CW+2])
|
| 273 |
|
|
&&(valid_mask[i_pc[(CW+1):LS+2]]));
|
| 274 |
|
|
assign w_v_from_last = ((tagval == lastpc[(AW+1):CW+2])
|
| 275 |
|
|
&&(valid_mask[lastpc[(CW+1):LS+2]]));
|
| 276 |
69 |
dgisselq |
|
| 277 |
|
|
initial delay = 2'h3;
|
| 278 |
|
|
always @(posedge i_clk)
|
| 279 |
209 |
dgisselq |
if ((i_reset)||(i_clear_cache)||(w_advance))
|
| 280 |
|
|
begin
|
| 281 |
|
|
// Source our valid signal from i_pc
|
| 282 |
|
|
rvsrc <= 1'b1;
|
| 283 |
|
|
// Delay at least two clocks before declaring that
|
| 284 |
|
|
// we have an invalid result. This will give us time
|
| 285 |
|
|
// to check the tag value of what's in the cache.
|
| 286 |
|
|
delay <= 2'h2;
|
| 287 |
|
|
end else if ((!r_v)&&(!o_illegal)) begin
|
| 288 |
|
|
// If we aren't sourcing our valid signal from the
|
| 289 |
|
|
// i_pc clock, then we are sourcing it from the
|
| 290 |
|
|
// lastpc clock (one clock later). If r_v still
|
| 291 |
|
|
// isn't valid, we may need to make a bus request.
|
| 292 |
|
|
// Apply our timer and timeout.
|
| 293 |
|
|
rvsrc <= 1'b0;
|
| 294 |
|
|
|
| 295 |
|
|
// Delay is two once the bus starts, in case the
|
| 296 |
|
|
// bus transaction needs to be restarted upon completion
|
| 297 |
|
|
// This might happen if, after we start loading the
|
| 298 |
|
|
// cache, we discover a branch. The cache load will
|
| 299 |
|
|
// still complete, but the branches address needs to be
|
| 300 |
|
|
// the onen we jump to. This may mean we need to load
|
| 301 |
|
|
// the cache twice.
|
| 302 |
|
|
if (o_wb_cyc)
|
| 303 |
69 |
dgisselq |
delay <= 2'h2;
|
| 304 |
209 |
dgisselq |
else if (delay != 0)
|
| 305 |
|
|
delay <= delay + 2'b11; // i.e. delay -= 1;
|
| 306 |
|
|
end else begin
|
| 307 |
|
|
// After sourcing our output from i_pc, if it wasn't
|
| 308 |
|
|
// accepted, source the instruction from the lastpc valid
|
| 309 |
|
|
// determination instead
|
| 310 |
|
|
rvsrc <= 1'b0;
|
| 311 |
|
|
if (o_illegal)
|
| 312 |
|
|
delay <= 2'h2;
|
| 313 |
|
|
end
|
| 314 |
|
|
|
| 315 |
|
|
wire w_invalidate_result;
|
| 316 |
|
|
assign w_invalidate_result = (i_reset)||(i_clear_cache);
|
| 317 |
|
|
|
| 318 |
|
|
reg r_prior_illegal;
|
| 319 |
|
|
initial r_prior_illegal = 0;
|
| 320 |
|
|
initial r_new_request = 0;
|
| 321 |
|
|
initial r_v_from_pc = 0;
|
| 322 |
|
|
initial r_v_from_last = 0;
|
| 323 |
176 |
dgisselq |
always @(posedge i_clk)
|
| 324 |
209 |
dgisselq |
begin
|
| 325 |
|
|
r_new_request <= w_invalidate_result;
|
| 326 |
|
|
r_v_from_pc <= (w_v_from_pc)&&(!w_invalidate_result)
|
| 327 |
|
|
&&(!o_illegal);
|
| 328 |
|
|
r_v_from_last <= (w_v_from_last)&&(!w_invalidate_result);
|
| 329 |
|
|
|
| 330 |
|
|
r_prior_illegal <= (o_wb_cyc)&&(i_wb_err);
|
| 331 |
|
|
end
|
| 332 |
|
|
|
| 333 |
|
|
// Now use rvsrc to determine which of the two valid flags we'll be
|
| 334 |
|
|
// using: r_v_from_pc (the i_pc address), or r_v_from_last (the lastpc
|
| 335 |
|
|
// address)
|
| 336 |
|
|
assign r_v = ((rvsrc)?(r_v_from_pc):(r_v_from_last))&&(!r_new_request);
|
| 337 |
|
|
assign o_valid = (((rvsrc)?(r_v_from_pc):(r_v_from_last))
|
| 338 |
|
|
||(o_illegal))
|
| 339 |
|
|
&&(!i_new_pc)&&(!r_prior_illegal);
|
| 340 |
|
|
|
| 341 |
|
|
/////////////////////////////////////////////////
|
| 342 |
|
|
//
|
| 343 |
|
|
// If the instruction isn't in our cache, then we need to load
|
| 344 |
|
|
// a new cache line from memory.
|
| 345 |
|
|
//
|
| 346 |
|
|
/////////////////////////////////////////////////
|
| 347 |
|
|
//
|
| 348 |
|
|
//
|
| 349 |
|
|
initial needload = 1'b0;
|
| 350 |
176 |
dgisselq |
always @(posedge i_clk)
|
| 351 |
209 |
dgisselq |
if ((i_clear_cache)||(o_wb_cyc))
|
| 352 |
|
|
needload <= 1'b0;
|
| 353 |
|
|
else if ((w_advance)&&(!o_illegal))
|
| 354 |
|
|
needload <= 1'b0;
|
| 355 |
|
|
else
|
| 356 |
|
|
needload <= (delay==0)&&(!w_v_from_last)
|
| 357 |
|
|
// Prevent us from reloading an illegal address
|
| 358 |
|
|
// (i.e. one that produced a bus error) over and over
|
| 359 |
|
|
// and over again
|
| 360 |
|
|
&&((!illegal_valid)
|
| 361 |
|
|
||(lastpc[(AW+1):LS+2] != illegal_cache));
|
| 362 |
69 |
dgisselq |
|
| 363 |
209 |
dgisselq |
//
|
| 364 |
|
|
// Working from the rule that you want to keep complex logic out of
|
| 365 |
|
|
// a state machine if possible, we calculate a "last_stb" value one
|
| 366 |
|
|
// clock ahead of time. Hence, any time a request is accepted, if
|
| 367 |
|
|
// last_stb is also true we'll know we need to drop the strobe line,
|
| 368 |
|
|
// having finished requesting a complete cache line.
