1 |
209 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
2 |
|
|
//
|
3 |
|
|
// Filename: wbdblpriarb.v
|
4 |
|
|
//
|
5 |
|
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
6 |
|
|
//
|
7 |
|
|
// Purpose: This should almost be identical to the priority arbiter, save
|
8 |
|
|
// for a simple diffence: it allows the arbitration of two
|
9 |
|
|
// separate wishbone buses. The purpose of this is to push the address
|
10 |
|
|
// resolution back one cycle, so that by the first clock visible to this
|
11 |
|
|
// core, it is known which of two parts of the bus the desired address
|
12 |
|
|
// will be on, save that we still use the arbiter since the underlying
|
13 |
|
|
// device doesn't know that there are two wishbone buses.
|
14 |
|
|
//
|
15 |
|
|
// So at this point we've deviated from the WB spec somewhat, by allowing
|
16 |
|
|
// two CYC and two STB lines. Everything else is the same. This allows
|
17 |
|
|
// (in this case the Zip CPU) to determine whether or not the access
|
18 |
|
|
// will be to the local ZipSystem bus or the external WB bus on the clock
|
19 |
|
|
// before the local bus access, otherwise peripherals were needing to do
|
20 |
|
|
// multiple device selection comparisons/test within a clock: 1) is this
|
21 |
|
|
// for the local or external bus, and 2) is this referencing me as a
|
22 |
|
|
// peripheral. This then caused the ZipCPU to fail all timing specs.
|
23 |
|
|
// By creating the two pairs of lines, CYC_A/STB_A and CYC_B/STB_B, the
|
24 |
|
|
// determination of local vs external can be made one clock earlier
|
25 |
|
|
// where there's still time for the logic, and the second comparison
|
26 |
|
|
// now has time to complete.
|
27 |
|
|
//
|
28 |
|
|
// So let me try to explain this again. To use this arbiter, one of the
|
29 |
|
|
// two masters sets CYC and STB before, only the master determines which
|
30 |
|
|
// of two address spaces the CYC and STB apply to before the clock and
|
31 |
|
|
// only sets the appropriate CYC and STB lines. Then, on the clock tick,
|
32 |
|
|
// the arbiter determines who gets *both* busses, as they both share every
|
33 |
|
|
// other WB line. Thus, only one of CYC_A and CYC_B going out will ever
|
34 |
|
|
// be high at a given time.
|
35 |
|
|
//
|
36 |
|
|
// Hopefully this makes more sense than it sounds. If not, check out the
|
37 |
|
|
// code below for a better explanation.
|
38 |
|
|
//
|
39 |
|
|
// 20150919 -- Added supported for the WB error signal.
|
40 |
|
|
//
|
41 |
|
|
//
|
42 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
43 |
|
|
// Gisselquist Technology, LLC
|
44 |
|
|
//
|
45 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
46 |
|
|
//
|
47 |
|
|
// Copyright (C) 2015,2018-2019, Gisselquist Technology, LLC
|
48 |
|
|
//
|
49 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
50 |
|
|
// modify it under the terms of the GNU General Public License as published
|
51 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
52 |
|
|
// your option) any later version.
|
53 |
|
|
//
|
54 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
55 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
56 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
57 |
|
|
// for more details.
|
58 |
|
|
//
|
59 |
|
|
// You should have received a copy of the GNU General Public License along
|
60 |
|
|
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
|
61 |
|
|
// target there if the PDF file isn't present.) If not, see
|
62 |
|
|
// <http://www.gnu.org/licenses/> for a copy.
