1 |
209 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
2 |
|
|
//
|
3 |
|
|
// Filename: wbpriarbiter.v
|
4 |
|
|
//
|
5 |
|
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
6 |
|
|
//
|
7 |
|
|
// Purpose: This is a priority bus arbiter. It allows two separate wishbone
|
8 |
|
|
// masters to connect to the same bus, while also guaranteeing
|
9 |
|
|
// that one master can have the bus with no delay any time the other
|
10 |
|
|
// master is not using the bus. The goal is to eliminate the combinatorial
|
11 |
|
|
// logic required in the other wishbone arbiter, while still guarateeing
|
12 |
|
|
// access time for the priority channel.
|
13 |
|
|
//
|
14 |
|
|
// The core logic works like this:
|
15 |
|
|
//
|
16 |
|
|
// 1. When no one requests the bus, 'A' is granted the bus and guaranteed
|
17 |
|
|
// that any access will go right through.
|
18 |
|
|
// 2. If 'B' requests the bus (asserts cyc), and the bus is idle, then
|
19 |
|
|
// 'B' will be granted the bus.
|
20 |
|
|
// 3. Bus grants last as long as the 'cyc' line is high.
|
21 |
|
|
// 4. Once 'cyc' is dropped, the bus returns to 'A' as the owner.
|
22 |
|
|
//
|
23 |
|
|
//
|
24 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
25 |
|
|
// Gisselquist Technology, LLC
|
26 |
|
|
//
|
27 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
28 |
|
|
//
|
29 |
|
|
// Copyright (C) 2015,2018-2019, Gisselquist Technology, LLC
|
30 |
|
|
//
|
31 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
32 |
|
|
// modify it under the terms of the GNU General Public License as published
|
33 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
34 |
|
|
// your option) any later version.
|
35 |
|
|
//
|
36 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
37 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
38 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
39 |
|
|
// for more details.
|
40 |
|
|
//
|
41 |
|
|
// You should have received a copy of the GNU General Public License along
|
42 |
|
|
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
|
43 |
|
|
// target there if the PDF file isn't present.) If not, see
|
44 |
|
|
// <http://www.gnu.org/licenses/> for a copy.
|
45 |
|
|
//
|
46 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
47 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
48 |
|
|
//
|
49 |
|
|
//
|
50 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
51 |
|
|
//
|
52 |
|
|
//
|
53 |
|
|
`default_nettype none
|
54 |
|
|
//
|
55 |
|
|
module wbpriarbiter(i_clk,
|
56 |
|
|
// Bus A
|
57 |
|
|
i_a_cyc, i_a_stb, i_a_we, i_a_adr, i_a_dat, i_a_sel, o_a_ack, o_a_stall, o_a_err,
|
58 |
|
|
// Bus B
|
59 |
|
|
i_b_cyc, i_b_stb, i_b_we, i_b_adr, i_b_dat, i_b_sel, o_b_ack, o_b_stall, o_b_err,
|
60 |
|
|
// Both buses
|
61 |
|
|
o_cyc, o_stb, o_we, o_adr, o_dat, o_sel, i_ack, i_stall, i_err);
|
62 |
|
|
parameter DW=32, AW=32;
|
63 |
|
|
//
|
64 |
|
|
// ZERO_ON_IDLE uses more logic than the alternative. It should be
|
65 |
|
|
// useful for reducing power, as these circuits tend to drive wires
|
66 |
|
|
// all the way across the design, but it may also slow down the master
|
67 |
|
|
// clock. I've used it as an option when using VERILATOR, 'cause
|
68 |
|
|
// zeroing things on idle can make them stand out all the more when
|
69 |
|
|
// staring at wires and dumps and such.
|
70 |
|
|
parameter [0:0] OPT_ZERO_ON_IDLE = 1'b0;
|
71 |
|
|
//
|
72 |
|
|
input wire i_clk;
|
73 |
|
|
// Bus A
|
74 |
|
|
input wire i_a_cyc, i_a_stb, i_a_we;
|
75 |
|
|
input wire [(AW-1):0] i_a_adr;
|
76 |
|
|
input wire [(DW-1):0] i_a_dat;
|
77 |
|
|
input wire [(DW/8-1):0] i_a_sel;
|
78 |
|
|
output wire o_a_ack, o_a_stall, o_a_err;
|
79 |
|
|
// Bus B
|
80 |
|
|
input wire i_b_cyc, i_b_stb, i_b_we;
|
81 |
|
|
input wire [(AW-1):0] i_b_adr;
|
82 |
|
|
input wire [(DW-1):0] i_b_dat;
|
83 |
|
|
input wire [(DW/8-1):0] i_b_sel;
|
84 |
|
|
output wire o_b_ack, o_b_stall, o_b_err;
|
85 |
|
|
//
|
86 |
|
|
output wire o_cyc, o_stb, o_we;
|
87 |
|
|
output wire [(AW-1):0] o_adr;
|
88 |
|
|
output wire [(DW-1):0] o_dat;
|
89 |
|
|
output wire [(DW/8-1):0] o_sel;
|
90 |
|
|
input wire i_ack, i_stall, i_err;
|
91 |
|
|
|
92 |
|
|
// Go high immediately (new cycle) if ...