|
| 369 |
|
|
initial last_addr = 1'b0;
|
| 370 |
|
|
always @(posedge i_clk)
|
| 371 |
|
|
if (!o_wb_cyc)
|
| 372 |
|
|
last_addr <= 1'b0;
|
| 373 |
|
|
else if ((o_wb_addr[(LS-1):1] == {(LS-1){1'b1}})
|
| 374 |
|
|
&&((!i_wb_stall)|(o_wb_addr[0])))
|
| 375 |
|
|
last_addr <= 1'b1;
|
| 376 |
69 |
dgisselq |
|
| 377 |
209 |
dgisselq |
//
|
| 378 |
|
|
// "last_ack" is almost identical to last_addr, save that this
|
| 379 |
|
|
// will be true on the same clock as the last acknowledgment from the
|
| 380 |
|
|
// bus. The state machine logic will use this to determine when to
|
| 381 |
|
|
// get off the bus and end the wishbone bus cycle.
|
| 382 |
176 |
dgisselq |
initial last_ack = 1'b0;
|
| 383 |
|
|
always @(posedge i_clk)
|
| 384 |
|
|
last_ack <= (o_wb_cyc)&&(
|
| 385 |
209 |
dgisselq |
(wraddr[(LS-1):1]=={(LS-1){1'b1}})
|
| 386 |
|
|
&&((wraddr[0])||(i_wb_ack)));
|
| 387 |
69 |
dgisselq |
|
| 388 |
209 |
dgisselq |
initial bus_abort = 1'b0;
|
| 389 |
176 |
dgisselq |
always @(posedge i_clk)
|
| 390 |
209 |
dgisselq |
if (!o_wb_cyc)
|
| 391 |
|
|
bus_abort <= 1'b0;
|
| 392 |
|
|
else if ((i_clear_cache)||(i_new_pc))
|
| 393 |
|
|
bus_abort <= 1'b1;
|
| 394 |
176 |
dgisselq |
|
| 395 |
209 |
dgisselq |
//
|
| 396 |
|
|
// Here's the difficult piece of state machine logic--the part that
|
| 397 |
|
|
// determines o_wb_cyc and o_wb_stb. We've already moved most of the
|
| 398 |
|
|
// complicated logic off of this statemachine, calculating it one cycle
|
| 399 |
|
|
// early. As a result, this is a fairly easy piece of logic.
|
| 400 |
69 |
dgisselq |
initial o_wb_cyc = 1'b0;
|
| 401 |
|
|
initial o_wb_stb = 1'b0;
|
| 402 |
|
|
always @(posedge i_clk)
|
| 403 |
209 |
dgisselq |
if ((i_reset)||(i_clear_cache))
|
| 404 |
|
|
begin
|
| 405 |
|
|
o_wb_cyc <= 1'b0;
|
| 406 |
|
|
o_wb_stb <= 1'b0;
|
| 407 |
|
|
end else if (o_wb_cyc)
|
| 408 |
|
|
begin
|
| 409 |
|
|
if (i_wb_err)
|
| 410 |
69 |
dgisselq |
o_wb_stb <= 1'b0;
|
| 411 |
209 |
dgisselq |
else if ((o_wb_stb)&&(!i_wb_stall)&&(last_addr))
|
| 412 |
|
|
o_wb_stb <= 1'b0;
|
| 413 |
69 |
dgisselq |
|
| 414 |
209 |
dgisselq |
if (((i_wb_ack)&&(last_ack))||(i_wb_err))
|
| 415 |
|
|
o_wb_cyc <= 1'b0;
|
| 416 |
82 |
dgisselq |
|
| 417 |
209 |
dgisselq |
end else if ((needload)&&(!i_new_pc))
|
| 418 |
|
|
begin
|
| 419 |
|
|
o_wb_cyc <= 1'b1;
|
| 420 |
|
|
o_wb_stb <= 1'b1;
|
| 421 |
|
|
end
|
| 422 |
69 |
dgisselq |
|
| 423 |
209 |
dgisselq |
// If we are reading from this cache line, then once we get the first
|
| 424 |
|
|
// acknowledgement, this cache line has the new tag value
|
| 425 |
|
|
always @(posedge i_clk)
|
| 426 |
|
|
if ((o_wb_cyc)&&(i_wb_ack))
|
| 427 |
|
|
cache_tags[o_wb_addr[(CW-1):LS]] <= o_wb_addr[(AW-1):CW];
|
| 428 |
69 |
dgisselq |
|
| 429 |
209 |
dgisselq |
|
| 430 |
|
|
// On each acknowledgment, increment the address we use to write into
|
| 431 |
|
|
// our cache. Hence, this is the write address into our cache block
|
| 432 |
|
|
// RAM.