|
63 |
|
|
//
|
64 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
65 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
66 |
|
|
//
|
67 |
|
|
//
|
68 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
69 |
|
|
//
|
70 |
|
|
//
|
71 |
|
|
`default_nettype none
|
72 |
|
|
//
|
73 |
|
|
module wbdblpriarb(i_clk, i_reset,
|
74 |
|
|
// Bus A
|
75 |
|
|
i_a_cyc_a,i_a_cyc_b,i_a_stb_a,i_a_stb_b,i_a_we,i_a_adr, i_a_dat, i_a_sel, o_a_ack, o_a_stall, o_a_err,
|
76 |
|
|
// Bus B
|
77 |
|
|
i_b_cyc_a,i_b_cyc_b,i_b_stb_a,i_b_stb_b,i_b_we,i_b_adr, i_b_dat, i_b_sel, o_b_ack, o_b_stall, o_b_err,
|
78 |
|
|
// Both buses
|
79 |
|
|
o_cyc_a, o_cyc_b, o_stb_a, o_stb_b, o_we, o_adr, o_dat, o_sel,
|
80 |
|
|
i_ack, i_stall, i_err
|
81 |
|
|
`ifdef FORMAL
|
82 |
|
|
, f_nreqs_a, f_nacks_a, f_outstanding_a,
|
83 |
|
|
f_nreqs_b, f_nacks_b, f_outstanding_b,
|
84 |
|
|
f_a_nreqs_a, f_a_nacks_a, f_a_outstanding_a,
|
85 |
|
|
f_a_nreqs_b, f_a_nacks_b, f_a_outstanding_b,
|
86 |
|
|
f_b_nreqs_a, f_b_nacks_a, f_b_outstanding_a,
|
87 |
|
|
f_b_nreqs_b, f_b_nacks_b, f_b_outstanding_b
|
88 |
|
|
`endif
|
89 |
|
|
);
|
90 |
|
|
|
91 |
|
|
parameter DW=32, AW=32;
|
92 |
|
|
//
|
93 |
|
|
// ZERO_ON_IDLE uses more logic than the alternative. It should be
|
94 |
|
|
// useful for reducing power, as these circuits tend to drive wires
|
95 |
|
|
// all the way across the design, but it may also slow down the master
|
96 |
|
|
// clock. I've used it as an option when using VERILATOR, 'cause
|
97 |
|
|
// zeroing things on idle can make them stand out all the more when
|
98 |
|
|
// staring at wires and dumps and such.
|
99 |
|
|
parameter [0:0] OPT_ZERO_ON_IDLE = 1'b0;
|
100 |
|
|
//
|
101 |
|
|
//
|
102 |
|
|
parameter F_LGDEPTH = 3;
|
103 |
|
|
//
|
104 |
|
|
//
|
105 |
|
|
parameter F_MAX_STALL = 0;
|
106 |
|
|
parameter F_MAX_ACK_DELAY=0;
|
107 |
|
|
//
|
108 |
|
|
// Wishbone doesn't use an i_ce signal. While it could, they dislike
|
109 |
|
|
// what it would (might) do to the synchronous reset signal, i_reset.
|
110 |
|
|
input wire i_clk, i_reset;
|
111 |
|
|
// Bus A
|
112 |
|
|
input wire i_a_cyc_a, i_a_cyc_b, i_a_stb_a, i_a_stb_b, i_a_we;
|
113 |
|
|
input wire [(AW-1):0] i_a_adr;
|
114 |
|
|
input wire [(DW-1):0] i_a_dat;
|
115 |
|
|
input wire [(DW/8-1):0] i_a_sel;
|
116 |
|
|
output wire o_a_ack, o_a_stall, o_a_err;
|
117 |
|
|
// Bus B
|
118 |
|
|
input wire i_b_cyc_a, i_b_cyc_b, i_b_stb_a, i_b_stb_b, i_b_we;
|
119 |
|
|
input wire [(AW-1):0] i_b_adr;
|
120 |
|
|
input wire [(DW-1):0] i_b_dat;
|
121 |
|
|
input wire [(DW/8-1):0] i_b_sel;
|
122 |
|
|
output wire o_b_ack, o_b_stall, o_b_err;
|
123 |
|
|
//
|
124 |
|
|
output wire o_cyc_a,o_cyc_b, o_stb_a, o_stb_b, o_we;
|
125 |
|
|
output wire [(AW-1):0] o_adr;
|
126 |
|
|
output wire [(DW-1):0] o_dat;
|
127 |
|
|
output wire [(DW/8-1):0] o_sel;
|
128 |
|
|
input wire i_ack, i_stall, i_err;
|
129 |
|
|
`ifdef FORMAL
|
130 |
|
|
output wire [(F_LGDEPTH-1):0]
|
131 |
|
|
f_nreqs_a, f_nacks_a, f_outstanding_a,
|
132 |
|
|
f_nreqs_b, f_nacks_b, f_outstanding_b,
|
133 |
|
|
f_a_nreqs_a, f_a_nacks_a, f_a_outstanding_a,
|
134 |
|
|
f_a_nreqs_b, f_a_nacks_b, f_a_outstanding_b,
|
135 |
|
|
f_b_nreqs_a, f_b_nacks_a, f_b_outstanding_a,
|
136 |
|
|
f_b_nreqs_b, f_b_nacks_b, f_b_outstanding_b;
|
137 |
|
|
`endif
|
138 |
|
|
|
139 |
|
|
// All of our logic is really captured in the 'r_a_owner' register.
