1 |
2 |
dgisselq |
///////////////////////////////////////////////////////////////////////////////
|
2 |
|
|
//
|
3 |
|
|
// Filename: zipcpu.v
|
4 |
|
|
//
|
5 |
|
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
6 |
|
|
//
|
7 |
|
|
// Purpose: This is the top level module holding the core of the Zip CPU
|
8 |
|
|
// together. The Zip CPU is designed to be as simple as possible.
|
9 |
|
|
// The instruction set is about as RISC as you can get, there are
|
10 |
|
|
// only 16 instruction types supported (of which one isn't yet
|
11 |
|
|
// supported ...) Please see the accompanying iset.html file
|
12 |
|
|
// for a description of these instructions.
|
13 |
|
|
//
|
14 |
|
|
// All instructions are 32-bits wide. All bus accesses, both
|
15 |
|
|
// address and data, are 32-bits over a wishbone bus.
|
16 |
|
|
//
|
17 |
|
|
// The Zip CPU is fully pipelined with the following pipeline stages:
|
18 |
|
|
//
|
19 |
|
|
// 1. Prefetch, returns the instruction from memory. On the
|
20 |
|
|
// Basys board that I'm working on, one instruction may be
|
21 |
|
|
// issued every 20 clocks or so, unless and until I implement a
|
22 |
|
|
// cache or local memory.
|
23 |
|
|
//
|
24 |
|
|
// 2. Instruction Decode
|
25 |
|
|
//
|
26 |
|
|
// 3. Read Operands
|
27 |
|
|
//
|
28 |
|
|
// 4. Apply Instruction
|
29 |
|
|
//
|
30 |
|
|
// 4. Write-back Results
|
31 |
|
|
//
|
32 |
|
|
// A lot of difficult work has been placed into the pipeline stall
|
33 |
|
|
// handling. My original proposal was not to allow pipeline stalls at all.
|
34 |
|
|
// The idea would be that the CPU would just run every clock and whatever
|
35 |
|
|
// stalled answer took place would just get fixed a clock or two later,
|
36 |
|
|
// meaning that the compiler could just schedule everything out.
|
37 |
|
|
// This idea died at the memory interface, which can take a variable
|
38 |
|
|
// amount of time to read or write any value, thus the whole CPU needed
|
39 |
|
|
// to stall on a stalled memory access.
|
40 |
|
|
//
|
41 |
|
|
// My next idea was to just let things complete. I.e., once an instrution
|
42 |
|
|
// starts, it continues to completion no matter what and we go on. This
|
43 |
|
|
// failed at writing the PC. If the PC gets written in something such as
|
44 |
|
|
// a MOV PC,PC+5 instruction, 3 (or however long the pipeline is) clocks
|
45 |
|
|
// later, if whether or not something happens in those clocks depends
|
46 |
|
|
// upon the instruction fetch filling the pipeline, then the CPU has a
|
47 |
|
|
// non-deterministic behavior.
|
48 |
|
|
//
|
49 |
|
|
// This leads to two possibilities: either *everything* stalls upon a
|
50 |
|
|
// stall condition, or partial results need to be destroyed before
|
51 |
|
|
// they are written. This is made more difficult by the fact that
|
52 |
|
|
// once a command is written to the memory unit, whether it be a
|
53 |
|
|
// read or a write, there is no undoing it--since peripherals on the
|
54 |
|
|
// bus may act upon the answer with whatever side effects they might
|
55 |
|
|
// have. (For example, writing a '1' to the interrupt register will
|
56 |
|
|
// clear certain interrupts ...) Further, since the memory ops depend
|
57 |
|
|
// upon conditions, the we'll need to wait for the condition codes to
|
58 |
|
|
// be available before executing a memory op. Thus, memory ops can
|
59 |
|
|
// proceed without stalling whenever either the previous instruction
|
60 |
|
|
// doesn't write the flags register, or when the memory instruction doesn't
|
61 |
|
|
// depend upon the flags register.
|
62 |
|
|
//
|
63 |
|
|
// The other possibility is that we leave independent instruction
|
64 |
|
|
// execution behind, so that the pipeline is always full and stalls,
|
65 |
|
|
// or moves forward, together on every clock.
|
66 |
|
|
//
|
67 |
|
|
// For now, we pick the first approach: independent instruction execution.
|
68 |
|
|
// Thus, if stage 2 stalls, stages 3-5 may still complete the instructions
|
69 |
|
|
// in their pipeline. This leaves another problem: what happens on a
|
70 |
|
|
// MOV -1+PC,PC instruction? There will be four instructions behind this
|
71 |
|
|
// one (or is it five?) that will need to be 'cancelled'. So here's
|
72 |
|
|
// the plan: Anything can be cancelled before the ALU/MEM stage,
|
73 |
|
|
// since memory ops cannot be canceled after being issued. Thus, the
|
74 |
|
|
// ALU/MEM stage must stall if any prior instruction is going to write
|
75 |
|
|
// the PC register (i.e. JMP).
|
76 |
|
|
//
|
77 |
|
|
// Further, let's define a "STALL" as a reason to not execute a stage
|
78 |
|
|
// due to some condition at or beyond the stage, and let's define
|
79 |
|
|
// a VALID flag to mean that this stage has completed. Thus, the clock
|
80 |
|
|
// enable for a stage is (STG[n-1]VALID)&&((~STG[n]VALID)||(~STG[n]STALL)).
|
81 |
|
|
// The ALU/MEM stages will also depend upon a master clock enable
|
82 |
|
|
// (~SLEEP) condition as well.
|
83 |
|
|
//
|
84 |
|
|
//
|
85 |
|
|
//
|
86 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
87 |
|
|
// Gisselquist Tecnology, LLC
|
88 |
|
|
//
|
89 |
|
|
///////////////////////////////////////////////////////////////////////////////
|
90 |
|
|
//
|
91 |
|
|
// Copyright (C) 2015, Gisselquist Technology, LLC
|
92 |
|
|
//
|
93 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
94 |
|
|
// modify it under the terms of the GNU General Public License as published
|
95 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
96 |
|
|
// your option) any later version.
|
97 |
|
|
//
|
98 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
99 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
100 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
101 |
|
|
// for more details.
|
102 |
|
|
//
|
103 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
104 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
105 |
|
|
//
|
106 |
|
|
//
|
107 |
|
|
///////////////////////////////////////////////////////////////////////////////
|
108 |
|
|
//
|
109 |
36 |
dgisselq |
// We can either pipeline our fetches, or issue one fetch at a time. Pipelined
|
110 |
|
|
// fetches are more complicated and therefore use more FPGA resources, while
|
111 |
|
|
// single fetches will cause the CPU to stall for about 5 stalls each
|
112 |
|
|
// instruction cycle, effectively reducing the instruction count per clock to
|
113 |
|
|
// about 0.2. However, the area cost may be worth it. Consider:
|
114 |
|
|
//
|
115 |
|
|
// Slice LUTs ZipSystem ZipCPU
|
116 |
|
|
// Single Fetching 2521 1734
|
117 |
|
|
// Pipelined fetching 2796 2046
|
118 |
|
|
//
|
119 |
38 |
dgisselq |
// `define OPT_SINGLE_FETCH
|
120 |
36 |
dgisselq |
//
|
121 |
|
|
//
|
122 |
|
|
//
|
123 |
25 |
dgisselq |
`define CPU_CC_REG 4'he
|
124 |
2 |
dgisselq |
`define CPU_PC_REG 4'hf
|
125 |
25 |
dgisselq |
`define CPU_TRAP_BIT 9
|
126 |
2 |
dgisselq |
`define CPU_BREAK_BIT 7
|
127 |
|
|
`define CPU_STEP_BIT 6
|
128 |
|
|
`define CPU_GIE_BIT 5
|
129 |
|
|
`define CPU_SLEEP_BIT 4
|
130 |
36 |
dgisselq |
// Compile time defines
|
131 |
38 |
dgisselq |
// (Currently unused)
|
132 |
|
|
// `define OPT_SINGLE_FETCH
|
133 |
|
|
// (Best path--define these!)
|
134 |
|
|
`define OPT_CONDITIONAL_FLAGS
|
135 |
48 |
dgisselq |
`define OPT_ILLEGAL_INSTRUCTION
|
136 |
|
|
`ifndef OPT_SINGLE_FETCH
|
137 |
|
|
// The following are pipeline optimization options.
|
138 |
|
|
// They make no sense in a single instruction fetch mode.