|
| 433 |
|
|
initial wraddr = 0;
|
| 434 |
176 |
dgisselq |
always @(posedge i_clk)
|
| 435 |
209 |
dgisselq |
if ((o_wb_cyc)&&(i_wb_ack)&&(!last_ack))
|
| 436 |
|
|
wraddr <= wraddr + 1'b1;
|
| 437 |
|
|
else if (!o_wb_cyc)
|
| 438 |
|
|
wraddr <= { lastpc[(CW+1):LS+2], {(LS){1'b0}} };
|
| 439 |
|
|
|
| 440 |
|
|
//
|
| 441 |
|
|
// The wishbone request address. This has meaning anytime o_wb_stb
|
| 442 |
|
|
// is active, and needs to be incremented any time an address is
|
| 443 |
|
|
// accepted--WITH THE EXCEPTION OF THE LAST ADDRESS. We need to keep
|
| 444 |
|
|
// this steady for that last address, unless the last address returns
|
| 445 |
|
|
// a bus error. In that case, the whole cache line will be marked as
|
| 446 |
|
|
// invalid--but we'll need the value of this register to know how
|
| 447 |
|
|
// to do that propertly.
|
| 448 |
|
|
initial o_wb_addr = {(AW){1'b0}};
|
| 449 |
176 |
dgisselq |
always @(posedge i_clk)
|
| 450 |
209 |
dgisselq |
if ((o_wb_stb)&&(!i_wb_stall)&&(!last_addr))
|
| 451 |
|
|
o_wb_addr[(LS-1):0] <= o_wb_addr[(LS-1):0]+1'b1;
|
| 452 |
|
|
else if (!o_wb_cyc)
|
| 453 |
|
|
o_wb_addr <= { lastpc[(AW+1):LS+2], {(LS){1'b0}} };
|
| 454 |
176 |
dgisselq |
|
| 455 |
209 |
dgisselq |
// Since it is impossible to initialize an array, our cache will start
|
| 456 |
|
|
// up cache uninitialized. We'll also never get a valid ack without
|
| 457 |
|
|
// cyc being active, although we might get one on the clock after
|
| 458 |
|
|
// cyc was active--so we need to test and gate on whether o_wb_cyc
|
| 459 |
|
|
// is true.
|
| 460 |
|
|
//
|
| 461 |
|
|
// wraddr will advance forward on every clock cycle where ack is true,
|
| 462 |
|
|
// hence we don't need to check i_wb_ack here. This will work because
|
| 463 |
|
|
// multiple writes to the same address, ending with a valid write,
|
| 464 |
|
|
// will always yield the valid write's value only after our bus cycle
|
| 465 |
|
|
// is over.
|
| 466 |
69 |
dgisselq |
always @(posedge i_clk)
|
| 467 |
209 |
dgisselq |
if (o_wb_cyc)
|
| 468 |
|
|
cache[wraddr] <= i_wb_data;
|
| 469 |
69 |
dgisselq |
|
| 470 |
|
|
// VMask ... is a section loaded?
|
| 471 |
209 |
dgisselq |
// Note "svmask". It's purpose is to delay the valid_mask setting by
|
| 472 |
|
|
// one clock, so that we can insure the right value of the cache is
|
| 473 |
|
|
// loaded before declaring that the cache line is valid. Without
|
| 474 |
|
|
// this, the cache line would get read, and the instruction would
|
| 475 |
|
|
// read from the last cache line.
|
| 476 |
|
|
initial valid_mask = 0;
|
| 477 |
176 |
dgisselq |
initial svmask = 1'b0;
|
| 478 |
69 |
dgisselq |
always @(posedge i_clk)
|
| 479 |
209 |
dgisselq |
if ((i_reset)||(i_clear_cache))
|
| 480 |
|
|
begin
|
| 481 |
|
|
valid_mask <= 0;
|
| 482 |
|
|
svmask<= 1'b0;
|
| 483 |
|
|
end else begin
|
| 484 |
|
|
svmask <= ((o_wb_cyc)&&(i_wb_ack)&&(last_ack)&&(!bus_abort));
|
| 485 |
|
|
|
| 486 |
|
|
if (svmask)
|
| 487 |
|
|
valid_mask[saddr] <= (!bus_abort);
|
| 488 |
|
|
if ((!o_wb_cyc)&&(needload))
|
| 489 |
|
|
valid_mask[lastpc[(CW+1):LS+2]] <= 1'b0;
|
| 490 |
|
|
`ifdef NOT_YET_READY
|
| 491 |
|
|
//
|
| 492 |
|
|
// MMU code
|
| 493 |
|
|
//
|
| 494 |
|
|
if (mmu_inval)
|
| 495 |
|
|
valid_mask[mmu_mskadr] <= 1'b0;
|
| 496 |
|
|
`endif
|
| 497 |
|
|
end
|
| 498 |
|
|
|
| 499 |
|
|
always @(posedge i_clk)
|
| 500 |
|
|
if ((o_wb_cyc)&&(i_wb_ack))
|
| 501 |
|
|
saddr <= wraddr[(CW-1):LS];
|
| 502 |
|
|
// MMU code
|
| 503 |
|
|
//
|
| 504 |
|
|
//
|
| 505 |
|
|
`ifdef NOT_YET_READY
|
| 506 |
|
|
parameter [0:0] USE_MMU = 1'b1;
|
| 507 |
|
|
generate if (USE_MMU)
|
| 508 |
|
|
begin
|
| 509 |
|
|
reg [(PAW-CW-1):0] ptag [0:((1<<(LGLINES))-1)];
|
| 510 |
|
|
reg mmu_pre_inval, r_mmu_inval;
|
| 511 |
|
|
reg [(PAW-CW-1):0] mmu_pre_tag, mmu_pre_padr;
|
| 512 |
|
|
reg [(CW-LS-1):0] r_mmu_mskadr;
|
| 513 |
|
|
|
| 514 |
|
|