|
140 |
|
|
// This register determines who owns the bus. If no one is requesting
|
141 |
|
|
// the bus, ownership goes to A on the next clock. Otherwise, if B is
|
142 |
|
|
// requesting the bus and A is not, then ownership goes to not A on
|
143 |
|
|
// the next clock. (Sounds simple ...)
|
144 |
|
|
//
|
145 |
|
|
// The CYC logic is here to make certain that, by the time we determine
|
146 |
|
|
// who the bus owner is, we can do so based upon determined criteria.
|
147 |
|
|
reg r_a_owner;
|
148 |
|
|
|
149 |
|
|
initial r_a_owner = 1'b1;
|
150 |
|
|
always @(posedge i_clk)
|
151 |
|
|
if (i_reset)
|
152 |
|
|
r_a_owner <= 1'b1;
|
153 |
|
|
/*
|
154 |
|
|
// Remain with the "last owner" until 1) the other bus requests
|
155 |
|
|
// access, and 2) the last owner no longer wants it. This
|
156 |
|
|
// logic "idles" on the last owner.
|
157 |
|
|
//
|
158 |
|
|
// This is an alternating bus owner strategy
|
159 |
|
|
//
|
160 |
|
|
else if ((!o_cyc_a)&&(!o_cyc_b))
|
161 |
|
|
r_a_owner <= ((i_b_stb_a)||(i_b_stb_b))? 1'b0:1'b1;
|
162 |
|
|
//
|
163 |
|
|
// Expanding this out
|
164 |
|
|
//
|
165 |
|
|
// else if ((r_a_owner)&&((i_a_cyc_a)||(i_a_cyc_b)))
|
166 |
|
|
// r_a_owner <= 1'b1;
|
167 |
|
|
// else if ((!r_a_owner)&&((i_b_cyc_a)||(i_b_cyc_b)))
|
168 |
|
|
// r_a_owner <= 1'b0;
|
169 |
|
|
// else if ((r_a_owner)&&((i_b_stb_a)||(i_b_stb_b)))
|
170 |
|
|
// r_a_owner <= 1'b0;
|
171 |
|
|
// else if ((!r_a_owner)&&((i_a_stb_a)||(i_a_stb_b)))
|
172 |
|
|
// r_a_owner <= 1'b0;
|
173 |
|
|
//
|
174 |
|
|
// Logic required:
|
175 |
|
|
//
|
176 |
|
|
// Reset line
|
177 |
|
|
// + 9 inputs (data)
|
178 |
|
|
// + 9 inputs (CE)
|
179 |
|
|
// Could be done with three LUTs
|
180 |
|
|
// First two evaluate o_cyc_a and o_cyc_b (above)
|
181 |
|
|
*/
|
182 |
|
|
// Option 2:
|
183 |
|
|
//
|
184 |
|
|
// "Idle" on A as the owner.