|
139 |
38 |
dgisselq |
`define OPT_PRECLEAR_BUS
|
140 |
|
|
`define OPT_EARLY_BRANCHING
|
141 |
|
|
`define OPT_PIPELINED_BUS_ACCESS
|
142 |
48 |
dgisselq |
`endif
|
143 |
2 |
dgisselq |
module zipcpu(i_clk, i_rst, i_interrupt,
|
144 |
|
|
// Debug interface
|
145 |
18 |
dgisselq |
i_halt, i_clear_pf_cache, i_dbg_reg, i_dbg_we, i_dbg_data,
|
146 |
|
|
o_dbg_stall, o_dbg_reg, o_dbg_cc,
|
147 |
2 |
dgisselq |
o_break,
|
148 |
|
|
// CPU interface to the wishbone bus
|
149 |
36 |
dgisselq |
o_wb_gbl_cyc, o_wb_gbl_stb,
|
150 |
|
|
o_wb_lcl_cyc, o_wb_lcl_stb,
|
151 |
|
|
o_wb_we, o_wb_addr, o_wb_data,
|
152 |
2 |
dgisselq |
i_wb_ack, i_wb_stall, i_wb_data,
|
153 |
36 |
dgisselq |
i_wb_err,
|
154 |
2 |
dgisselq |
// Accounting/CPU usage interface
|
155 |
9 |
dgisselq |
o_op_stall, o_pf_stall, o_i_count);
|
156 |
48 |
dgisselq |
parameter RESET_ADDRESS=32'h0100000, ADDRESS_WIDTH=24,
|
157 |
|
|
LGICACHE=6, AW=ADDRESS_WIDTH;
|
158 |
2 |
dgisselq |
input i_clk, i_rst, i_interrupt;
|
159 |
|
|
// Debug interface -- inputs
|
160 |
18 |
dgisselq |
input i_halt, i_clear_pf_cache;
|
161 |
2 |
dgisselq |
input [4:0] i_dbg_reg;
|
162 |
|
|
input i_dbg_we;
|
163 |
|
|
input [31:0] i_dbg_data;
|
164 |
|
|
// Debug interface -- outputs
|
165 |
|
|
output reg o_dbg_stall;
|
166 |
|
|
output reg [31:0] o_dbg_reg;
|
167 |
25 |
dgisselq |
output reg [1:0] o_dbg_cc;
|
168 |
2 |
dgisselq |
output wire o_break;
|
169 |
|
|
// Wishbone interface -- outputs
|
170 |
36 |
dgisselq |
output wire o_wb_gbl_cyc, o_wb_gbl_stb;
|
171 |
|
|
output wire o_wb_lcl_cyc, o_wb_lcl_stb, o_wb_we;
|
172 |
48 |
dgisselq |
output wire [(AW-1):0] o_wb_addr;
|
173 |
|
|
output wire [31:0] o_wb_data;
|
174 |
2 |
dgisselq |
// Wishbone interface -- inputs
|
175 |
|
|
input i_wb_ack, i_wb_stall;
|
176 |
|
|
input [31:0] i_wb_data;
|
177 |
36 |
dgisselq |
input i_wb_err;
|
178 |
2 |
dgisselq |
// Accounting outputs ... to help us count stalls and usage
|
179 |
9 |
dgisselq |
output wire o_op_stall;
|
180 |
2 |
dgisselq |
output wire o_pf_stall;
|
181 |
9 |
dgisselq |
output wire o_i_count;
|
182 |
2 |
dgisselq |
|
183 |
25 |
dgisselq |
|
184 |
2 |
dgisselq |
// Registers
|
185 |
|
|
reg [31:0] regset [0:31];
|
186 |
9 |
dgisselq |
|
187 |
|
|
// Condition codes
|
188 |
25 |
dgisselq |
reg [3:0] flags, iflags; // (TRAP,FPEN,BREAKEN,STEP,GIE,SLEEP ), V, N, C, Z
|
189 |
36 |
dgisselq |
wire [10:0] w_uflags, w_iflags;
|
190 |
25 |
dgisselq |
reg trap, break_en, step, gie, sleep;
|
191 |
38 |
dgisselq |
`ifdef OPT_ILLEGAL_INSTRUCTION
|
192 |
36 |
dgisselq |
reg ill_err;
|
193 |
38 |
dgisselq |
`else
|
194 |
|
|
wire ill_err;
|
195 |
36 |
dgisselq |
`endif
|
196 |
|
|
reg bus_err_flag;
|
197 |
2 |
dgisselq |
|
198 |
9 |
dgisselq |
// The master chip enable
|
199 |
|
|
wire master_ce;
|
200 |
2 |
dgisselq |
|
201 |
|
|
//
|
202 |
|
|
//
|
203 |
|
|
// PIPELINE STAGE #1 :: Prefetch
|
204 |
|
|
// Variable declarations
|
205 |
|
|
//
|
206 |
48 |
dgisselq |
reg [(AW-1):0] pf_pc;
|
207 |
25 |
dgisselq |
reg new_pc, op_break;
|
208 |
18 |
dgisselq |
wire clear_pipeline;
|
209 |
36 |
dgisselq |
assign clear_pipeline = new_pc || i_clear_pf_cache; // || op_break;
|
210 |
9 |
dgisselq |
|
211 |
|
|
wire dcd_stalled;
|
212 |
36 |
dgisselq |
wire pf_cyc, pf_stb, pf_we, pf_busy, pf_ack, pf_stall, pf_err;
|
213 |
48 |
dgisselq |
wire [(AW-1):0] pf_addr;
|
214 |
|
|
wire [31:0] pf_data;
|
215 |
|
|
wire [31:0] instruction;
|
216 |
|
|
wire [(AW-1):0] instruction_pc;
|
217 |
36 |
dgisselq |
wire pf_valid, instruction_gie, pf_illegal;
|
218 |
2 |
dgisselq |
|
219 |
|
|
//
|
220 |
|
|
//
|
221 |
|
|
// PIPELINE STAGE #2 :: Instruction Decode
|
222 |
|
|
// Variable declarations
|
223 |
|
|
//
|
224 |
|
|
//
|
225 |
25 |
dgisselq |
reg opvalid, opvalid_mem, opvalid_alu, op_wr_pc;
|
226 |
2 |
dgisselq |
wire op_stall, dcd_ce;
|
227 |
|
|
reg [3:0] dcdOp;
|
228 |
|
|
reg [4:0] dcdA, dcdB;
|
229 |
25 |
dgisselq |
reg dcdA_cc, dcdB_cc, dcdA_pc, dcdB_pc;
|
230 |
2 |
dgisselq |
reg [3:0] dcdF;
|
231 |
|
|
reg dcdA_rd, dcdA_wr, dcdB_rd, dcdvalid,
|
232 |
|
|
dcdM, dcdF_wr, dcd_gie, dcd_break;
|
233 |
48 |
dgisselq |
reg [(AW-1):0] dcd_pc;
|
234 |
2 |
dgisselq |
reg [23:0] r_dcdI;
|
235 |
48 |
dgisselq |
reg dcd_zI; // true if dcdI == 0
|
236 |
2 |
dgisselq |
wire dcdA_stall, dcdB_stall, dcdF_stall;
|
237 |
|
|
|
238 |
38 |
dgisselq |
`ifdef OPT_PRECLEAR_BUS
|
239 |
36 |
dgisselq |
reg dcd_clear_bus;
|
240 |
|
|
`endif
|
241 |
38 |
dgisselq |
`ifdef OPT_ILLEGAL_INSTRUCTION
|
242 |
36 |
dgisselq |
reg dcd_illegal;
|
243 |
|
|
`endif
|
244 |
38 |
dgisselq |
`ifdef OPT_EARLY_BRANCHING
|
245 |
48 |
dgisselq |
reg dcd_early_branch_stb, dcd_early_branch;
|
246 |
|
|
reg [(AW-1):0] dcd_branch_pc;
|
247 |
36 |
dgisselq |
`else
|
248 |
48 |
dgisselq |
wire dcd_early_branch_stb, dcd_early_branch;
|
249 |
|
|
wire [(AW-1):0] dcd_branch_pc;
|
250 |
36 |
dgisselq |
`endif
|
251 |
2 |
dgisselq |
|
252 |
|
|
|
253 |
|
|
//
|
254 |
|
|
//
|
255 |
|
|
// PIPELINE STAGE #3 :: Read Operands
|
256 |
|
|
// Variable declarations
|
257 |
|
|
//
|
258 |
|
|
//
|
259 |
|
|
//
|
260 |
|
|
// Now, let's read our operands
|
261 |
|
|
reg [4:0] alu_reg;
|
262 |
|
|
reg [3:0] opn;
|
263 |
|
|
reg [4:0] opR;
|
264 |
48 |
dgisselq |
reg [31:0] r_opA, r_opB;
|
265 |
|
|
reg [(AW-1):0] op_pc;
|
266 |
25 |
dgisselq |
wire [31:0] w_opA, w_opB;
|
267 |
2 |
dgisselq |
wire [31:0] opA_nowait, opB_nowait, opA, opB;
|
268 |
25 |
dgisselq |
reg opR_wr, opR_cc, opF_wr, op_gie,
|
269 |
2 |
dgisselq |
opA_rd, opB_rd;
|
270 |
36 |
dgisselq |
wire [10:0] opFl;
|
271 |
3 |
dgisselq |
reg [6:0] r_opF;
|
272 |
2 |
dgisselq |
wire [8:0] opF;
|
273 |
|
|
wire op_ce;
|
274 |
38 |
dgisselq |
`ifdef OPT_PRECLEAR_BUS
|
275 |
36 |
dgisselq |
reg op_clear_bus;
|
276 |
|
|
`endif
|
277 |
38 |
dgisselq |
`ifdef OPT_ILLEGAL_INSTRUCTION
|
278 |
36 |
dgisselq |
reg op_illegal;
|
279 |
|
|
`endif
|
280 |
2 |
dgisselq |
|
281 |
|
|
|
282 |
|
|
//
|
283 |
|
|
//
|
284 |
|
|
// PIPELINE STAGE #4 :: ALU / Memory
|
285 |
|
|
// Variable declarations
|
286 |
|
|
//
|
287 |
|
|
//
|
288 |
48 |
dgisselq |
reg [(AW-1):0] alu_pc;
|
289 |
2 |
dgisselq |
reg alu_pc_valid;;
|
290 |
|
|
wire alu_ce, alu_stall;
|
291 |
|
|
wire [31:0] alu_result;
|
292 |
|
|
wire [3:0] alu_flags;
|
293 |
|
|
wire alu_valid;
|
294 |
|
|
wire set_cond;
|
295 |
|
|
reg alu_wr, alF_wr, alu_gie;
|
296 |
38 |
dgisselq |
`ifdef OPT_ILLEGAL_INSTRUCTION
|
297 |
36 |
dgisselq |
reg alu_illegal;
|
298 |
38 |
dgisselq |
`else
|
299 |
|
|
wire alu_illegal;
|
300 |
36 |
dgisselq |
`endif
|
301 |
2 |
dgisselq |
|
302 |
|
|
|
303 |
|
|
|
304 |
|
|
wire mem_ce, mem_stalled;
|
305 |
38 |
dgisselq |
`ifdef OPT_PIPELINED_BUS_ACCESS
|
306 |
|
|
wire mem_pipe_stalled;
|
307 |
|
|
`endif
|
308 |
36 |
dgisselq |
wire mem_valid, mem_ack, mem_stall, mem_err, bus_err,
|
309 |
|
|
mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl, mem_we;
|
310 |
48 |
dgisselq |
wire [4:0] mem_wreg;
|
311 |
9 |
dgisselq |
|
312 |
48 |
dgisselq |
wire mem_busy, mem_rdbusy;
|
313 |
|
|
wire [(AW-1):0] mem_addr;
|
314 |
|
|
wire [31:0] mem_data, mem_result;
|
315 |
|
|
reg [4:0] mem_last_reg; // Last register result to go in
|
316 |
2 |
dgisselq |
|
317 |
|
|
|
318 |
|
|
|
319 |
|
|
//
|
320 |
|
|
//
|
321 |
|
|
// PIPELINE STAGE #5 :: Write-back
|
322 |
|
|
// Variable declarations
|
323 |
|
|
//
|
324 |
25 |
dgisselq |
wire wr_reg_ce, wr_flags_ce, wr_write_pc, wr_write_cc;
|
325 |
2 |
dgisselq |
wire [4:0] wr_reg_id;
|
326 |
|
|
wire [31:0] wr_reg_vl;
|
327 |
|
|
wire w_switch_to_interrupt, w_release_from_interrupt;
|
328 |
48 |
dgisselq |
reg [(AW-1):0] upc, ipc;
|
329 |
2 |
dgisselq |
|
330 |
|
|
|
331 |
|
|
|
332 |
|
|
//
|
333 |
|
|
// MASTER: clock enable.
|
334 |
|
|
//
|
335 |
38 |
dgisselq |
assign master_ce = (~i_halt)&&(~o_break)&&(~sleep);
|
336 |
2 |
dgisselq |
|
337 |
|
|
|
338 |
|
|
//
|
339 |
|
|
// PIPELINE STAGE #1 :: Prefetch
|
340 |
|
|
// Calculate stall conditions
|
341 |
|
|
|
342 |
|
|
//
|
343 |
|
|
// PIPELINE STAGE #2 :: Instruction Decode
|
344 |
|
|
// Calculate stall conditions
|
345 |
34 |
dgisselq |
assign dcd_ce = (pf_valid)&&(~dcd_stalled)&&(~clear_pipeline);
|
346 |
2 |
dgisselq |
assign dcd_stalled = (dcdvalid)&&(
|
347 |
|
|
(op_stall)
|
348 |
|
|
||((dcdA_stall)||(dcdB_stall)||(dcdF_stall))
|
349 |
36 |
dgisselq |
||((opvalid_mem)&&(op_wr_pc))
|
350 |
|
|
||((opvalid_mem)&&(opR_cc)));
|
351 |
2 |
dgisselq |
//
|
352 |
|
|
// PIPELINE STAGE #3 :: Read Operands
|
353 |
|
|
// Calculate stall conditions
|
354 |
25 |
dgisselq |
assign op_stall = ((mem_stalled)&&(opvalid_mem))
|
355 |
|
|
||((alu_stall)&&(opvalid_alu));
|
356 |
2 |
dgisselq |
assign op_ce = (dcdvalid)&&((~opvalid)||(~op_stall));
|
357 |
|
|
|
358 |
|
|
//
|
359 |
|
|
// PIPELINE STAGE #4 :: ALU / Memory
|
360 |
|
|
// Calculate stall conditions
|
361 |
36 |
dgisselq |
//
|
362 |
|
|
// 1. Basic stall is if the previous stage is valid and the next is
|
363 |
|
|
// busy.