initial mmu_pre_inval = 0;
|
| 515 |
|
|
initial mmu_pre_tag = 0;
|
| 516 |
|
|
initial mmu_pre_padr = 0;
|
| 517 |
|
|
initial mmu_pre2_inval = 0;
|
| 518 |
|
|
initial mmu_pre2_mskadr = 0;
|
| 519 |
|
|
|
| 520 |
|
|
always @(posedge i_clk)
|
| 521 |
|
|
if ((o_wb_cyc)&&(!last_addr)&&(i_mmu_ack))
|
| 522 |
|
|
ptag[i_mmu_paddr[(CW-1):LS]] <= i_mmu_paddr[(PAW-1):CW];
|
| 523 |
|
|
|
| 524 |
|
|
always @(posedge i_clk)
|
| 525 |
|
|
if (i_reset)
|
| 526 |
176 |
dgisselq |
begin
|
| 527 |
209 |
dgisselq |
mmu_pre_inval <= 0;
|
| 528 |
|
|
r_mmu_inval <= 0;
|
| 529 |
|
|
end else begin
|
| 530 |
|
|
mmu_pre_inval <= (i_mmu_ack)&&(i_mmu_we);
|
| 531 |
|
|
r_mmu_inval <= (mmu_pre_inval)&&(mmu_pre_inval)
|
| 532 |
|
|
&&(mmu_pre_tag == mmu_pre_paddr);
|
| 533 |
176 |
dgisselq |
end
|
| 534 |
209 |
dgisselq |
|
| 535 |
|
|
always @(posedge i_clk)
|
| 536 |
|
|
mmu_pre_tag <= ptag[i_mmu_paddr[(CW-1):LS]];
|
| 537 |
|
|
|
| 538 |
|
|
always @(posedge i_clk)
|
| 539 |
|
|
begin
|
| 540 |
|
|
mmu_pre_padr <= i_mmu_paddr[(PAW-1):CW];
|
| 541 |
|
|
|
| 542 |
|
|
r_mmu_mskadr <= mmu_pre_padr[(PAW-LS-1):(CW-LS)];
|
| 543 |
118 |
dgisselq |
end
|
| 544 |
69 |
dgisselq |
|
| 545 |
209 |
dgisselq |
assign mmu_inval = r_mmu_inval;
|
| 546 |
|
|
assign mmu_mskadr = r_mmu_mskadr;
|
| 547 |
|
|
end else begin
|
| 548 |
|
|
assign mmu_inval = 0;
|
| 549 |
|
|
assign mmu_mskadr = 0;
|
| 550 |
|
|
end endgenerate
|
| 551 |
|
|
`endif
|
| 552 |
|
|
|
| 553 |
|
|
/////////////////////////////////////////////////
|
| 554 |
|
|
//
|
| 555 |
|
|
// Handle bus errors here. If a bus read request
|
| 556 |
|
|
// returns an error, then we'll mark the entire
|
| 557 |
|
|
// line as having a (valid) illegal value.
|
| 558 |
|
|
//
|
| 559 |
|
|
/////////////////////////////////////////////////
|
| 560 |
|
|
//
|
| 561 |
|
|
//
|
| 562 |
|
|
//
|
| 563 |
|
|
//
|
| 564 |
69 |
dgisselq |
initial illegal_cache = 0;
|
| 565 |
71 |
dgisselq |
initial illegal_valid = 0;
|
| 566 |
69 |
dgisselq |
always @(posedge i_clk)
|
| 567 |
209 |
dgisselq |
if ((i_reset)||(i_clear_cache))
|
| 568 |
|
|
begin
|
| 569 |
|
|
illegal_cache <= 0;
|
| 570 |
|
|
illegal_valid <= 0;
|
| 571 |
|
|
end else if ((o_wb_cyc)&&(i_wb_err))
|
| 572 |
|
|
begin
|
| 573 |
|
|
illegal_cache <= o_wb_addr[(AW-1):LS];
|
| 574 |
|
|
illegal_valid <= 1'b1;
|
| 575 |
|
|
end
|
| 576 |
|
|
|
| 577 |
|
|
initial o_illegal = 1'b0;
|
| 578 |
|
|
always @(posedge i_clk)
|
| 579 |
|
|
if ((i_reset)||(i_clear_cache)||(i_new_pc))
|
| 580 |
|
|
o_illegal <= 1'b0;
|
| 581 |
|
|
else if ((o_illegal)||((o_valid)&&(i_stall_n)))
|
| 582 |
|
|
o_illegal <= 1'b0;
|
| 583 |
|
|
else
|
| 584 |
|
|
o_illegal <= (illegal_valid)
|
| 585 |
|
|
&&(illegal_cache == lastpc[(AW+1):LS+2]);
|
| 586 |
|
|
|
| 587 |
|
|
`ifdef FORMAL
|
| 588 |
|
|
//
|
| 589 |
|
|
//
|
| 590 |
|
|
// Generic setup
|
| 591 |
|
|
//
|
| 592 |
|
|
//
|
| 593 |
|
|
`ifdef PFCACHE
|
| 594 |
|
|
`define ASSUME assume
|
| 595 |
|
|
`else
|
| 596 |
|
|
`define ASSUME assert
|
| 597 |
|
|
`define STEP_CLOCK
|
| 598 |
|
|
`endif
|
| 599 |
|
|
|
| 600 |
|
|
// Keep track of a flag telling us whether or not $past()
|
| 601 |
|
|
// will return valid results
|
| 602 |
|
|
reg f_past_valid;
|
| 603 |
|
|
initial f_past_valid = 1'b0;
|
| 604 |
|
|
always @(posedge i_clk)
|
| 605 |
|
|
f_past_valid = 1'b1;
|
| 606 |
|
|
always @(*)
|
| 607 |
|
|
if (!f_past_valid)
|
| 608 |
|
|
`ASSUME(i_reset);
|
| 609 |
|
|
|
| 610 |
|
|
/////////////////////////////////////////////////
|
| 611 |
|
|
//
|
| 612 |
|
|
//
|
| 613 |
|
|
// Assumptions about our inputs
|
| 614 |
|
|
//
|
| 615 |
|
|
//
|
| 616 |
|
|
/////////////////////////////////////////////////
|
| 617 |
|
|
|
| 618 |
|
|
|
| 619 |
|
|
`ifdef PFCACHE
|
| 620 |
|
|
//
|
| 621 |
|
|
// Assume that resets, new-pc commands, and clear-cache commands
|
| 622 |
|
|
// are never more than pulses--one clock wide at most.