|
185 |
|
|
// If a request is made from B, AND A is idle, THEN
|
186 |
|
|
// switch. Otherwise, if B is ever idle, revert back to A
|
187 |
|
|
// regardless of whether A wants it or not.
|
188 |
|
|
else if ((!i_b_cyc_a)&&(!i_b_cyc_b))
|
189 |
|
|
r_a_owner <= 1'b1;
|
190 |
|
|
else if ((!i_a_cyc_a)&&(!i_a_cyc_b)
|
191 |
|
|
&&((i_b_stb_a)||(i_b_stb_b)))
|
192 |
|
|
r_a_owner <= 1'b0;
|
193 |
|
|
|
194 |
|
|
// Realistically, if neither master owns the bus, the output is a
|
195 |
|
|
// don't care. Thus we trigger off whether or not 'A' owns the bus.
|
196 |
|
|
// If 'B' owns it all we care is that 'A' does not. Likewise, if
|
197 |
|
|
// neither owns the bus than the values on these various lines are
|
198 |
|
|
// irrelevant.
|
199 |
|
|
|
200 |
|
|
assign o_cyc_a = ((r_a_owner) ? i_a_cyc_a : i_b_cyc_a);
|
201 |
|
|
assign o_cyc_b = ((r_a_owner) ? i_a_cyc_b : i_b_cyc_b);
|
202 |
|
|
assign o_stb_a = (r_a_owner) ? i_a_stb_a : i_b_stb_a;
|
203 |
|
|
assign o_stb_b = (r_a_owner) ? i_a_stb_b : i_b_stb_b;
|
204 |
|
|
assign o_we = (r_a_owner) ? i_a_we : i_b_we;
|
205 |
|
|
generate if (OPT_ZERO_ON_IDLE)
|
206 |
|
|
begin
|
207 |
|
|
wire o_cyc, o_stb;
|
208 |
|
|
assign o_cyc = ((o_cyc_a)||(o_cyc_b));
|
209 |
|
|
assign o_stb = ((o_stb_a)||(o_stb_b));
|
210 |
|
|
assign o_adr = (o_stb)?((r_a_owner) ? i_a_adr : i_b_adr):0;
|
211 |
|
|
assign o_dat = (o_stb)?((r_a_owner) ? i_a_dat : i_b_dat):0;
|
212 |
|
|
assign o_sel = (o_stb)?((r_a_owner) ? i_a_sel : i_b_sel):0;
|
213 |
|
|
assign o_a_ack = (o_cyc)&&( r_a_owner) ? i_ack : 1'b0;
|
214 |
|
|
assign o_b_ack = (o_cyc)&&(!r_a_owner) ? i_ack : 1'b0;
|
215 |
|
|
assign o_a_stall = (o_cyc)&&( r_a_owner) ? i_stall : 1'b1;
|
216 |
|
|
assign o_b_stall = (o_cyc)&&(!r_a_owner) ? i_stall : 1'b1;
|
217 |
|
|
assign o_a_err = (o_cyc)&&( r_a_owner) ? i_err : 1'b0;
|
218 |
|
|
assign o_b_err = (o_cyc)&&(!r_a_owner) ? i_err : 1'b0;
|
219 |
|
|
end else begin
|
220 |
|
|
assign o_adr = (r_a_owner) ? i_a_adr : i_b_adr;
|
221 |
|
|
assign o_dat = (r_a_owner) ? i_a_dat : i_b_dat;
|
222 |
|
|
assign o_sel = (r_a_owner) ? i_a_sel : i_b_sel;
|
223 |
|
|
|
224 |
|
|
// We cannot allow the return acknowledgement to ever go high if
|
225 |
|
|
// the master in question does not own the bus. Hence we force it
|
226 |
|
|
// low if the particular master doesn't own the bus.