|
93 |
|
|
// Previous cycle was low and *someone* is requesting a bus cycle
|
94 |
|
|
// Go low immadiately if ...
|
95 |
|
|
// We were just high and the owner no longer wants the bus
|
96 |
|
|
// WISHBONE Spec recommends no logic between a FF and the o_cyc
|
97 |
|
|
// This violates that spec. (Rec 3.15, p35)
|
98 |
|
|
reg r_a_owner;
|
99 |
|
|
|
100 |
|
|
initial r_a_owner = 1'b1;
|
101 |
|
|
always @(posedge i_clk)
|
102 |
|
|
if (!i_b_cyc)
|
103 |
|
|
r_a_owner <= 1'b1;
|
104 |
|
|
// Allow B to set its CYC line w/o activating this interface
|
105 |
|
|
else if ((i_b_cyc)&&(i_b_stb)&&(!i_a_cyc))
|
106 |
|
|
r_a_owner <= 1'b0;
|
107 |
|
|
|
108 |
|
|
// Realistically, if neither master owns the bus, the output is a
|
109 |
|
|
// don't care. Thus we trigger off whether or not 'A' owns the bus.
|
110 |
|
|
// If 'B' owns it all we care is that 'A' does not. Likewise, if
|
111 |
|
|
// neither owns the bus than the values on these various lines are
|
112 |
|
|
// irrelevant.
|
113 |
|
|
|
114 |
|
|
assign o_cyc = (r_a_owner) ? i_a_cyc : i_b_cyc;
|
115 |
|
|
assign o_we = (r_a_owner) ? i_a_we : i_b_we;
|
116 |
|
|
assign o_stb = (r_a_owner) ? i_a_stb : i_b_stb;
|
117 |
|
|
generate if (OPT_ZERO_ON_IDLE)
|
118 |
|
|
begin
|
119 |
|
|
assign o_adr = (o_stb)?((r_a_owner) ? i_a_adr : i_b_adr):0;
|
120 |
|
|
assign o_dat = (o_stb)?((r_a_owner) ? i_a_dat : i_b_dat):0;
|
121 |
|
|
assign o_sel = (o_stb)?((r_a_owner) ? i_a_sel : i_b_sel):0;
|
122 |
|
|
assign o_a_ack = (o_cyc)&&( r_a_owner) ? i_ack : 1'b0;
|
123 |
|
|
assign o_b_ack = (o_cyc)&&(!r_a_owner) ? i_ack : 1'b0;
|
124 |
|
|
assign o_a_stall = (o_cyc)&&( r_a_owner) ? i_stall : 1'b1;
|
125 |
|
|
assign o_b_stall = (o_cyc)&&(!r_a_owner) ? i_stall : 1'b1;
|
126 |
|
|
assign o_a_err = (o_cyc)&&( r_a_owner) ? i_err : 1'b0;
|
127 |
|
|
assign o_b_err = (o_cyc)&&(!r_a_owner) ? i_err : 1'b0;
|
128 |
|
|
end else begin
|
129 |
|
|
assign o_adr = (r_a_owner) ? i_a_adr : i_b_adr;
|
130 |
|
|
assign o_dat = (r_a_owner) ? i_a_dat : i_b_dat;
|
131 |
|
|
assign o_sel = (r_a_owner) ? i_a_sel : i_b_sel;
|
132 |
|
|
|
133 |
|
|
// We cannot allow the return acknowledgement to ever go high if
|
134 |
|
|
// the master in question does not own the bus. Hence we force it
|
135 |
|
|
// low if the particular master doesn't own the bus.