|
| 623 |
|
|
//
|
| 624 |
|
|
// It may be that the CPU treats us differently. We'll only assume
|
| 625 |
|
|
// our solver to this here.
|
| 626 |
|
|
always @(posedge i_clk)
|
| 627 |
|
|
if (!f_past_valid)
|
| 628 |
|
|
begin
|
| 629 |
|
|
if ($past(i_reset))
|
| 630 |
|
|
assume(!i_reset);
|
| 631 |
|
|
if ($past(i_new_pc))
|
| 632 |
|
|
assume(!i_new_pc);
|
| 633 |
|
|
if ($past(i_clear_cache))
|
| 634 |
|
|
assume(!i_clear_cache);
|
| 635 |
|
|
end
|
| 636 |
|
|
`endif
|
| 637 |
|
|
|
| 638 |
|
|
//
|
| 639 |
|
|
// Assume we start from a reset condition
|
| 640 |
|
|
initial `ASSUME(i_reset);
|
| 641 |
|
|
|
| 642 |
|
|
// Assume that any reset is either accompanied by a new address,
|
| 643 |
|
|
// or a new address immediately follows it.
|
| 644 |
|
|
always @(posedge i_clk)
|
| 645 |
|
|
if ((f_past_valid)&&($past(i_reset)))
|
| 646 |
|
|
`ASSUME(i_new_pc);
|
| 647 |
|
|
//
|
| 648 |
|
|
// Let's make some assumptions about how long it takes our
|
| 649 |
|
|
// phantom bus and phantom CPU to respond.
|
| 650 |
|
|
//
|
| 651 |
|
|
// These delays need to be long enough to flush out any potential
|
| 652 |
|
|
// errors, yet still short enough that the formal method doesn't
|
| 653 |
|
|
// take forever to solve.
|
| 654 |
|
|
//
|
| 655 |
|
|
localparam F_CPU_DELAY = 4;
|
| 656 |
|
|
reg [4:0] f_cpu_delay;
|
| 657 |
|
|
|
| 658 |
|
|
// Now, let's repeat this bit but now looking at the delay the CPU
|
| 659 |
|
|
// takes to accept an instruction.
|
| 660 |
|
|
always @(posedge i_clk)
|
| 661 |
|
|
// If no instruction is ready, then keep our counter at zero
|
| 662 |
|
|
if ((!o_valid)||(i_stall_n))
|
| 663 |
|
|
f_cpu_delay <= 0;
|
| 664 |
|
|
else
|
| 665 |
|
|
// Otherwise, count the clocks the CPU takes to respond
|
| 666 |
|
|
f_cpu_delay <= f_cpu_delay + 1'b1;
|
| 667 |
|
|
|
| 668 |
|
|
`ifdef PFCACHE
|
| 669 |
|
|
always @(posedge i_clk)
|
| 670 |
|
|
assume(f_cpu_delay < F_CPU_DELAY);
|
| 671 |
|
|
`endif
|
| 672 |
|
|
|
| 673 |
|
|
always @(posedge i_clk)
|
| 674 |
|
|
if ($past(i_reset || i_clear_cache))
|
| 675 |
|
|
assume(i_stall_n);
|
| 676 |
|
|
else if ($past(i_stall_n && !o_valid))
|
| 677 |
|
|
assume(i_stall_n);
|
| 678 |
|
|
else if (i_new_pc)
|
| 679 |
|
|
assume(i_stall_n);
|
| 680 |
|
|
|
| 681 |
|
|
/////////////////////////////////////////////////
|
| 682 |
|
|
//
|
| 683 |
|
|
//
|
| 684 |
|
|
// Assertions about our outputs
|
| 685 |
|
|
//
|
| 686 |
|
|
//
|
| 687 |
|
|
/////////////////////////////////////////////////
|
| 688 |
|
|
|
| 689 |
|
|
localparam F_LGDEPTH=LS+1;
|
| 690 |
|
|
wire [(F_LGDEPTH-1):0] f_nreqs, f_nacks, f_outstanding;
|
| 691 |
|
|
|
| 692 |
|
|
fwb_master #(.AW(AW), .DW(BUSW), .F_LGDEPTH(F_LGDEPTH),
|
| 693 |
|
|
.F_MAX_STALL(2), .F_MAX_ACK_DELAY(3),
|
| 694 |
|
|
.F_MAX_REQUESTS(1<<LS), .F_OPT_SOURCE(1),
|
| 695 |
|
|
.F_OPT_RMW_BUS_OPTION(0),
|
| 696 |
|
|
.F_OPT_DISCONTINUOUS(0))
|
| 697 |
|
|
f_wbm(i_clk, i_reset,
|
| 698 |
|
|
o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data, 4'h0,
|
| 699 |
|
|
i_wb_ack, i_wb_stall, i_wb_data, i_wb_err,
|
| 700 |
|
|
f_nreqs, f_nacks, f_outstanding);
|
| 701 |
|
|
|
| 702 |
|
|
// writes are also illegal for a prefetch.