|
364 |
|
|
// 2. Also stall if the prior stage is valid and the master clock enable
|
365 |
|
|
// is de-selected
|
366 |
|
|
// 3. Next case: Stall if we want to start a memory operation and the
|
367 |
|
|
// prior operation will write either the PC or CC registers.
|
368 |
|
|
// 4. Last case: Stall if we would otherwise move a break instruction
|
369 |
|
|
// through the ALU. Break instructions are not allowed through
|
370 |
|
|
// the ALU.
|
371 |
|
|
assign alu_stall = (((~master_ce)||(mem_rdbusy))&&(opvalid_alu)) //Case 1&2
|
372 |
|
|
||((opvalid_mem)&&(wr_reg_ce)&&(wr_reg_id[4] == op_gie)
|
373 |
|
|
&&((wr_write_pc)||(wr_write_cc))) // Case 3
|
374 |
|
|
||((opvalid)&&(op_break)); // Case 4
|
375 |
38 |
dgisselq |
assign alu_ce = (master_ce)&&(~mem_rdbusy)&&(opvalid_alu)&&(~alu_stall)&&(~clear_pipeline);
|
376 |
2 |
dgisselq |
//
|
377 |
38 |
dgisselq |
`ifdef OPT_PIPELINED_BUS_ACCESS
|
378 |
|
|
assign mem_ce = (master_ce)&&(opvalid_mem)&&(~clear_pipeline)
|
379 |
|
|
&&(set_cond)&&(~mem_stalled);
|
380 |
|
|
assign mem_stalled = (~master_ce)||((opvalid_mem)&&(
|
381 |
|
|
(mem_pipe_stalled)
|
382 |
|
|
||((~op_pipe)&&(mem_busy))
|
383 |
|
|
// Stall waiting for flags to be valid
|
384 |
|
|
// Or waiting for a write to the PC register
|
385 |
|
|
// Or CC register, since that can change the
|
386 |
|
|
// PC as well
|
387 |
|
|
||((wr_reg_ce)&&(wr_reg_id[4] == op_gie)
|
388 |
|
|
&&((wr_write_pc)||(wr_write_cc)))));
|
389 |
|
|
`else
|
390 |
25 |
dgisselq |
assign mem_ce = (master_ce)&&(opvalid_mem)&&(~mem_stalled)&&(~clear_pipeline)&&(set_cond);
|
391 |
38 |
dgisselq |
|
392 |
25 |
dgisselq |
assign mem_stalled = (mem_busy)||((opvalid_mem)&&(
|
393 |
2 |
dgisselq |
(~master_ce)
|
394 |
|
|
// Stall waiting for flags to be valid
|
395 |
|
|
// Or waiting for a write to the PC register
|
396 |
25 |
dgisselq |
// Or CC register, since that can change the
|
397 |
|
|
// PC as well
|
398 |
|
|
||((wr_reg_ce)&&(wr_reg_id[4] == op_gie)&&((wr_write_pc)||(wr_write_cc)))));
|
399 |
38 |
dgisselq |
`endif
|
400 |
2 |
dgisselq |
|
401 |
|
|
|
402 |
|
|
//
|
403 |
|
|
//
|
404 |
|
|
// PIPELINE STAGE #1 :: Prefetch
|
405 |
|
|
//
|
406 |
|
|
//
|
407 |
38 |
dgisselq |
`ifdef OPT_SINGLE_FETCH
|
408 |
9 |
dgisselq |
wire pf_ce;
|
409 |
|
|
|
410 |
|
|
assign pf_ce = (~dcd_stalled);
|
411 |
48 |
dgisselq |
prefetch #(ADDRESS_WIDTH)
|
412 |
|
|
pf(i_clk, i_rst, (pf_ce), pf_pc, gie,
|
413 |
2 |
dgisselq |
instruction, instruction_pc, instruction_gie,
|
414 |
36 |
dgisselq |
pf_valid, pf_illegal,
|
415 |
|
|
pf_cyc, pf_stb, pf_we, pf_addr, pf_data,
|
416 |
|
|
pf_ack, pf_stall, pf_err, i_wb_data);
|
417 |
2 |
dgisselq |
`else // Pipe fetch
|
418 |
48 |
dgisselq |
pipefetch #(RESET_ADDRESS, LGICACHE, ADDRESS_WIDTH)
|
419 |
36 |
dgisselq |
pf(i_clk, i_rst, (new_pc)|(dcd_early_branch_stb),
|
420 |
|
|
i_clear_pf_cache, ~dcd_stalled,
|
421 |
|
|
(new_pc)?pf_pc:dcd_branch_pc,
|
422 |
2 |
dgisselq |
instruction, instruction_pc, pf_valid,
|
423 |
|
|
pf_cyc, pf_stb, pf_we, pf_addr, pf_data,
|
424 |
36 |
dgisselq |
pf_ack, pf_stall, pf_err, i_wb_data,
|
425 |
38 |
dgisselq |
`ifdef OPT_PRECLEAR_BUS
|
426 |
36 |
dgisselq |
((dcd_clear_bus)&&(dcdvalid))
|
427 |
|
|
||((op_clear_bus)&&(opvalid))
|
428 |
|
|
||
|
429 |
|
|
`endif
|
430 |
|
|
(mem_cyc_lcl)||(mem_cyc_gbl),
|
431 |
|
|
pf_illegal);
|
432 |
2 |
dgisselq |
assign instruction_gie = gie;
|
433 |
|
|
`endif
|
434 |
|
|
|
435 |
36 |
dgisselq |
initial dcdvalid = 1'b0;
|
436 |
2 |
dgisselq |
always @(posedge i_clk)
|
437 |
|
|
if (i_rst)
|
438 |
|
|
dcdvalid <= 1'b0;
|
439 |
|
|
else if (dcd_ce)
|
440 |
36 |
dgisselq |
dcdvalid <= (~clear_pipeline)&&(~dcd_early_branch_stb);
|
441 |
|
|
else if ((~dcd_stalled)||(clear_pipeline)||(dcd_early_branch))
|
442 |
2 |
dgisselq |
dcdvalid <= 1'b0;
|
443 |
|
|
|
444 |
38 |
dgisselq |
`ifdef OPT_EARLY_BRANCHING
|
445 |
2 |
dgisselq |
always @(posedge i_clk)
|
446 |
38 |
dgisselq |
if ((dcd_ce)&&(instruction[27:24]==`CPU_PC_REG)&&(~sleep))
|
447 |
36 |
dgisselq |
begin
|
448 |
|
|
dcd_early_branch <= 1'b0;
|
449 |
|
|
// First case, a move to PC instruction
|
450 |
|
|
if ((instruction[31:28] == 4'h2)
|
451 |
|
|
&&((instruction_gie)
|
452 |
|
|
||((~instruction[20])&&(~instruction[15])))
|
453 |
|
|
&&(instruction[23:21]==3'h0))
|
454 |
|
|
begin
|
455 |
|
|
dcd_early_branch_stb <= 1'b1;
|
456 |
|
|
dcd_early_branch <= 1'b1;
|
457 |
|
|
// r_dcdI <= { {(17){instruction[14]}}, instruction[14:0] };
|
458 |
|
|
|
459 |
|
|
end else // Next case, an Add Imm -> PC instruction
|
460 |
|
|
if ((instruction[31:28] == 4'ha) // Add
|
461 |
|
|
&&(~instruction[20]) // Immediate
|
462 |
|
|
&&(instruction[23:21]==3'h0)) // Always
|
463 |
|
|
begin
|
464 |
|
|
dcd_early_branch_stb <= 1'b1;
|
465 |
|
|
dcd_early_branch <= 1'b1;
|
466 |
|
|
// r_dcdI <= { {(4){instruction[19]}}, instruction[19:0] };
|
467 |
|
|
end else // Next case: load Immediate to PC
|
468 |
|
|
if (instruction[31:28] == 4'h3)
|
469 |
|
|
begin
|
470 |
|
|
dcd_early_branch_stb <= 1'b1;
|
471 |
|
|
dcd_early_branch <= 1'b1;
|
472 |
|
|
// r_dcdI <= { instruction[23:0] };
|
473 |
|
|
end
|
474 |
|
|
end else
|
475 |
|
|
begin
|
476 |
|
|
if (dcd_ce) dcd_early_branch <= 1'b0;
|
477 |
|
|
dcd_early_branch_stb <= 1'b0;
|
478 |
|
|
end
|
479 |
|
|
always @(posedge i_clk)
|
480 |
2 |
dgisselq |
if (dcd_ce)
|
481 |
|
|
begin
|
482 |
36 |
dgisselq |
if (instruction[31]) // Add
|
483 |
48 |
dgisselq |
dcd_branch_pc <= instruction_pc+{ {(AW-20){instruction[19]}}, instruction[19:0] } + {{(AW-1){1'b0}},1'b1};
|
484 |
36 |
dgisselq |
else if (~instruction[28]) // 4'h2 = MOV
|
485 |
48 |
dgisselq |
dcd_branch_pc <= instruction_pc+{ {(AW-15){instruction[14]}}, instruction[14:0] } + {{(AW-1){1'b0}},1'b1};
|
486 |
36 |
dgisselq |
else // if (instruction[28]) // 4'h3 = LDI
|
487 |
48 |
dgisselq |
dcd_branch_pc <= instruction_pc+{ {(AW-24){instruction[23]}}, instruction[23:0] } + {{(AW-1){1'b0}},1'b1};
|
488 |
36 |
dgisselq |
end
|
489 |
38 |
dgisselq |
`else // OPT_EARLY_BRANCHING
|
490 |
36 |
dgisselq |
assign dcd_early_branch_stb = 1'b0;
|
491 |
|
|
assign dcd_early_branch = 1'b0;
|
492 |
48 |
dgisselq |
assign dcd_branch_pc = {(AW){1'b0}};
|
493 |
38 |
dgisselq |
`endif // OPT_EARLY_BRANCHING
|
494 |
36 |
dgisselq |
|
495 |
|
|
always @(posedge i_clk)
|
496 |
|
|
if (dcd_ce)
|
497 |
|
|
begin
|
498 |
2 |
dgisselq |
dcd_pc <= instruction_pc+1;
|
499 |
|
|
|
500 |
|
|
// Record what operation we are doing
|
501 |
|
|
dcdOp <= instruction[31:28];
|
502 |
|
|
|
503 |
|
|
// Default values
|
504 |
|
|
dcdA[4:0] <= { instruction_gie, instruction[27:24] };
|
505 |
|
|
dcdB[4:0] <= { instruction_gie, instruction[19:16] };
|
506 |
25 |
dgisselq |
dcdA_cc <= (instruction[27:24] == `CPU_CC_REG);
|
507 |
|
|
dcdB_cc <= (instruction[19:16] == `CPU_CC_REG);
|
508 |
|
|
dcdA_pc <= (instruction[27:24] == `CPU_PC_REG);
|
509 |
|
|
dcdB_pc <= (instruction[19:16] == `CPU_PC_REG);
|
510 |
2 |
dgisselq |
dcdM <= 1'b0;
|
511 |
38 |
dgisselq |
`ifdef OPT_CONDITIONAL_FLAGS
|
512 |
36 |
dgisselq |
dcdF_wr <= (instruction[23:21]==3'h0);
|
513 |
|
|
`else
|
514 |
2 |
dgisselq |
dcdF_wr <= 1'b1;
|
515 |
36 |
dgisselq |
`endif
|
516 |
38 |
dgisselq |
`ifdef OPT_PRECLEAR_BUS
|
517 |
36 |
dgisselq |
dcd_clear_bus <= 1'b0;
|
518 |
|
|
`endif
|
519 |
38 |
dgisselq |
`ifdef OPT_ILLEGAL_INSTRUCTION
|
520 |
36 |
dgisselq |
dcd_illegal <= pf_illegal;
|
521 |
|
|
`endif
|
522 |
2 |
dgisselq |
|
523 |
|
|
// Set the condition under which we do this operation
|
524 |
|
|
// The top four bits are a mask, the bottom four the
|
525 |
|
|
// value the flags must equal once anded with the mask
|
526 |
|
|
dcdF <= { (instruction[23:21]==3'h0), instruction[23:21] };
|
527 |
|
|
casez(instruction[31:28])
|
528 |
|
|
4'h2: begin // Move instruction
|
529 |
|
|
if (~instruction_gie)
|
530 |
|
|
begin
|
531 |
|
|
dcdA[4] <= instruction[20];
|
532 |
|
|
dcdB[4] <= instruction[15];
|
533 |
|
|
end
|
534 |
|
|
dcdA_wr <= 1'b1;
|
535 |
|
|
dcdA_rd <= 1'b0;
|
536 |
|
|
dcdB_rd <= 1'b1;
|
537 |
|
|