|
227 |
|
|
assign o_a_ack = ( r_a_owner) ? i_ack : 1'b0;
|
228 |
|
|
assign o_b_ack = (!r_a_owner) ? i_ack : 1'b0;
|
229 |
|
|
|
230 |
|
|
// Stall must be asserted on the same cycle the input master asserts
|
231 |
|
|
// the bus, if the bus isn't granted to him.
|
232 |
|
|
assign o_a_stall = ( r_a_owner) ? i_stall : 1'b1;
|
233 |
|
|
assign o_b_stall = (!r_a_owner) ? i_stall : 1'b1;
|
234 |
|
|
|
235 |
|
|
//
|
236 |
|
|
//
|
237 |
|
|
assign o_a_err = ( r_a_owner) ? i_err : 1'b0;
|
238 |
|
|
assign o_b_err = (!r_a_owner) ? i_err : 1'b0;
|
239 |
|
|
end endgenerate
|
240 |
|
|
|
241 |
|
|
`ifdef FORMAL
|
242 |
|
|
`define ASSERT assert
|
243 |
|
|
`ifdef WBDBLPRIARB
|
244 |
|
|
`define ASSUME assume
|
245 |
|
|
`else
|
246 |
|
|
`define ASSUME assert
|
247 |
|
|
`endif
|
248 |
|
|
|
249 |
|
|
reg f_past_valid;
|
250 |
|
|
initial f_past_valid = 1'b0;
|
251 |
|
|
always @(posedge i_clk)
|
252 |
|
|
f_past_valid <= 1'b1;
|
253 |
|
|
|
254 |
|
|
initial `ASSUME(i_reset);
|
255 |
|
|
always @(*)
|
256 |
|
|
if (!f_past_valid)
|
257 |
|
|
`ASSUME(i_reset);
|
258 |
|
|
|
259 |
|
|
initial `ASSUME(!i_a_cyc_a);
|
260 |
|
|
initial `ASSUME(!i_a_stb_a);
|
261 |
|
|
initial `ASSUME(!i_a_cyc_b);
|
262 |
|
|
initial `ASSUME(!i_a_stb_b);
|
263 |
|
|
|
264 |
|
|
initial `ASSUME(!i_b_cyc_a);
|
265 |
|
|
initial `ASSUME(!i_b_stb_a);
|
266 |
|
|
initial `ASSUME(!i_b_cyc_b);
|
267 |
|
|
initial `ASSUME(!i_b_stb_b);
|
268 |
|
|
|
269 |
|
|
initial `ASSUME(!i_ack);
|
270 |
|
|
initial `ASSUME(!i_err);
|
271 |
|
|
|
272 |
|
|
always @(*)
|
273 |
|
|
`ASSUME((!i_a_cyc_a)||(!i_a_cyc_b));
|
274 |
|
|
always @(*)
|
275 |
|
|
`ASSUME((!i_b_cyc_a)||(!i_b_cyc_b));
|
276 |
|
|
|
277 |
|
|
always @(posedge i_clk)
|
278 |
|
|
if ((f_past_valid)&&($past(i_a_cyc_a)))
|
279 |
|
|
`ASSUME(!i_a_cyc_b);
|
280 |
|
|
|
281 |
|
|
always @(posedge i_clk)
|
282 |
|
|
if ((f_past_valid)&&($past(i_a_cyc_b)))
|
283 |
|
|
`ASSUME(!i_a_cyc_a);
|
284 |
|
|
|
285 |
|
|
always @(posedge i_clk)
|
286 |
|
|
if ((f_past_valid)&&($past(i_b_cyc_a)))
|
287 |
|
|
`ASSUME(!i_b_cyc_b);
|
288 |
|
|
|
289 |
|
|