|
| 703 |
|
|
always @(posedge i_clk)
|
| 704 |
|
|
if (o_wb_stb)
|
| 705 |
|
|
assert(!o_wb_we);
|
| 706 |
|
|
|
| 707 |
|
|
always @(posedge i_clk)
|
| 708 |
|
|
begin
|
| 709 |
|
|
assert(f_nreqs <= (1<<LS));
|
| 710 |
|
|
if ((o_wb_cyc)&&(o_wb_stb))
|
| 711 |
|
|
assert(f_nreqs == o_wb_addr[(LS-1):0]);
|
| 712 |
|
|
if ((f_past_valid)&&($past(o_wb_cyc))
|
| 713 |
|
|
&&(!o_wb_stb)&&(!$past(i_wb_err || i_reset || i_clear_cache)))
|
| 714 |
|
|
assert(f_nreqs == (1<<LS));
|
| 715 |
|
|
end
|
| 716 |
|
|
|
| 717 |
|
|
always @(posedge i_clk)
|
| 718 |
|
|
if (f_past_valid)
|
| 719 |
|
|
begin
|
| 720 |
|
|
if ((!o_wb_cyc)&&($past(o_wb_cyc))&&(!$past(i_reset))
|
| 721 |
|
|
&&(!$past(i_clear_cache)) &&(!$past(i_wb_err)))
|
| 722 |
|
|
assert(f_nacks == (1<<LS));
|
| 723 |
|
|
else if (o_wb_cyc)
|
| 724 |
|
|
assert(f_nacks[(LS-1):0] == wraddr[(LS-1):0]);
|
| 725 |
|
|
end
|
| 726 |
|
|
|
| 727 |
|
|
// The last-ack line
|
| 728 |
|
|
always @(posedge i_clk)
|
| 729 |
|
|
if (o_wb_cyc)
|
| 730 |
|
|
assert(last_ack == (f_nacks == ((1<<LS)-1)));
|
| 731 |
|
|
|
| 732 |
|
|
// The valid line for whats being read
|
| 733 |
|
|
always @(posedge i_clk)
|
| 734 |
|
|
if (o_wb_cyc)
|
| 735 |
|
|
assert(!valid_mask[o_wb_addr[CW-1:LS]]);
|
| 736 |
|
|
|
| 737 |
|
|
always @(posedge i_clk)
|
| 738 |
|
|
if ((illegal_valid)&&(o_wb_cyc))
|
| 739 |
|
|
assert(o_wb_addr[AW-1:LS] != illegal_cache);
|
| 740 |
|
|
|
| 741 |
|
|
reg [((1<<(LGLINES))-1):0] f_past_valid_mask;
|
| 742 |
|
|
initial f_past_valid_mask = 0;
|
| 743 |
|
|
always @(posedge i_clk)
|
| 744 |
|
|
f_past_valid_mask = valid_mask;
|
| 745 |
|
|
|
| 746 |
|
|
always @(posedge i_clk)
|
| 747 |
|
|
if ((o_valid)&&($past(!o_valid || !o_illegal)))
|
| 748 |
|
|
assert((!o_wb_cyc)
|
| 749 |
|
|
||(o_wb_addr[AW-1:LS] != o_pc[AW+1:LS+2]));
|
| 750 |
|
|
always @(posedge i_clk)
|
| 751 |
|
|
if (illegal_valid)
|
| 752 |
|
|
begin
|
| 753 |
|
|
assert((!o_wb_cyc)
|
| 754 |
|
|
||(o_wb_addr[AW-1:LS] != illegal_cache));
|
| 755 |
|
|
|
| 756 |
|
|
// The illegal cache line should never be valid within our
|
| 757 |
|
|
// cache
|
| 758 |
|
|
assert((!valid_mask[illegal_cache[CW-1:LS]])
|
| 759 |
|
|
||(cache_tags[illegal_cache[CW-1:LS]]
|
| 760 |
|
|
!= illegal_cache[AW-1:CW]));
|
| 761 |
|
|
end
|
| 762 |
|
|
|
| 763 |
|
|
/////////////////////////////////////////////////////
|
| 764 |
|
|
//
|
| 765 |
|
|
//
|
| 766 |
|
|
// Assertions about our return responses to the CPU
|
| 767 |
|
|
//
|
| 768 |
|
|
//
|
| 769 |
|
|
/////////////////////////////////////////////////////
|
| 770 |
|
|
|
| 771 |
|
|
|
| 772 |
|
|
always @(posedge i_clk)
|
| 773 |
|
|
if ((f_past_valid)&&($past(o_wb_cyc)))
|
| 774 |
|
|
assert(o_wb_addr[(AW-1):LS] == $past(o_wb_addr[(AW-1):LS]));
|
| 775 |
|
|
|
| 776 |
|
|
// Consider it invalid to present the CPU with the same instruction
|
| 777 |
|
|
// twice in a row.