r_dcdI <= { {(9){instruction[14]}}, instruction[14:0] };
|
538 |
48 |
dgisselq |
dcd_zI <= (instruction[14:0] == 0);
|
539 |
2 |
dgisselq |
dcdF_wr <= 1'b0; // Don't write flags
|
540 |
|
|
end
|
541 |
|
|
4'h3: begin // Load immediate
|
542 |
|
|
dcdA_wr <= 1'b1;
|
543 |
|
|
dcdA_rd <= 1'b0;
|
544 |
|
|
dcdB_rd <= 1'b0;
|
545 |
|
|
r_dcdI <= { instruction[23:0] };
|
546 |
48 |
dgisselq |
dcd_zI <= (instruction[23:0] == 0);
|
547 |
2 |
dgisselq |
dcdF_wr <= 1'b0; // Don't write flags
|
548 |
|
|
dcdF <= 4'h8; // This is unconditional
|
549 |
|
|
dcdOp <= 4'h2;
|
550 |
|
|
end
|
551 |
25 |
dgisselq |
4'h4: begin // Multiply, LDI[HI|LO], or NOOP/BREAK
|
552 |
38 |
dgisselq |
`ifdef OPT_CONDITIONAL_FLAGS
|
553 |
25 |
dgisselq |
// Don't write flags except for multiplies
|
554 |
36 |
dgisselq |
// and then only if they are unconditional
|
555 |
|
|
dcdF_wr <= ((instruction[27:25] != 3'h7)
|
556 |
|
|
&&(instruction[23:21]==3'h0));
|
557 |
|
|
`else
|
558 |
|
|
// Don't write flags except for multiplies
|
559 |
25 |
dgisselq |
dcdF_wr <= (instruction[27:25] != 3'h7);
|
560 |
36 |
dgisselq |
`endif
|
561 |
2 |
dgisselq |
r_dcdI <= { 8'h00, instruction[15:0] };
|
562 |
48 |
dgisselq |
dcd_zI <= (instruction[15:0] == 0);
|
563 |
2 |
dgisselq |
if (instruction[27:24] == 4'he)
|
564 |
|
|
begin
|
565 |
|
|
// NOOP instruction
|
566 |
|
|
dcdA_wr <= 1'b0;
|
567 |
|
|
dcdA_rd <= 1'b0;
|
568 |
|
|
dcdB_rd <= 1'b0;
|
569 |
|
|
dcdOp <= 4'h2;
|
570 |
36 |
dgisselq |
// Might also be a break. Big
|
571 |
|
|
// instruction set hole here.
|
572 |
38 |
dgisselq |
`ifdef OPT_ILLEGAL_INSTRUCTION
|
573 |
36 |
dgisselq |
dcd_illegal <= (pf_illegal)||(instruction[23:1] != 0);
|
574 |
|
|
`endif
|
575 |
2 |
dgisselq |
end else if (instruction[27:24] == 4'hf)
|
576 |
|
|
begin // Load partial immediate(s)
|
577 |
|
|
dcdA_wr <= 1'b1;
|
578 |
|
|
dcdA_rd <= 1'b1;
|
579 |
|
|
dcdB_rd <= 1'b0;
|
580 |
|
|
dcdA[4:0] <= { instruction_gie, instruction[19:16] };
|
581 |
25 |
dgisselq |
dcdA_cc <= (instruction[19:16] == `CPU_CC_REG);
|
582 |
|
|
dcdA_pc <= (instruction[19:16] == `CPU_PC_REG);
|
583 |
2 |
dgisselq |
dcdOp <= { 3'h3, instruction[20] };
|
584 |
|
|
end else begin
|
585 |
25 |
dgisselq |
// Actual multiply instruction
|
586 |
|
|
r_dcdI <= { 8'h00, instruction[15:0] };
|
587 |
48 |
dgisselq |
dcd_zI <= (instruction[15:0] == 0);
|
588 |
25 |
dgisselq |
dcdA_rd <= 1'b1;
|
589 |
|
|
dcdB_rd <= (instruction[19:16] != 4'hf);
|
590 |
|
|
dcdOp[3:0] <= (instruction[20])? 4'h4:4'h3;
|
591 |
2 |
dgisselq |
end end
|
592 |
|
|
4'b011?: begin // Load/Store
|
593 |
|
|
dcdF_wr <= 1'b0; // Don't write flags
|
594 |
|
|
dcdA_wr <= (~instruction[28]); // Write on loads
|
595 |
|
|
dcdA_rd <= (instruction[28]); // Read on stores
|
596 |
|
|
dcdB_rd <= instruction[20];
|
597 |
|
|
if (instruction[20])
|
598 |
48 |
dgisselq |
begin
|
599 |
2 |
dgisselq |
r_dcdI <= { {(8){instruction[15]}}, instruction[15:0] };
|
600 |
48 |
dgisselq |
dcd_zI <= (instruction[15:0] == 0);
|
601 |
|
|
end else begin
|
602 |
2 |
dgisselq |
r_dcdI <= { {(4){instruction[19]}}, instruction[19:0] };
|
603 |
48 |
dgisselq |
dcd_zI <= (instruction[19:0] == 0);
|
604 |
|
|
end
|
605 |
2 |
dgisselq |
dcdM <= 1'b1; // Memory operation
|
606 |
38 |
dgisselq |
`ifdef OPT_PRECLEAR_BUS
|
607 |
36 |
dgisselq |
dcd_clear_bus <= (instruction[23:21]==3'h0);
|
608 |
|
|
`endif
|
609 |
2 |
dgisselq |
end
|
610 |
|
|
default: begin
|
611 |
|
|
dcdA_wr <= (instruction[31])||(instruction[31:28]==4'h5);
|
612 |
|
|
dcdA_rd <= 1'b1;
|
613 |
|
|
dcdB_rd <= instruction[20];
|
614 |
|
|
if (instruction[20])
|
615 |
48 |
dgisselq |
begin
|
616 |
2 |
dgisselq |
r_dcdI <= { {(8){instruction[15]}}, instruction[15:0] };
|
617 |
48 |
dgisselq |
dcd_zI <= (instruction[15:0] == 0);
|
618 |
|
|
end else begin
|
619 |
2 |
dgisselq |
r_dcdI <= { {(4){instruction[19]}}, instruction[19:0] };
|
620 |
48 |
dgisselq |
dcd_zI <= (instruction[19:0] == 0);
|
621 |
|
|
end end
|
622 |
2 |
dgisselq |
endcase
|
623 |
|
|
|
624 |
|
|
|
625 |
|
|
dcd_gie <= instruction_gie;
|
626 |
|
|
end
|
627 |
25 |
dgisselq |
always @(posedge i_clk)
|
628 |
|
|
if (dcd_ce)
|
629 |
|
|
dcd_break <= (instruction[31:0] == 32'h4e000001);
|
630 |
38 |
dgisselq |
else if ((clear_pipeline)||(~dcdvalid)) // SHOULDNT THIS BE ||op_ce?
|
631 |
25 |
dgisselq |
dcd_break <= 1'b0;
|
632 |
2 |
dgisselq |
|
633 |
38 |
dgisselq |
`ifdef OPT_PIPELINED_BUS_ACCESS
|
634 |
|
|
reg [23:0] r_opI;
|
635 |
|
|
reg [4:0] op_B;
|
636 |
|
|
reg op_pipe;
|
637 |
2 |
dgisselq |
|
638 |
38 |
dgisselq |
initial op_pipe = 1'b0;
|
639 |
|
|
// To be a pipeable operation, there must be
|
640 |
|
|
// two valid adjacent instructions
|
641 |
|
|
// Both must be memory instructions
|
642 |
|
|
// Both must be writes, or both must be reads
|
643 |
|
|
// Both operations must be to the same identical address,
|
644 |
|
|
// or at least a single (one) increment above that address
|
645 |
|
|
always @(posedge i_clk)
|
646 |
|
|
if (op_ce)
|
647 |
|
|
op_pipe <= (dcdvalid)&&(opvalid_mem)&&(dcdM) // Both mem
|
648 |
|
|
&&(dcdOp[0]==opn[0]) // Both Rd, or both Wr
|
649 |
|
|
&&(dcdB == op_B) // Same address register
|
650 |
|
|
&&((r_dcdI == r_opI)||(r_dcdI==r_opI+24'h1));
|
651 |
|
|
always @(posedge i_clk)
|
652 |
|
|
if (op_ce) // &&(dcdvalid))
|
653 |
|
|
r_opI <= r_dcdI;
|
654 |
|
|
always @(posedge i_clk)
|
655 |
|
|
if (op_ce) // &&(dcdvalid))
|
656 |
|
|
op_B <= dcdB;
|
657 |
|
|
`endif
|
658 |
|
|
|
659 |
2 |
dgisselq |
//
|
660 |
|
|
//
|
661 |
|
|
// PIPELINE STAGE #3 :: Read Operands (Registers)
|
662 |
|
|
//
|
663 |
|
|
//
|
664 |
25 |
dgisselq |
assign w_opA = regset[dcdA];
|
665 |
|
|
assign w_opB = regset[dcdB];
|
666 |
2 |
dgisselq |
always @(posedge i_clk)
|
667 |
|
|
if (op_ce) // &&(dcdvalid))
|
668 |
|
|
begin
|
669 |
|
|
if ((wr_reg_ce)&&(wr_reg_id == dcdA))
|
670 |
|
|
r_opA <= wr_reg_vl;
|
671 |
25 |
dgisselq |
else if ((dcdA_pc)&&(dcdA[4] == dcd_gie))
|
672 |
48 |
dgisselq |
r_opA <= { {(32-AW){1'b0}}, dcd_pc };
|
673 |
25 |
dgisselq |
else if (dcdA_pc)
|
674 |
48 |
dgisselq |
r_opA <= { {(32-AW){1'b0}}, upc };
|
675 |
25 |
dgisselq |
else if (dcdA_cc)
|
676 |
36 |
dgisselq |
r_opA <= { w_opA[31:11], (dcd_gie)?w_uflags:w_iflags };
|
677 |
2 |
dgisselq |
else
|
678 |
25 |
dgisselq |
r_opA <= w_opA;
|
679 |
48 |
dgisselq |
end else if (opvalid)
|
680 |
|
|
begin // We were going to pick these up when they became valid,
|
681 |
|
|
// but for some reason we're stuck here as they became
|
682 |
|
|
// valid. Pick them up now anyway
|
683 |
|
|
if ((opA_alu)||((opA_mem)&&(mem_valid)))
|
684 |
|
|
r_opA <= wr_reg_vl;
|
685 |
2 |
dgisselq |
end
|
686 |
36 |
dgisselq |
wire [31:0] dcdI, w_opBnI;
|
687 |
2 |
dgisselq |
assign dcdI = { {(8){r_dcdI[23]}}, r_dcdI };
|
688 |
36 |
dgisselq |
assign w_opBnI = (~dcdB_rd) ? 32'h00
|
689 |
|
|
: (((wr_reg_ce)&&(wr_reg_id == dcdB)) ? wr_reg_vl
|
690 |
48 |
dgisselq |
: (((dcdB_pc)&&(dcdB[4] == dcd_gie)) ? {{(32-AW){1'b0}},dcd_pc }
|
691 |
|
|
: ((dcdB_pc) ? {{(32-AW){1'b0}},upc}
|
692 |
36 |
dgisselq |
: ((dcdB_cc) ? { w_opB[31:11], (dcd_gie)?w_uflags:w_iflags}
|
693 |
|
|
: regset[dcdB]))));
|
694 |
2 |
dgisselq |
always @(posedge i_clk)
|
695 |
|
|
if (op_ce) // &&(dcdvalid))
|
696 |
36 |
dgisselq |
r_opB <= w_opBnI + dcdI;
|
697 |
48 |
dgisselq |
else if ((opvalid)&&((opB_alu)||((opB_mem)&&(mem_valid))))
|
698 |
|
|
r_opB <= wr_reg_vl;
|
699 |
2 |
dgisselq |
|
700 |
|
|
// The logic here has become more complex than it should be, no thanks
|
701 |
|
|
// to Xilinx's Vivado trying to help. The conditions are supposed to
|
702 |
|
|
// be two sets of four bits: the top bits specify what bits matter, the
|
703 |
|
|
// bottom specify what those top bits must equal. However, two of
|
704 |
|
|
// conditions check whether bits are on, and those are the only two
|
705 |
|
|
// conditions checking those bits. Therefore, Vivado complains that
|
706 |
|
|
// these two bits are redundant. Hence the convoluted expression
|
707 |
|
|
// below, arriving at what we finally want in the (now wire net)
|
708 |
|
|
// opF.