always @(posedge i_clk)
|
290 |
|
|
if ((f_past_valid)&&($past(i_b_cyc_b)))
|
291 |
|
|
`ASSUME(!i_b_cyc_a);
|
292 |
|
|
|
293 |
|
|
wire f_cyc, f_stb;
|
294 |
|
|
assign f_cyc = (o_cyc_a)||(o_cyc_b);
|
295 |
|
|
assign f_stb = (o_stb_a)||(o_stb_b);
|
296 |
|
|
always @(posedge i_clk)
|
297 |
|
|
begin
|
298 |
|
|
if (o_cyc_a)
|
299 |
|
|
`ASSERT((i_a_cyc_a)||(i_b_cyc_a));
|
300 |
|
|
if (o_cyc_b)
|
301 |
|
|
`ASSERT((i_a_cyc_b)||(i_b_cyc_b));
|
302 |
|
|
`ASSERT((!o_cyc_a)||(!o_cyc_b));
|
303 |
|
|
end
|
304 |
|
|
|
305 |
|
|
always @(posedge i_clk)
|
306 |
|
|
if ((f_past_valid)&&(!$past(i_reset)))
|
307 |
|
|
begin
|
308 |
|
|
if ($past(f_cyc))
|
309 |
|
|
begin
|
310 |
|
|
if (($past(o_cyc_a))&&(o_cyc_a))
|
311 |
|
|
`ASSERT($past(r_a_owner) == r_a_owner);
|
312 |
|
|
if (($past(o_cyc_b))&&(o_cyc_b))
|
313 |
|
|
`ASSERT($past(r_a_owner) == r_a_owner);
|
314 |
|
|
end else begin
|
315 |
|
|
if (($past(i_a_stb_a))||($past(i_a_stb_b)))
|
316 |
|
|
`ASSERT(r_a_owner);
|
317 |
|
|
if (($past(i_b_stb_a))||($past(i_b_stb_b)))
|
318 |
|
|
`ASSERT(!r_a_owner);
|
319 |
|
|
end
|
320 |
|
|
end
|
321 |
|
|
|
322 |
|
|
|
323 |
|
|
fwb_master #(.AW(AW), .DW(DW),
|
324 |
|
|
.F_MAX_STALL(F_MAX_STALL),
|
325 |
|
|
.F_LGDEPTH(F_LGDEPTH),
|
326 |
|
|
.F_MAX_ACK_DELAY(F_MAX_ACK_DELAY),
|
327 |
|
|
.F_OPT_RMW_BUS_OPTION(1),
|
328 |
|
|
.F_OPT_DISCONTINUOUS(1))
|
329 |
|
|
f_wbm_a(i_clk, i_reset,
|
330 |
|
|
o_cyc_a, o_stb_a, o_we, o_adr, o_dat, o_sel,
|
331 |
|
|
(o_cyc_a)&&(i_ack), i_stall, 32'h0, (o_cyc_a)&&(i_err),
|
332 |
|
|
f_nreqs_a, f_nacks_a, f_outstanding_a);
|
333 |
|
|
fwb_master #(.AW(AW), .DW(DW),
|
334 |
|
|
.F_MAX_STALL(F_MAX_STALL),
|
335 |
|
|
.F_MAX_ACK_DELAY(F_MAX_ACK_DELAY),
|
336 |
|
|
.F_LGDEPTH(F_LGDEPTH),
|
337 |
|
|
.F_OPT_RMW_BUS_OPTION(1),
|
338 |
|
|
.F_OPT_DISCONTINUOUS(1))
|
339 |
|
|
f_wbm_b(i_clk, i_reset,
|
340 |
|
|
o_cyc_b, o_stb_b, o_we, o_adr, o_dat, o_sel,
|
341 |
|
|
(o_cyc_b)&&(i_ack), i_stall, 32'h0, (o_cyc_b)&&(i_err),
|
342 |
|
|
f_nreqs_b, f_nacks_b, f_outstanding_b);
|
343 |
|
|
|
344 |
|
|
`ifdef WBDBLPRIARB
|
345 |
|
|