|
| 778 |
|
|
always @(posedge i_clk)
|
| 779 |
|
|
if ((f_past_valid)&&($past(o_valid))&&($past(i_stall_n))&&(o_valid))
|
| 780 |
|
|
assert(o_pc != $past(o_pc));
|
| 781 |
|
|
|
| 782 |
|
|
always @(posedge i_clk)
|
| 783 |
|
|
if (o_valid)
|
| 784 |
|
|
begin
|
| 785 |
|
|
if (!o_illegal)
|
| 786 |
71 |
dgisselq |
begin
|
| 787 |
209 |
dgisselq |
assert(cache_tags[o_pc[(CW+1):LS+2]] == o_pc[(AW+1):CW+2]);
|
| 788 |
|
|
assert(valid_mask[o_pc[(CW+1):LS+2]] || (o_illegal));
|
| 789 |
|
|
assert(o_insn == cache[o_pc[(CW+1):2]]);
|
| 790 |
|
|
assert((!illegal_valid)
|
| 791 |
|
|
||((illegal_cache != o_pc[(AW+1):LS+2])));
|
| 792 |
71 |
dgisselq |
end
|
| 793 |
69 |
dgisselq |
|
| 794 |
209 |
dgisselq |
assert(o_illegal == ($past(illegal_valid)
|
| 795 |
|
|
&&($past(illegal_cache)== o_pc[(AW+1):LS+2])));
|
| 796 |
|
|
end
|
| 797 |
|
|
|
| 798 |
|
|
always @(*)
|
| 799 |
|
|
begin
|
| 800 |
|
|
`ASSUME(i_pc[1:0] == 2'b00);
|
| 801 |
|
|
assert(o_pc[1:0] == 2'b00);
|
| 802 |
|
|
assert(r_pc[1:0] == 2'b00);
|
| 803 |
|
|
assert(r_lastpc[1:0] == 2'b00);
|
| 804 |
|
|
end
|
| 805 |
|
|
|
| 806 |
|
|
reg [(AW+1):0] f_next_pc;
|
| 807 |
|
|
|
| 808 |
69 |
dgisselq |
always @(posedge i_clk)
|
| 809 |
209 |
dgisselq |
if ((f_past_valid)&&(!$past(i_reset)))
|
| 810 |
|
|
begin
|
| 811 |
|
|
if (isrc)
|
| 812 |
|
|
assert(lastpc == r_pc);
|
| 813 |
71 |
dgisselq |
else
|
| 814 |
209 |
dgisselq |
assert(lastpc + 4== r_pc);
|
| 815 |
|
|
end
|
| 816 |
69 |
dgisselq |
|
| 817 |
209 |
dgisselq |
always @(posedge i_clk)
|
| 818 |
|
|
if (i_new_pc)
|
| 819 |
|
|
f_next_pc <= { i_pc[AW+1:2] + 1'b1, 2'b00 };
|
| 820 |
|
|
else if ((i_stall_n)&&(r_v))
|
| 821 |
|
|
f_next_pc <= { i_pc[AW+1:2] + 1'b1, 2'b00 };
|
| 822 |
|
|
always @(*)
|
| 823 |
|
|
if (!i_new_pc)
|
| 824 |
|
|
`ASSUME(i_pc == f_next_pc);
|
| 825 |
|
|
|
| 826 |
|
|
always @(posedge i_clk)
|
| 827 |
|
|
if ((f_past_valid)&&(o_valid)&&($past(o_valid))
|
| 828 |
|
|
&&(!$past(i_reset))
|
| 829 |
|
|
&&(!$past(i_new_pc))
|
| 830 |
|
|
&&(!$past(i_stall_n))
|
| 831 |
|
|
&&(!o_illegal))
|
| 832 |
|
|
begin
|
| 833 |
|
|
assert(cache_tags[o_pc[(CW+1):LS+2]] == o_pc[(AW+1):CW+2]);
|
| 834 |
|
|
end
|
| 835 |
|
|
|
| 836 |
|
|
//
|
| 837 |
|
|
// If an instruction is accepted, we should *always* move on to another
|
| 838 |
|
|
// instruction. The only exception is following an i_new_pc (or
|
| 839 |
|
|
// other invalidator), at which point the next instruction should
|
| 840 |
|
|
// be invalid.
|
| 841 |
|
|
always @(posedge i_clk)
|
| 842 |
|
|
if ((f_past_valid)&&($past(o_valid))&&($past(i_stall_n)))
|
| 843 |
|
|
begin
|
| 844 |
|
|
// Should always advance the instruction
|
| 845 |
|
|
assert((!o_valid)||(o_pc != $past(o_pc)));
|
| 846 |
|
|
end
|
| 847 |
|
|
|
| 848 |
|
|
//
|
| 849 |
|
|
// Once an instruction becomes valid, it should never become invalid
|
| 850 |
|
|
// unless there's been a request for a new instruction.
|
| 851 |
|
|
always @(posedge i_clk)
|
| 852 |
|
|
if ((f_past_valid)&&($past(!i_reset && !i_clear_cache && !i_new_pc))
|
| 853 |
|
|
&&($past(o_valid && !i_stall_n))
|
| 854 |
|
|
&&(!i_new_pc))
|
| 855 |
|
|
begin
|
| 856 |
|
|
if ((!$past(o_illegal))&&(!$past(o_wb_cyc && i_wb_err)))
|
| 857 |
|
|
begin
|
| 858 |
|
|
assert(o_valid);
|
| 859 |
|
|
assert($stable(o_illegal));
|
| 860 |
|
|
assert($stable(o_insn));
|
| 861 |
|
|
end else
|
| 862 |
|
|
assert((o_illegal)||(!o_valid));
|
| 863 |
|
|
end
|
| 864 |
|
|
`ifdef PFCACHE
|
| 865 |
|
|
/////////////////////////////////////////////////////
|
| 866 |
|
|
//
|
| 867 |
|
|
//
|
| 868 |
|
|
// Assertions associated with a response to a known
|
| 869 |
|
|
// address request
|
| 870 |
|
|
//
|
| 871 |
|
|
//
|
| 872 |
|
|
/////////////////////////////////////////////////////
|
| 873 |
|
|
|
| 874 |
|
|
|
| 875 |
|
|
(* anyconst *) reg [AW:0] f_const_addr;
|
| 876 |
|
|
(* anyconst *) reg [BUSW-1:0] f_const_insn;
|
| 877 |
|
|
|
| 878 |
|
|
wire f_this_pc, f_this_insn, f_this_data, f_this_line,
|
| 879 |
|
|
f_this_ack, f_this_tag; // f_this_addr;
|
| 880 |