|
709 |
|
|
always @(posedge i_clk)
|
710 |
|
|
if (op_ce)
|
711 |
36 |
dgisselq |
begin // Set the flag condition codes, bit order is [3:0]=VNCZ
|
712 |
2 |
dgisselq |
case(dcdF[2:0])
|
713 |
|
|
3'h0: r_opF <= 7'h80; // Always
|
714 |
|
|
3'h1: r_opF <= 7'h11; // Z
|
715 |
|
|
3'h2: r_opF <= 7'h10; // NE
|
716 |
|
|
3'h3: r_opF <= 7'h20; // GE (!N)
|
717 |
|
|
3'h4: r_opF <= 7'h30; // GT (!N&!Z)
|
718 |
|
|
3'h5: r_opF <= 7'h24; // LT
|
719 |
|
|
3'h6: r_opF <= 7'h02; // C
|
720 |
|
|
3'h7: r_opF <= 7'h08; // V
|
721 |
|
|
endcase
|
722 |
36 |
dgisselq |
end // Bit order is { (flags_not_used), VNCZ mask, VNCZ value }
|
723 |
2 |
dgisselq |
assign opF = { r_opF[6], r_opF[3], r_opF[5], r_opF[1], r_opF[4:0] };
|
724 |
|
|
|
725 |
36 |
dgisselq |
initial opvalid = 1'b0;
|
726 |
|
|
initial opvalid_alu = 1'b0;
|
727 |
|
|
initial opvalid_mem = 1'b0;
|
728 |
2 |
dgisselq |
always @(posedge i_clk)
|
729 |
|
|
if (i_rst)
|
730 |
25 |
dgisselq |
begin
|
731 |
|
|
opvalid <= 1'b0;
|
732 |
|
|
opvalid_alu <= 1'b0;
|
733 |
|
|
opvalid_mem <= 1'b0;
|
734 |
|
|
end else if (op_ce)
|
735 |
|
|
begin
|
736 |
2 |
dgisselq |
// Do we have a valid instruction?
|
737 |
|
|
// The decoder may vote to stall one of its
|
738 |
|
|
// instructions based upon something we currently
|
739 |
|
|
// have in our queue. This instruction must then
|
740 |
|
|
// move forward, and get a stall cycle inserted.
|
741 |
|
|
// Hence, the test on dcd_stalled here. If we must
|
742 |
|
|
// wait until our operands are valid, then we aren't
|
743 |
|
|
// valid yet until then.
|
744 |
18 |
dgisselq |
opvalid<= (~clear_pipeline)&&(dcdvalid)&&(~dcd_stalled);
|
745 |
38 |
dgisselq |
`ifdef OPT_ILLEGAL_INSTRUCTION
|
746 |
36 |
dgisselq |
opvalid_mem <= (dcdM)&&(~dcd_illegal)&&(~clear_pipeline)&&(dcdvalid)&&(~dcd_stalled);
|
747 |
|
|
opvalid_alu <= ((~dcdM)||(dcd_illegal))&&(~clear_pipeline)&&(dcdvalid)&&(~dcd_stalled);
|
748 |
|
|
`else
|
749 |
25 |
dgisselq |
opvalid_alu <= (~dcdM)&&(~clear_pipeline)&&(dcdvalid)&&(~dcd_stalled);
|
750 |
|
|
opvalid_mem <= (dcdM)&&(~clear_pipeline)&&(dcdvalid)&&(~dcd_stalled);
|
751 |
36 |
dgisselq |
`endif
|
752 |
25 |
dgisselq |
end else if ((~op_stall)||(clear_pipeline))
|
753 |
|
|
begin
|
754 |
|
|
opvalid <= 1'b0;
|
755 |
|
|
opvalid_alu <= 1'b0;
|
756 |
|
|
opvalid_mem <= 1'b0;
|
757 |
|
|
end
|
758 |
2 |
dgisselq |
|
759 |
|
|
// Here's part of our debug interface. When we recognize a break
|
760 |
|
|
// instruction, we set the op_break flag. That'll prevent this
|
761 |
|
|
// instruction from entering the ALU, and cause an interrupt before
|
762 |
|
|
// this instruction. Thus, returning to this code will cause the
|
763 |
|
|
// break to repeat and continue upon return. To get out of this
|
764 |
|
|
// condition, replace the break instruction with what it is supposed
|
765 |
|
|
// to be, step through it, and then replace it back. In this fashion,
|
766 |
|
|
// a debugger can step through code.
|
767 |
25 |
dgisselq |
// assign w_op_break = (dcd_break)&&(r_dcdI[15:0] == 16'h0001);
|
768 |
|
|
initial op_break = 1'b0;
|
769 |
2 |
dgisselq |
always @(posedge i_clk)
|
770 |
25 |
dgisselq |
if (i_rst) op_break <= 1'b0;
|
771 |
|
|
else if (op_ce) op_break <= (dcd_break);
|
772 |
|
|
else if ((clear_pipeline)||(~opvalid))
|
773 |
|
|
op_break <= 1'b0;
|
774 |
2 |
dgisselq |
|
775 |
38 |
dgisselq |
`ifdef OPT_ILLEGAL_INSTRUCTION
|
776 |
2 |
dgisselq |
always @(posedge i_clk)
|
777 |
36 |
dgisselq |
if(op_ce)
|
778 |
|
|
op_illegal <= dcd_illegal;
|
779 |
|
|
`endif
|
780 |
|
|
|
781 |
|
|
always @(posedge i_clk)
|
782 |
2 |
dgisselq |
if (op_ce)
|
783 |
|
|
begin
|
784 |
|
|
opn <= dcdOp; // Which ALU operation?
|
785 |
25 |
dgisselq |
// opM <= dcdM; // Is this a memory operation?
|
786 |
38 |
dgisselq |
`ifdef OPT_EARLY_BRANCHING
|
787 |
36 |
dgisselq |
opF_wr <= (dcdF_wr)&&((~dcdA_cc)||(~dcdA_wr))&&(~dcd_early_branch);
|
788 |
|
|
opR_wr <= (dcdA_wr)&&(~dcd_early_branch);
|
789 |
|
|
`else
|
790 |
2 |
dgisselq |
// Will we write the flags/CC Register with our result?
|
791 |
25 |
dgisselq |
opF_wr <= (dcdF_wr)&&((~dcdA_cc)||(~dcdA_wr));
|
792 |
2 |
dgisselq |
// Will we be writing our results into a register?
|
793 |
|
|
opR_wr <= dcdA_wr;
|
794 |
36 |
dgisselq |
`endif
|
795 |
2 |
dgisselq |
// What register will these results be written into?
|
796 |
|
|
opR <= dcdA;
|
797 |
38 |
dgisselq |
opR_cc <= (dcdA_wr)&&(dcdA_cc)&&(dcdA[4]==dcd_gie);
|
798 |
2 |
dgisselq |
// User level (1), vs supervisor (0)/interrupts disabled
|
799 |
|
|
op_gie <= dcd_gie;
|
800 |
|
|
|
801 |
|
|
// We're not done with these yet--we still need them
|
802 |
|
|
// for the unclocked assign. We need the unclocked
|
803 |
|
|
// assign so that there's no wait state between an
|
804 |
|
|
// ALU or memory result and the next register that may
|
805 |
|
|
// use that value.
|
806 |
|
|
opA_rd <= dcdA_rd;
|
807 |
|
|
opB_rd <= dcdB_rd;
|
808 |
|
|
//
|
809 |
38 |
dgisselq |
`ifdef OPT_EARLY_BRANCHING
|
810 |
36 |
dgisselq |
op_wr_pc <= ((dcdA_wr)&&(dcdA_pc)&&(dcdA[4] == dcd_gie))&&(~dcd_early_branch);
|
811 |
|
|
`else
|
812 |
30 |
dgisselq |
op_wr_pc <= ((dcdA_wr)&&(dcdA_pc)&&(dcdA[4] == dcd_gie));
|
813 |
36 |
dgisselq |
`endif
|
814 |
48 |
dgisselq |
op_pc <= (dcd_early_branch)?dcd_branch_pc:dcd_pc;
|
815 |
|
|
// op_pc <= dcd_pc;
|
816 |
36 |
dgisselq |
|
817 |
38 |
dgisselq |
`ifdef OPT_PRECLEAR_BUS
|
818 |
36 |
dgisselq |
op_clear_bus <= dcd_clear_bus;
|
819 |
|
|
`endif
|
820 |
2 |
dgisselq |
end
|
821 |
|
|
assign opFl = (op_gie)?(w_uflags):(w_iflags);
|
822 |
|
|
|
823 |
|
|
// This is tricky. First, the PC and Flags registers aren't kept in
|
824 |
|
|
// register set but in special registers of their own. So step one
|
825 |
|
|
// is to select the right register. Step to is to replace that
|
826 |
|
|
// register with the results of an ALU or memory operation, if such
|
827 |
|
|
// results are now available. Otherwise, we'd need to insert a wait
|
828 |
|
|
// state of some type.
|
829 |
|
|
//
|
830 |
|
|
// The alternative approach would be to define some sort of
|
831 |
|
|
// op_stall wire, which would stall any upstream stage.
|
832 |
|
|
// We'll create a flag here to start our coordination. Once we
|
833 |
|
|
// define this flag to something other than just plain zero, then
|
834 |
|
|
// the stalls will already be in place.