`define F_SLAVE fwb_slave
|
346 |
|
|
`else
|
347 |
|
|
`define F_SLAVE fwb_counter
|
348 |
|
|
`endif
|
349 |
|
|
|
350 |
|
|
`F_SLAVE #(.AW(AW), .DW(DW), .F_MAX_STALL(0),
|
351 |
|
|
.F_LGDEPTH(F_LGDEPTH),
|
352 |
|
|
.F_MAX_ACK_DELAY(0),
|
353 |
|
|
.F_OPT_RMW_BUS_OPTION(1),
|
354 |
|
|
.F_OPT_DISCONTINUOUS(1))
|
355 |
|
|
f_wba_a(i_clk, i_reset,
|
356 |
|
|
i_a_cyc_a, i_a_stb_a, i_a_we, i_a_adr, i_a_dat, i_a_sel,
|
357 |
|
|
(o_cyc_a)&&(o_a_ack), o_a_stall, 32'h0, (o_cyc_a)&&(o_a_err),
|
358 |
|
|
f_a_nreqs_a, f_a_nacks_a, f_a_outstanding_a);
|
359 |
|
|
`F_SLAVE #(.AW(AW), .DW(DW), .F_MAX_STALL(0),
|
360 |
|
|
.F_LGDEPTH(F_LGDEPTH),
|
361 |
|
|
.F_MAX_ACK_DELAY(0),
|
362 |
|
|
.F_OPT_RMW_BUS_OPTION(1),
|
363 |
|
|
.F_OPT_DISCONTINUOUS(1))
|
364 |
|
|
f_wba_b(i_clk, i_reset,
|
365 |
|
|
i_a_cyc_b, i_a_stb_b, i_a_we, i_a_adr, i_a_dat, i_a_sel,
|
366 |
|
|
(o_cyc_b)&&(o_a_ack), o_a_stall, 32'h0, (o_cyc_b)&&(o_a_err),
|
367 |
|
|
f_a_nreqs_b, f_a_nacks_b, f_a_outstanding_b);
|
368 |
|
|
`F_SLAVE #(.AW(AW), .DW(DW), .F_MAX_STALL(0),
|
369 |
|
|
.F_LGDEPTH(F_LGDEPTH),
|
370 |
|
|
.F_MAX_ACK_DELAY(0),
|
371 |
|
|
.F_OPT_RMW_BUS_OPTION(1),
|
372 |
|
|
.F_OPT_DISCONTINUOUS(1))
|
373 |
|
|
f_wbb_a(i_clk, i_reset,
|
374 |
|
|
i_b_cyc_a, i_b_stb_a, i_b_we, i_b_adr, i_b_dat, i_b_sel,
|
375 |
|
|
(o_cyc_a)&&(o_b_ack), o_b_stall, 32'h0, (o_cyc_a)&&(o_b_err),
|
376 |
|
|
f_b_nreqs_a, f_b_nacks_a, f_b_outstanding_a);
|
377 |
|
|
`F_SLAVE #(.AW(AW), .DW(DW), .F_MAX_STALL(0),
|
378 |
|
|
.F_LGDEPTH(F_LGDEPTH),
|
379 |
|
|
.F_MAX_ACK_DELAY(0),
|
380 |
|
|
.F_OPT_RMW_BUS_OPTION(1),
|
381 |
|
|
.F_OPT_DISCONTINUOUS(1))
|
382 |
|
|
f_wbb_b(i_clk, i_reset,
|
383 |
|
|
i_b_cyc_b, i_b_stb_b, i_b_we, i_b_adr, i_b_dat, i_b_sel,
|
384 |
|
|
(o_cyc_b)&&(o_b_ack), o_b_stall, 32'h0, (o_cyc_b)&&(o_b_err),
|
385 |
|
|
f_b_nreqs_b, f_b_nacks_b, f_b_outstanding_b);
|
386 |
|
|
|
387 |
|
|
always @(posedge i_clk)
|
388 |
|
|
if ((f_past_valid)&&(!$past(i_reset)))
|
389 |
|
|
begin
|
390 |
|
|
if (r_a_owner)
|
391 |
|
|
begin
|
392 |
|
|
`ASSERT(f_b_nreqs_a == 0);
|
393 |
|
|
`ASSERT(f_b_nreqs_b == 0);