|
|
assign f_this_pc = (o_pc == { f_const_addr[AW-1:0], 2'b00 });
|
| 881 |
|
|
// assign f_this_addr = (o_wb_addr == f_const_addr[AW-1:0] );
|
| 882 |
|
|
assign f_this_insn = (o_insn == f_const_insn);
|
| 883 |
|
|
assign f_this_data = (i_wb_data == f_const_insn);
|
| 884 |
|
|
assign f_this_line = (o_wb_addr[AW-1:LS] == f_const_addr[AW-1:LS]);
|
| 885 |
|
|
assign f_this_ack = (f_this_line)&&(f_nacks == f_const_addr[LS-1:0]);
|
| 886 |
|
|
assign f_this_tag = (tagval == f_const_addr[AW-1:CW]);
|
| 887 |
|
|
|
| 888 |
|
|
always @(posedge i_clk)
|
| 889 |
|
|
if ((o_valid)&&(f_this_pc)&&(!$past(o_illegal)))
|
| 890 |
|
|
begin
|
| 891 |
|
|
assert(o_illegal == f_const_addr[AW]);
|
| 892 |
|
|
if (!o_illegal)
|
| 893 |
|
|
begin
|
| 894 |
|
|
assert(f_this_insn);
|
| 895 |
|
|
assert(f_this_tag);
|
| 896 |
|
|
end
|
| 897 |
|
|
end
|
| 898 |
|
|
|
| 899 |
|
|
always @(*)
|
| 900 |
|
|
if ((valid_mask[f_const_addr[CW-1:LS]])
|
| 901 |
|
|
&&(cache_tags[f_const_addr[(CW-1):LS]]==f_const_addr[AW-1:CW]))
|
| 902 |
|
|
assert(f_const_insn == cache[f_const_addr[CW-1:0]]);
|
| 903 |
|
|
else if ((o_wb_cyc)&&(o_wb_addr[AW-1:LS] == f_const_addr[AW-1:LS])
|
| 904 |
|
|
&&(f_nacks > f_const_addr[LS-1:0]))
|
| 905 |
|
|
begin
|
| 906 |
|
|
assert(f_const_insn == cache[f_const_addr[CW-1:0]]);
|
| 907 |
|
|
end
|
| 908 |
|
|
|
| 909 |
|
|
always @(*)
|
| 910 |
|
|
if (o_wb_cyc)
|
| 911 |
|
|
assert(wraddr[CW-1:LS] == o_wb_addr[CW-1:LS]);
|
| 912 |
|
|
|
| 913 |
|
|
always @(*)
|
| 914 |
|
|
if (!f_const_addr[AW])
|
| 915 |
|
|
assert((!illegal_valid)
|
| 916 |
|
|
||(illegal_cache != f_const_addr[AW-1:LS]));
|
| 917 |
|
|
else
|
| 918 |
|
|
assert((cache_tags[f_const_addr[CW-1:LS]]!=f_const_addr[AW-1:CW])
|
| 919 |
|
|
||(!valid_mask[f_const_addr[CW-1:LS]]));
|
| 920 |
|
|
|
| 921 |
|
|
always @(*)
|
| 922 |
|
|
if ((f_this_line)&&(o_wb_cyc))
|
| 923 |
|
|
begin
|
| 924 |
|
|
if (f_const_addr[AW])
|
| 925 |
|
|
assume(!i_wb_ack);
|
| 926 |
|
|
else
|
| 927 |
|
|
assume(!i_wb_err);
|
| 928 |
|
|
|
| 929 |
|
|
if ((f_this_ack)&&(i_wb_ack))
|
| 930 |
|
|
assume(f_this_data);
|
| 931 |
|
|
end
|
| 932 |
|
|
|
| 933 |
|
|
always @(*)
|
| 934 |
|
|
if ((f_this_line)&&(!f_const_addr[AW]))
|
| 935 |
|
|
assume(!i_wb_err);
|
| 936 |
|
|
|
| 937 |
|
|
always @(*)
|
| 938 |
|
|
if (!f_const_addr[AW])
|
| 939 |
|
|
assume((!valid_mask[f_const_addr[CW-1:LS]])
|
| 940 |
|
|
||(cache_tags[f_const_addr[CW-1:LS]] != f_const_addr[AW-1:CW]));
|
| 941 |
|
|
`endif
|
| 942 |
|
|
|
| 943 |
|
|
//
|
| 944 |
|
|
//
|
| 945 |
|
|
// Cover properties
|
| 946 |
|
|
//
|
| 947 |
|
|
//
|
| 948 |
|
|
reg f_valid_legal;
|
| 949 |
|
|
always @(*)
|
| 950 |
|
|
f_valid_legal = o_valid && (!o_illegal);
|
| 951 |
|
|
always @(posedge i_clk) // Trace 0
|
| 952 |
|
|
cover((o_valid)&&( o_illegal));
|
| 953 |
|
|
always @(posedge i_clk) // Trace 1
|
| 954 |
|
|
cover(f_valid_legal);
|
| 955 |
|
|
always @(posedge i_clk) // Trace 2
|
| 956 |
|
|
cover((f_valid_legal)
|
| 957 |
|
|
&&($past(!o_valid && !i_new_pc))
|
| 958 |
|
|
&&($past(i_new_pc,2)));
|
| 959 |
|
|
always @(posedge i_clk) // Trace 3
|
| 960 |
|
|
cover((f_valid_legal)&&($past(i_stall_n))&&($past(i_new_pc)));
|
| 961 |
|
|
always @(posedge i_clk) // Trace 4
|
| 962 |
|
|
cover((f_valid_legal)&&($past(f_valid_legal && i_stall_n)));
|
| 963 |
|
|
always @(posedge i_clk) // Trace 5
|
| 964 |
|
|
cover((f_valid_legal)
|
| 965 |
|
|
&&($past(f_valid_legal && i_stall_n))
|
| 966 |
|
|
&&($past(f_valid_legal && i_stall_n,2))
|
| 967 |
|
|
&&($past(f_valid_legal && i_stall_n,3)));
|
| 968 |
|
|
always @(posedge i_clk) // Trace 6
|
| 969 |
|
|
cover((f_valid_legal)
|
| 970 |
|
|
&&($past(f_valid_legal && i_stall_n))
|
| 971 |
|
|
&&($past(f_valid_legal && i_stall_n,2))
|
| 972 |
|
|
&&($past(!o_illegal && i_stall_n && i_new_pc,3))
|
| 973 |
|
|
&&($past(f_valid_legal && i_stall_n,4))
|
| 974 |
|
|
&&($past(f_valid_legal && i_stall_n,5))
|
| 975 |
|
|
&&($past(f_valid_legal && i_stall_n,6)));
|
| 976 |
|
|
|
| 977 |
|
|
`endif // FORMAL
|
| 978 |
69 |
dgisselq |
endmodule
|