|
835 |
48 |
dgisselq |
reg opA_alu, opA_mem;
|
836 |
25 |
dgisselq |
always @(posedge i_clk)
|
837 |
|
|
if (op_ce)
|
838 |
48 |
dgisselq |
opA_alu <= (opvalid_alu)&&(opR == dcdA)&&(opR_wr)&&(dcdA_rd);
|
839 |
|
|
else if ((opvalid)&&(opA_alu)&&(alu_valid))
|
840 |
|
|
opA_alu <= 1'b0;
|
841 |
|
|
always @(posedge i_clk)
|
842 |
|
|
if (op_ce)
|
843 |
|
|
opA_mem <= ((opvalid_mem)&&(opR == dcdA)&&(dcdA_rd))
|
844 |
|
|
||((~opvalid)&&(mem_busy)&&(~mem_we)
|
845 |
|
|
&&(mem_last_reg == dcdA)&&(dcdA_rd));
|
846 |
|
|
else if ((opvalid)&&(opA_mem)&&(mem_valid))
|
847 |
|
|
opA_mem <= 1'b0;
|
848 |
25 |
dgisselq |
|
849 |
48 |
dgisselq |
always @(posedge i_clk)
|
850 |
|
|
if (mem_ce)
|
851 |
|
|
mem_last_reg <= opR;
|
852 |
|
|
assign opA = (opA_alu) ? alu_result
|
853 |
|
|
: ( ((opA_mem)&&(mem_valid))?mem_result
|
854 |
|
|
: r_opA );
|
855 |
|
|
|
856 |
25 |
dgisselq |
assign dcdA_stall = (dcdvalid)&&(dcdA_rd)&&(
|
857 |
|
|
// Skip the requirement on writing back opA
|
858 |
|
|
// Stall on memory, since we'll always need to stall for a
|
859 |
|
|
// memory access anyway
|
860 |
48 |
dgisselq |
// ((opvalid_mem)&&(opR_wr)&&(opR == dcdA))
|
861 |
|
|
((opvalid_alu)&&(opF_wr)&&(dcdA_cc)));
|
862 |
|
|
// Place stalls for this latter case into the ops stage
|
863 |
|
|
// ||((mem_busy)&&(~mem_we));
|
864 |
36 |
dgisselq |
|
865 |
48 |
dgisselq |
reg opB_alu, opB_mem;
|
866 |
25 |
dgisselq |
always @(posedge i_clk)
|
867 |
|
|
if (op_ce)
|
868 |
48 |
dgisselq |
opB_alu <= (opvalid_alu)&&(opR == dcdB)&&(opR_wr)&&(dcdB_rd)&&(dcd_zI);
|
869 |
|
|
always @(posedge i_clk)
|
870 |
|
|
if (op_ce)
|
871 |
|
|
opB_mem <= (dcd_zI)&&(dcdB_rd)&&(
|
872 |
|
|
((opvalid_mem)&&(opR == dcdB))
|
873 |
|
|
||((~opvalid)&&(mem_busy)&&(~mem_we)
|
874 |
|
|
&&(mem_last_reg == dcdB)));
|
875 |
|
|
else if ((opvalid)&&(opB_mem)&&(mem_valid))
|
876 |
|
|
opB_mem <= 1'b0;
|
877 |
|
|
assign opB = (opB_alu) ? alu_result
|
878 |
|
|
: ( ((opB_mem)&&(mem_valid))?mem_result
|
879 |
|
|
: r_opB );
|
880 |
25 |
dgisselq |
assign dcdB_stall = (dcdvalid)&&(dcdB_rd)&&(
|
881 |
38 |
dgisselq |
// Stall on memory ops writing to my register
|
882 |
|
|
// (i.e. loads), or on any write to my
|
883 |
|
|
// register if I have an immediate offset
|
884 |
|
|
// Note the exception for writing to the PC:
|
885 |
|
|
// if I write to the PC, the whole next
|
886 |
|
|
// instruction is invalid, not just the
|
887 |
|
|
// operand. That'll get wiped in the
|
888 |
|
|
// next operation anyway, so don't stall
|
889 |
|
|
// here.
|
890 |
25 |
dgisselq |
((opvalid)&&(opR_wr)&&(opR == dcdB)
|
891 |
38 |
dgisselq |
&&(opR != { op_gie, `CPU_PC_REG} )
|
892 |
48 |
dgisselq |
&&(~dcd_zI))
|
893 |
38 |
dgisselq |
// Stall on any write to the flags register,
|
894 |
|
|
// if we're going to need the flags value for
|
895 |
|
|
// opB.
|
896 |
30 |
dgisselq |
||((opvalid_alu)&&(opF_wr)&&(dcdB_cc))
|
897 |
38 |
dgisselq |
// Stall on any ongoing memory operation that
|
898 |
|
|
// will write to opB
|
899 |
48 |
dgisselq |
||((mem_busy)&&(~mem_we)&&(mem_last_reg==dcdB)));
|
900 |
30 |
dgisselq |
assign dcdF_stall = (dcdvalid)&&((~dcdF[3])||(dcdA_cc)||(dcdB_cc))
|
901 |
|
|
&&(opvalid)&&(opR_cc);
|
902 |
2 |
dgisselq |
//
|
903 |
|
|
//
|
904 |
|
|
// PIPELINE STAGE #4 :: Apply Instruction
|
905 |
|
|
//
|
906 |
|
|
//
|
907 |
|
|
cpuops doalu(i_clk, i_rst, alu_ce,
|
908 |
25 |
dgisselq |
(opvalid_alu), opn, opA, opB,
|
909 |
2 |
dgisselq |
alu_result, alu_flags, alu_valid);
|
910 |
|
|
|
911 |
|
|
assign set_cond = ((opF[7:4]&opFl[3:0])==opF[3:0]);
|
912 |
|
|
initial alF_wr = 1'b0;
|
913 |
|
|
initial alu_wr = 1'b0;
|
914 |
|
|
always @(posedge i_clk)
|
915 |
|
|
if (i_rst)
|
916 |
|
|
begin
|
917 |
|
|
alu_wr <= 1'b0;
|
918 |
|
|
alF_wr <= 1'b0;
|
919 |
|
|
end else if (alu_ce)
|
920 |
|
|
begin
|
921 |
|
|
alu_reg <= opR;
|
922 |
|
|
alu_wr <= (opR_wr)&&(set_cond);
|
923 |
|
|
alF_wr <= (opF_wr)&&(set_cond);
|
924 |
|
|
end else begin
|
925 |
|
|
// These are strobe signals, so clear them if not
|
926 |
|
|
// set for any particular clock
|
927 |
|
|
alu_wr <= 1'b0;
|
928 |
|
|
alF_wr <= 1'b0;
|
929 |
|
|
end
|
930 |
|
|
always @(posedge i_clk)
|
931 |
|
|
if ((alu_ce)||(mem_ce))
|
932 |
|
|
alu_gie <= op_gie;
|
933 |
|
|
always @(posedge i_clk)
|
934 |
|
|
if ((alu_ce)||(mem_ce))
|
935 |
|
|
alu_pc <= op_pc;
|
936 |
38 |
dgisselq |
`ifdef OPT_ILLEGAL_INSTRUCTION
|
937 |
|
|
always @(posedge i_clk)
|
938 |
|
|
if ((alu_ce)||(mem_ce))
|
939 |
|
|
alu_illegal <= op_illegal;
|
940 |
|
|
`endif
|
941 |
|
|
|
942 |
2 |
dgisselq |
initial alu_pc_valid = 1'b0;
|
943 |
|
|
always @(posedge i_clk)
|
944 |
38 |
dgisselq |
alu_pc_valid <= (~i_rst)&&(master_ce)&&(~mem_rdbusy)&&(opvalid)&&(~clear_pipeline)
|
945 |
25 |
dgisselq |
&&((opvalid_alu)||(~mem_stalled));
|
946 |
2 |
dgisselq |
|
947 |
38 |
dgisselq |
`ifdef OPT_PIPELINED_BUS_ACCESS
|
948 |
48 |
dgisselq |
pipemem #(AW) domem(i_clk, i_rst, mem_ce,
|
949 |
38 |
dgisselq |
(opn[0]), opB, opA, opR,
|
950 |
|
|
mem_busy, mem_pipe_stalled,
|
951 |
|
|
mem_valid, bus_err, mem_wreg, mem_result,
|
952 |
|
|
mem_cyc_gbl, mem_cyc_lcl,
|
953 |
|
|
mem_stb_gbl, mem_stb_lcl,
|
954 |
|
|
mem_we, mem_addr, mem_data,
|
955 |
|
|
mem_ack, mem_stall, mem_err, i_wb_data);
|
956 |
|
|
|
957 |
|
|
`else // PIPELINED_BUS_ACCESS
|
958 |
48 |
dgisselq |
memops #(AW) domem(i_clk, i_rst, mem_ce,
|
959 |
2 |
dgisselq |
(opn[0]), opB, opA, opR,
|
960 |
38 |
dgisselq |
mem_busy,
|
961 |
|
|
mem_valid, bus_err, mem_wreg, mem_result,
|
962 |
36 |
dgisselq |
mem_cyc_gbl, mem_cyc_lcl,
|
963 |
|
|
mem_stb_gbl, mem_stb_lcl,
|
964 |
|
|
mem_we, mem_addr, mem_data,
|
965 |
|
|
mem_ack, mem_stall, mem_err, i_wb_data);
|
966 |
38 |
dgisselq |
`endif // PIPELINED_BUS_ACCESS
|
967 |
36 |
dgisselq |
assign mem_rdbusy = (((mem_cyc_gbl)||(mem_cyc_lcl))&&(~mem_we));
|
968 |
2 |
dgisselq |
|
969 |
|
|
// Either the prefetch or the instruction gets the memory bus, but
|
970 |
|
|
// never both.
|
971 |
48 |
dgisselq |
wbdblpriarb #(32,AW) pformem(i_clk, i_rst,
|
972 |
36 |
dgisselq |
// Memory access to the arbiter, priority position
|
973 |
|
|
mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl,
|
974 |
|
|
mem_we, mem_addr, mem_data, mem_ack, mem_stall, mem_err,
|
975 |
2 |
dgisselq |
// Prefetch access to the arbiter
|
976 |
36 |
dgisselq |
pf_cyc, 1'b0, pf_stb, 1'b0, pf_we, pf_addr, pf_data,
|
977 |
|
|
pf_ack, pf_stall, pf_err,
|
978 |
2 |
dgisselq |
// Common wires, in and out, of the arbiter
|
979 |
36 |
dgisselq |
o_wb_gbl_cyc, o_wb_lcl_cyc, o_wb_gbl_stb, o_wb_lcl_stb,
|
980 |
|
|
o_wb_we, o_wb_addr, o_wb_data,
|
981 |
|
|
i_wb_ack, i_wb_stall, i_wb_err);
|
982 |
2 |
dgisselq |
|
983 |
|
|
//
|
984 |
|
|
//
|
985 |
|
|
// PIPELINE STAGE #5 :: Write-back results
|
986 |
|
|
//
|
987 |
|
|
//
|
988 |
|
|
// This stage is not allowed to stall. If results are ready to be
|
989 |
|
|
// written back, they are written back at all cost. Sleepy CPU's
|
990 |
|
|
// won't prevent write back, nor debug modes, halting the CPU, nor
|
991 |
|
|
// anything else. Indeed, the (master_ce) bit is only as relevant
|
992 |
|
|
// as knowinig something is available for writeback.
|
993 |
|
|
|
994 |
|
|
//
|
995 |
|
|
// Write back to our generic register set ...