|
394 |
|
|
//
|
395 |
|
|
`ASSERT(f_b_nacks_a == 0);
|
396 |
|
|
`ASSERT(f_b_nacks_b == 0);
|
397 |
|
|
//
|
398 |
|
|
if (i_a_cyc_a)
|
399 |
|
|
begin
|
400 |
|
|
`ASSERT(f_a_outstanding_a == f_outstanding_a);
|
401 |
|
|
`ASSERT(f_a_outstanding_b == 0);
|
402 |
|
|
`ASSERT(f_outstanding_b == 0);
|
403 |
|
|
`ASSERT(f_a_nreqs_b == 0);
|
404 |
|
|
`ASSERT(f_a_nacks_b == 0);
|
405 |
|
|
end else if (i_a_cyc_b)
|
406 |
|
|
begin
|
407 |
|
|
`ASSERT(f_a_outstanding_b == f_outstanding_b);
|
408 |
|
|
`ASSERT(f_a_outstanding_a == 0);
|
409 |
|
|
`ASSERT(f_outstanding_a == 0);
|
410 |
|
|
`ASSERT(f_a_nreqs_a == 0);
|
411 |
|
|
`ASSERT(f_a_nacks_a == 0);
|
412 |
|
|
end
|
413 |
|
|
end else begin
|
414 |
|
|
`ASSERT(f_a_nreqs_a == 0);
|
415 |
|
|
`ASSERT(f_a_nreqs_b == 0);
|
416 |
|
|
//
|
417 |
|
|
`ASSERT(f_a_nacks_a == 0);
|
418 |
|
|
`ASSERT(f_a_nacks_b == 0);
|
419 |
|
|
//
|
420 |
|
|
if (i_b_cyc_a)
|
421 |
|
|
begin
|
422 |
|
|
`ASSERT(f_b_outstanding_a == f_outstanding_a);
|
423 |
|
|
`ASSERT(f_b_outstanding_b == 0);
|
424 |
|
|
`ASSERT(f_outstanding_b == 0);
|
425 |
|
|
`ASSERT(f_b_nreqs_b == 0);
|
426 |
|
|
`ASSERT(f_b_nacks_b == 0);
|
427 |
|
|
end else if (i_b_cyc_b)
|
428 |
|
|
begin
|
429 |
|
|
`ASSERT(f_b_outstanding_b == f_outstanding_b);
|
430 |
|
|
`ASSERT(f_b_outstanding_a == 0);
|
431 |
|
|
`ASSERT(f_outstanding_a == 0);
|
432 |
|
|
`ASSERT(f_b_nreqs_a == 0);
|
433 |
|
|
`ASSERT(f_b_nacks_a == 0);
|
434 |
|
|
end
|
435 |
|
|
end
|
436 |
|
|
end
|
437 |
|
|
|
438 |
|
|
always @(posedge i_clk)
|
439 |
|
|
if ((r_a_owner)&&(i_b_cyc_a))
|
440 |
|
|
`ASSUME((i_b_stb_a)&&(!i_b_stb_b));
|
441 |
|
|
always @(posedge i_clk)
|
442 |
|
|
if ((r_a_owner)&&(i_b_cyc_b))
|
443 |
|
|
`ASSUME((i_b_stb_b)&&(!i_b_stb_a));
|
444 |
|
|
|
445 |
|
|
always @(posedge i_clk)
|
446 |
|
|
if ((!r_a_owner)&&(i_a_cyc_a))
|
447 |
|
|
`ASSUME((i_a_stb_a)&&(!i_a_stb_b));
|
448 |
|
|
always @(posedge i_clk)
|
449 |
|
|
if ((!r_a_owner)&&(i_a_cyc_b))
|
450 |
|
|
`ASSUME((i_a_stb_b)&&(!i_a_stb_a));
|
451 |
|
|
|
452 |
|
|
`endif
|
453 |
|
|
endmodule
|
454 |
|
|
|