|
996 |
|
|
// When shall we write back? On one of two conditions
|
997 |
|
|
// Note that the flags needed to be checked before issuing the
|
998 |
|
|
// bus instruction, so they don't need to be checked here.
|
999 |
|
|
// Further, alu_wr includes (set_cond), so we don't need to
|
1000 |
|
|
// check for that here either.
|
1001 |
38 |
dgisselq |
`ifdef OPT_ILLEGAL_INSTRUCTION
|
1002 |
36 |
dgisselq |
assign wr_reg_ce = (~alu_illegal)&&((alu_wr)&&(alu_valid)&&(~clear_pipeline))||(mem_valid);
|
1003 |
|
|
`else
|
1004 |
|
|
assign wr_reg_ce = ((alu_wr)&&(alu_valid)&&(~clear_pipeline))||(mem_valid);
|
1005 |
|
|
`endif
|
1006 |
2 |
dgisselq |
// Which register shall be written?
|
1007 |
38 |
dgisselq |
// COULD SIMPLIFY THIS: by adding three bits to these registers,
|
1008 |
|
|
// One or PC, one for CC, and one for GIE match
|
1009 |
2 |
dgisselq |
assign wr_reg_id = (alu_wr)?alu_reg:mem_wreg;
|
1010 |
25 |
dgisselq |
// Are we writing to the CC register?
|
1011 |
|
|
assign wr_write_cc = (wr_reg_id[3:0] == `CPU_CC_REG);
|
1012 |
2 |
dgisselq |
// Are we writing to the PC?
|
1013 |
|
|
assign wr_write_pc = (wr_reg_id[3:0] == `CPU_PC_REG);
|
1014 |
|
|
// What value to write?
|
1015 |
|
|
assign wr_reg_vl = (alu_wr)?alu_result:mem_result;
|
1016 |
|
|
always @(posedge i_clk)
|
1017 |
|
|
if (wr_reg_ce)
|
1018 |
|
|
regset[wr_reg_id] <= wr_reg_vl;
|
1019 |
18 |
dgisselq |
else if ((i_halt)&&(i_dbg_we))
|
1020 |
|
|
regset[i_dbg_reg] <= i_dbg_data[31:0];
|
1021 |
2 |
dgisselq |
|
1022 |
|
|
//
|
1023 |
|
|
// Write back to the condition codes/flags register ...
|
1024 |
|
|
// When shall we write to our flags register? alF_wr already
|
1025 |
|
|
// includes the set condition ...
|
1026 |
36 |
dgisselq |
assign wr_flags_ce = (alF_wr)&&(alu_valid)&&(~clear_pipeline)&&(~alu_illegal);
|
1027 |
38 |
dgisselq |
`ifdef OPT_ILLEGAL_INSTRUCTION
|
1028 |
36 |
dgisselq |
assign w_uflags = { bus_err_flag, trap, ill_err, 1'b0, step, 1'b1, sleep, ((wr_flags_ce)&&(alu_gie))?alu_flags:flags };
|
1029 |
|
|
assign w_iflags = { bus_err_flag, trap, ill_err, break_en, 1'b0, 1'b0, sleep, ((wr_flags_ce)&&(~alu_gie))?alu_flags:iflags };
|
1030 |
|
|
`else
|
1031 |
|
|
assign w_uflags = { bus_err_flag, trap, ill_err, 1'b0, step, 1'b1, sleep, ((wr_flags_ce)&&(alu_gie))?alu_flags:flags };
|
1032 |
|
|
assign w_iflags = { bus_err_flag, trap, ill_err, break_en, 1'b0, 1'b0, sleep, ((wr_flags_ce)&&(~alu_gie))?alu_flags:iflags };
|
1033 |
|
|
`endif
|
1034 |
2 |
dgisselq |
// What value to write?
|
1035 |
|
|
always @(posedge i_clk)
|
1036 |
|
|
// If explicitly writing the register itself
|
1037 |
25 |
dgisselq |
if ((wr_reg_ce)&&(wr_reg_id[4])&&(wr_write_cc))
|
1038 |
2 |
dgisselq |
flags <= wr_reg_vl[3:0];
|
1039 |
|
|
// Otherwise if we're setting the flags from an ALU operation
|
1040 |
|
|
else if ((wr_flags_ce)&&(alu_gie))
|
1041 |
|
|
flags <= alu_flags;
|
1042 |
|
|
else if ((i_halt)&&(i_dbg_we)
|
1043 |
|
|
&&(i_dbg_reg == { 1'b1, `CPU_CC_REG }))
|
1044 |
|
|
flags <= i_dbg_data[3:0];
|
1045 |
|
|
|
1046 |
|
|
always @(posedge i_clk)
|
1047 |
25 |
dgisselq |
if ((wr_reg_ce)&&(~wr_reg_id[4])&&(wr_write_cc))
|
1048 |
2 |
dgisselq |
iflags <= wr_reg_vl[3:0];
|
1049 |
|
|
else if ((wr_flags_ce)&&(~alu_gie))
|
1050 |
|
|
iflags <= alu_flags;
|
1051 |
|
|
else if ((i_halt)&&(i_dbg_we)
|
1052 |
|
|
&&(i_dbg_reg == { 1'b0, `CPU_CC_REG }))
|
1053 |
|
|
iflags <= i_dbg_data[3:0];
|
1054 |
|
|
|
1055 |
|
|
// The 'break' enable bit. This bit can only be set from supervisor
|
1056 |
|
|
// mode. It control what the CPU does upon encountering a break
|
1057 |
|
|
// instruction.
|
1058 |
|
|
//
|
1059 |
|
|
// The goal, upon encountering a break is that the CPU should stop and
|
1060 |
|
|
// not execute the break instruction, choosing instead to enter into
|
1061 |
|
|
// either interrupt mode or halt first.
|
1062 |
|
|
// if ((break_en) AND (break_instruction)) // user mode or not
|
1063 |
|
|
// HALT CPU
|
1064 |
|
|
// else if (break_instruction) // only in user mode
|
1065 |
|
|
// set an interrupt flag, go to supervisor mode
|
1066 |
|
|
// allow supervisor to step the CPU.
|
1067 |
|
|
// Upon a CPU halt, any break condition will be reset. The
|
1068 |
|
|
// external debugger will then need to deal with whatever
|
1069 |
|
|
// condition has taken place.
|
1070 |
|
|
initial break_en = 1'b0;
|
1071 |
|
|
always @(posedge i_clk)
|
1072 |
|
|
if ((i_rst)||(i_halt))
|
1073 |
|
|
break_en <= 1'b0;
|
1074 |
25 |
dgisselq |
else if ((wr_reg_ce)&&(~wr_reg_id[4])&&(wr_write_cc))
|
1075 |
2 |
dgisselq |
break_en <= wr_reg_vl[`CPU_BREAK_BIT];
|
1076 |
34 |
dgisselq |
else if ((i_halt)&&(i_dbg_we)
|
1077 |
|
|
&&(i_dbg_reg == { 1'b0, `CPU_CC_REG }))
|
1078 |
|
|
break_en <= i_dbg_data[`CPU_BREAK_BIT];
|
1079 |
38 |
dgisselq |
`ifdef OPT_ILLEGAL_INSTRUCTION
|
1080 |
36 |
dgisselq |
assign o_break = ((break_en)||(~op_gie))&&(op_break)
|
1081 |
|
|
&&(~alu_valid)&&(~mem_valid)&&(~mem_busy)
|
1082 |
|
|
&&(~clear_pipeline)
|
1083 |
|
|
||((~alu_gie)&&(bus_err))
|
1084 |
|
|
||((~alu_gie)&&(alu_valid)&&(alu_illegal));
|
1085 |
|
|
`else
|
1086 |
|
|
assign o_break = (((break_en)||(~op_gie))&&(op_break)
|
1087 |
|
|
&&(~alu_valid)&&(~mem_valid)&&(~mem_busy)
|
1088 |
|
|
&&(~clear_pipeline))
|
1089 |
38 |
dgisselq |
||((~alu_gie)&&(bus_err));
|
1090 |
36 |
dgisselq |
`endif
|
1091 |
2 |
dgisselq |
|
1092 |
|
|
|
1093 |
|
|
// The sleep register. Setting the sleep register causes the CPU to
|
1094 |
|
|
// sleep until the next interrupt. Setting the sleep register within
|
1095 |
|
|
// interrupt mode causes the processor to halt until a reset. This is
|
1096 |
25 |
dgisselq |
// a panic/fault halt. The trick is that you cannot be allowed to
|
1097 |
|
|
// set the sleep bit and switch to supervisor mode in the same
|
1098 |
|
|
// instruction: users are not allowed to halt the CPU.
|
1099 |
2 |
dgisselq |
always @(posedge i_clk)
|
1100 |
|
|
if ((i_rst)||((i_interrupt)&&(gie)))
|
1101 |
|
|
sleep <= 1'b0;
|
1102 |
25 |
dgisselq |
else if ((wr_reg_ce)&&(wr_write_cc)&&(~alu_gie))
|
1103 |
|
|
// In supervisor mode, we have no protections. The
|
1104 |
|
|
// supervisor can set the sleep bit however he wants.
|
1105 |
2 |
dgisselq |
sleep <= wr_reg_vl[`CPU_SLEEP_BIT];
|
1106 |
25 |
dgisselq |
else if ((wr_reg_ce)&&(wr_write_cc)&&(wr_reg_vl[`CPU_GIE_BIT]))
|
1107 |
|
|
// In user mode, however, you can only set the sleep
|
1108 |
|
|
// mode while remaining in user mode. You can't switch
|
1109 |
|
|
// to sleep mode *and* supervisor mode at the same
|
1110 |
|
|
// time, lest you halt the CPU.
|
1111 |
|
|
sleep <= wr_reg_vl[`CPU_SLEEP_BIT];
|
1112 |
2 |
dgisselq |
else if ((i_halt)&&(i_dbg_we)
|
1113 |
|
|
&&(i_dbg_reg == { 1'b1, `CPU_CC_REG }))
|
1114 |
|
|
sleep <= i_dbg_data[`CPU_SLEEP_BIT];
|
1115 |
|
|
|
1116 |
|
|
always @(posedge i_clk)
|
1117 |
|
|
if ((i_rst)||(w_switch_to_interrupt))
|
1118 |
|
|
step <= 1'b0;
|
1119 |
25 |
dgisselq |
else if ((wr_reg_ce)&&(~alu_gie)&&(wr_reg_id[4])&&(wr_write_cc))
|
1120 |
2 |
dgisselq |
step <= wr_reg_vl[`CPU_STEP_BIT];
|
1121 |
|
|
else if ((i_halt)&&(i_dbg_we)
|
1122 |
|
|
&&(i_dbg_reg == { 1'b1, `CPU_CC_REG }))
|
1123 |
|
|
step <= i_dbg_data[`CPU_STEP_BIT];
|
1124 |
38 |
dgisselq |
else if ((alu_pc_valid)&&(step)&&(gie))
|
1125 |
2 |
dgisselq |
step <= 1'b0;
|
1126 |
|
|
|
1127 |
|
|
// The GIE register. Only interrupts can disable the interrupt register
|
1128 |
|
|
assign w_switch_to_interrupt = (gie)&&(
|
1129 |
|
|
// On interrupt (obviously)
|
1130 |
|
|
(i_interrupt)
|
1131 |
|
|
// If we are stepping the CPU
|
1132 |
38 |
dgisselq |
||((alu_pc_valid)&&(step))
|
1133 |
2 |
dgisselq |
// If we encounter a break instruction, if the break
|
1134 |
36 |
dgisselq |
// enable isn't set.
|
1135 |
38 |
dgisselq |
||((master_ce)&&(~mem_rdbusy)&&(op_break)&&(~break_en))
|
1136 |
|
|
`ifdef OPT_ILLEGAL_INSTRUCTION
|
1137 |
36 |
dgisselq |
// On an illegal instruction
|
1138 |
|
|
||((alu_valid)&&(alu_illegal))
|
1139 |
|
|
`endif
|
1140 |
2 |
dgisselq |
// If we write to the CC register
|
1141 |
|
|
||((wr_reg_ce)&&(~wr_reg_vl[`CPU_GIE_BIT])
|
1142 |
25 |
dgisselq |
&&(wr_reg_id[4])&&(wr_write_cc))
|
1143 |
2 |
dgisselq |
// Or if, in debug mode, we write to the CC register
|
1144 |
|
|
||((i_halt)&&(i_dbg_we)&&(~i_dbg_data[`CPU_GIE_BIT])
|
1145 |
|
|
&&(i_dbg_reg == { 1'b1, `CPU_CC_REG}))
|
1146 |
|
|
);
|
1147 |
|
|
assign w_release_from_interrupt = (~gie)&&(~i_interrupt)
|
1148 |
|
|
// Then if we write the CC register
|
1149 |
|
|
&&(((wr_reg_ce)&&(wr_reg_vl[`CPU_GIE_BIT])
|
1150 |
25 |
dgisselq |
&&(~wr_reg_id[4])&&(wr_write_cc))
|
1151 |
2 |
dgisselq |
// Or if, in debug mode, we write the CC register
|
1152 |
|
|
||((i_halt)&&(i_dbg_we)&&(i_dbg_data[`CPU_GIE_BIT])
|
1153 |
|
|
&&(i_dbg_reg == { 1'b0, `CPU_CC_REG}))
|
1154 |
|
|
);
|
1155 |
|
|
always @(posedge i_clk)
|
1156 |
|
|
if (i_rst)
|
1157 |
|
|
gie <= 1'b0;
|
1158 |
|
|
else if (w_switch_to_interrupt)
|
1159 |
|
|
gie <= 1'b0;
|
1160 |
|
|
else if (w_release_from_interrupt)
|
1161 |
|
|
gie <= 1'b1;
|
1162 |
|
|
|
1163 |
25 |
dgisselq |
initial trap = 1'b0;
|
1164 |
|
|
always @(posedge i_clk)
|
1165 |
|
|
if (i_rst)
|
1166 |
|
|
trap <= 1'b0;
|
1167 |
|
|
else if ((gie)&&(wr_reg_ce)&&(~wr_reg_vl[`CPU_GIE_BIT])
|
1168 |
|
|
&&(wr_reg_id[4])&&(wr_write_cc))
|
1169 |
|
|
trap <= 1'b1;
|
1170 |
|
|
else if ((i_halt)&&(i_dbg_we)&&(i_dbg_reg[3:0] == `CPU_CC_REG)
|
1171 |
|
|
&&(~i_dbg_data[`CPU_GIE_BIT]))
|
1172 |
|
|
trap <= i_dbg_data[`CPU_TRAP_BIT];
|
1173 |
|
|
else if (w_release_from_interrupt)
|
1174 |
|
|
trap <= 1'b0;
|
1175 |
|
|
|
1176 |
38 |
dgisselq |
`ifdef OPT_ILLEGAL_INSTRUCTION
|
1177 |
36 |
dgisselq |
initial ill_err = 1'b0;
|
1178 |
|
|
always @(posedge i_clk)
|
1179 |
|
|
if (i_rst)
|
1180 |
|
|
ill_err <= 1'b0;
|
1181 |
|
|
else if (w_release_from_interrupt)
|
1182 |
|
|
ill_err <= 1'b0;
|
1183 |
|
|
else if ((alu_valid)&&(alu_illegal)&&(gie))
|
1184 |
|
|
ill_err <= 1'b1;
|
1185 |
38 |
dgisselq |
`else
|
1186 |
|
|
assign ill_err = 1'b0;
|
1187 |
36 |
dgisselq |
`endif
|
1188 |
|
|
initial bus_err_flag = 1'b0;
|
1189 |
|
|
always @(posedge i_clk)
|
1190 |
|
|
if (i_rst)
|
1191 |
|
|
bus_err_flag <= 1'b0;
|
1192 |
|
|
else if (w_release_from_interrupt)
|
1193 |
|
|
bus_err_flag <= 1'b0;
|
1194 |
|
|
else if ((bus_err)&&(alu_gie))
|
1195 |
|
|
bus_err_flag <= 1'b1;
|
1196 |
|
|
|
1197 |
2 |
dgisselq |
//
|
1198 |
|
|
// Write backs to the PC register, and general increments of it
|
1199 |
|
|
// We support two: upc and ipc. If the instruction is normal,
|
1200 |
|
|
// we increment upc, if interrupt level we increment ipc. If
|
1201 |
|
|
// the instruction writes the PC, we write whichever PC is appropriate.
|
1202 |
|
|
//
|
1203 |
|
|
// Do we need to all our partial results from the pipeline?
|
1204 |
|
|
// What happens when the pipeline has gie and ~gie instructions within
|
1205 |
|
|
// it? Do we clear both? What if a gie instruction tries to clear
|
1206 |
|
|
// a non-gie instruction?
|
1207 |
|
|
always @(posedge i_clk)
|
1208 |
9 |
dgisselq |
if ((wr_reg_ce)&&(wr_reg_id[4])&&(wr_write_pc))
|
1209 |
48 |
dgisselq |
upc <= wr_reg_vl[(AW-1):0];
|
1210 |
36 |
dgisselq |
else if ((alu_gie)&&(alu_pc_valid)&&(~clear_pipeline))
|
1211 |
2 |
dgisselq |
upc <= alu_pc;
|
1212 |
|
|
else if ((i_halt)&&(i_dbg_we)
|
1213 |
|
|
&&(i_dbg_reg == { 1'b1, `CPU_PC_REG }))
|
1214 |
48 |
dgisselq |
upc <= i_dbg_data[(AW-1):0];
|
1215 |
2 |
dgisselq |
|
1216 |
|
|
always @(posedge i_clk)
|
1217 |
|
|
if (i_rst)
|
1218 |
|
|
ipc <= RESET_ADDRESS;
|
1219 |
|
|
else if ((wr_reg_ce)&&(~wr_reg_id[4])&&(wr_write_pc))
|
1220 |
48 |
dgisselq |
ipc <= wr_reg_vl[(AW-1):0];
|
1221 |
36 |
dgisselq |
else if ((~alu_gie)&&(alu_pc_valid)&&(~clear_pipeline))
|
1222 |
2 |
dgisselq |
ipc <= alu_pc;
|
1223 |
|
|
else if ((i_halt)&&(i_dbg_we)
|
1224 |
|
|
&&(i_dbg_reg == { 1'b0, `CPU_PC_REG }))
|
1225 |
48 |
dgisselq |
ipc <= i_dbg_data[(AW-1):0];
|
1226 |
2 |
dgisselq |
|
1227 |
|
|
always @(posedge i_clk)
|
1228 |
|
|
if (i_rst)
|
1229 |
|
|
pf_pc <= RESET_ADDRESS;
|
1230 |
|
|
else if (w_switch_to_interrupt)
|
1231 |
|
|
pf_pc <= ipc;
|
1232 |
|
|
else if (w_release_from_interrupt)
|
1233 |
|
|
pf_pc <= upc;
|
1234 |
|
|
else if ((wr_reg_ce)&&(wr_reg_id[4] == gie)&&(wr_write_pc))
|
1235 |
48 |
dgisselq |
pf_pc <= wr_reg_vl[(AW-1):0];
|
1236 |
2 |
dgisselq |
else if ((i_halt)&&(i_dbg_we)
|
1237 |
34 |
dgisselq |
&&(i_dbg_reg[4:0] == { gie, `CPU_PC_REG}))
|
1238 |
48 |
dgisselq |
pf_pc <= i_dbg_data[(AW-1):0];
|
1239 |
2 |
dgisselq |
else if (dcd_ce)
|
1240 |
|
|
pf_pc <= pf_pc + 1;
|
1241 |
|
|
|
1242 |
|
|
initial new_pc = 1'b1;
|
1243 |
|
|
always @(posedge i_clk)
|
1244 |
18 |
dgisselq |
if ((i_rst)||(i_clear_pf_cache))
|
1245 |
2 |
dgisselq |
new_pc <= 1'b1;
|
1246 |
|
|
else if (w_switch_to_interrupt)
|
1247 |
|
|
new_pc <= 1'b1;
|
1248 |
|
|
else if (w_release_from_interrupt)
|
1249 |
|
|
new_pc <= 1'b1;
|
1250 |
|
|
else if ((wr_reg_ce)&&(wr_reg_id[4] == gie)&&(wr_write_pc))
|
1251 |
|
|
new_pc <= 1'b1;
|
1252 |
|
|
else if ((i_halt)&&(i_dbg_we)
|
1253 |
34 |
dgisselq |
&&(i_dbg_reg[4:0] == { gie, `CPU_PC_REG}))
|
1254 |
2 |
dgisselq |
new_pc <= 1'b1;
|
1255 |
|
|
else
|
1256 |
|
|
new_pc <= 1'b0;
|
1257 |
|
|
|
1258 |
|
|
//
|
1259 |
|
|
// The debug interface
|
1260 |
|
|
always @(posedge i_clk)
|
1261 |
|
|
begin
|
1262 |
|
|
o_dbg_reg <= regset[i_dbg_reg];
|
1263 |
|
|
if (i_dbg_reg[3:0] == `CPU_PC_REG)
|
1264 |
48 |
dgisselq |
o_dbg_reg <= {{(32-AW){1'b0}},(i_dbg_reg[4])?upc:ipc};
|
1265 |
2 |
dgisselq |
else if (i_dbg_reg[3:0] == `CPU_CC_REG)
|
1266 |
36 |
dgisselq |
o_dbg_reg[10:0] <= (i_dbg_reg[4])?w_uflags:w_iflags;
|
1267 |
2 |
dgisselq |
end
|
1268 |
|
|
always @(posedge i_clk)
|
1269 |
25 |
dgisselq |
o_dbg_cc <= { gie, sleep };
|
1270 |
18 |
dgisselq |
|
1271 |
|
|
always @(posedge i_clk)
|
1272 |
25 |
dgisselq |
o_dbg_stall <= (i_halt)&&(
|
1273 |
36 |
dgisselq |
(pf_cyc)||(mem_cyc_gbl)||(mem_cyc_lcl)||(mem_busy)
|
1274 |
2 |
dgisselq |
||((~opvalid)&&(~i_rst))
|
1275 |
25 |
dgisselq |
||((~dcdvalid)&&(~i_rst)));
|
1276 |
2 |
dgisselq |
|
1277 |
|
|
//
|
1278 |
|
|
//
|
1279 |
|
|
// Produce accounting outputs: Account for any CPU stalls, so we can
|
1280 |
|
|
// later evaluate how well we are doing.
|
1281 |
|
|
//
|
1282 |
|
|
//
|
1283 |
9 |
dgisselq |
assign o_op_stall = (master_ce)&&((~opvalid)||(op_stall));
|
1284 |
|
|
assign o_pf_stall = (master_ce)&&(~pf_valid);
|
1285 |
38 |
dgisselq |
assign o_i_count = (alu_pc_valid)&&(~clear_pipeline);
|
1286 |
2 |
dgisselq |
endmodule
|