|
136 |
|
|
assign o_a_ack = ( r_a_owner) ? i_ack : 1'b0;
|
137 |
|
|
assign o_b_ack = (!r_a_owner) ? i_ack : 1'b0;
|
138 |
|
|
|
139 |
|
|
// Stall must be asserted on the same cycle the input master asserts
|
140 |
|
|
// the bus, if the bus isn't granted to him.
|
141 |
|
|
assign o_a_stall = ( r_a_owner) ? i_stall : 1'b1;
|
142 |
|
|
assign o_b_stall = (!r_a_owner) ? i_stall : 1'b1;
|
143 |
|
|
|
144 |
|
|
//
|
145 |
|
|
//
|
146 |
|
|
assign o_a_err = ( r_a_owner) ? i_err : 1'b0;
|
147 |
|
|
assign o_b_err = (!r_a_owner) ? i_err : 1'b0;
|
148 |
|
|
end endgenerate
|
149 |
|
|
|
150 |
|
|
`ifdef FORMAL
|
151 |
|
|
`ifdef WBPRIARBITER
|
152 |
|
|
`define ASSUME assume
|
153 |
|
|
`else
|
154 |
|
|
`define ASSUME assert
|
155 |
|
|
`endif
|
156 |
|
|
|
157 |
|
|
reg f_past_valid;
|
158 |
|
|
initial f_past_valid = 1'b0;
|
159 |
|
|
always @(posedge i_clk)
|
160 |
|
|
f_past_valid <= 1'b1;
|
161 |
|
|
|
162 |
|
|
initial assume(!i_a_cyc);
|
163 |
|
|
initial assume(!i_a_stb);
|
164 |
|
|
|
165 |
|
|
initial assume(!i_b_cyc);
|
166 |
|
|
initial assume(!i_b_stb);
|
167 |
|
|
|
168 |
|
|
initial assume(!i_ack);
|
169 |
|
|
initial assume(!i_err);
|
170 |
|
|
|
171 |
|
|
always @(posedge i_clk)
|
172 |
|
|
begin
|
173 |
|
|
if (o_cyc)
|
174 |
|
|
assert((i_a_cyc)||(i_b_cyc));
|
175 |
|
|
if ((f_past_valid)&&($past(o_cyc))&&(o_cyc))
|
176 |
|
|
assert($past(r_a_owner) == r_a_owner);
|
177 |
|
|
if ((f_past_valid)&&($past(!o_cyc))&&($past(i_a_stb)))
|
178 |
|
|
assert(r_a_owner);
|
179 |
|
|
if ((f_past_valid)&&($past(!o_cyc))&&($past(i_b_stb)))
|
180 |
|
|
assert(!r_a_owner);
|
181 |
|
|
end
|
182 |
|
|
|
183 |
|
|
reg f_reset;
|
184 |
|
|
initial f_reset = 1'b1;
|
185 |
|
|
always @(posedge i_clk)
|
186 |
|
|
f_reset <= 1'b0;
|
187 |
|
|
always @(*)
|
188 |
|
|
if (!f_past_valid)
|
189 |
|
|
assert(f_reset);
|
190 |
|
|
|
191 |
|
|
parameter F_LGDEPTH=3;
|
192 |
|
|
|
193 |
|
|
wire [(F_LGDEPTH-1):0] f_nreqs, f_nacks, f_outstanding,
|
194 |
|
|
f_a_nreqs, f_a_nacks, f_a_outstanding,
|
195 |
|
|
f_b_nreqs, f_b_nacks, f_b_outstanding;
|
196 |
|
|
|
197 |
|
|
fwb_master #(.F_MAX_STALL(0),
|
198 |
|
|
.F_LGDEPTH(F_LGDEPTH),
|
199 |
|
|
.F_MAX_ACK_DELAY(0),
|
200 |
|
|
.F_OPT_RMW_BUS_OPTION(1),
|
201 |
|
|
.F_OPT_DISCONTINUOUS(1))
|
202 |
|
|
f_wbm(i_clk, f_reset,
|
203 |
|
|
o_cyc, o_stb, o_we, o_adr, o_dat, o_sel,
|
204 |
|
|
i_ack, i_stall, 32'h0, i_err,
|
205 |
|
|
f_nreqs, f_nacks, f_outstanding);
|
206 |
|
|
fwb_slave #(.F_MAX_STALL(0),
|
207 |
|
|
.F_LGDEPTH(F_LGDEPTH),
|
208 |
|
|
.F_MAX_ACK_DELAY(0),
|
209 |
|
|
.F_OPT_RMW_BUS_OPTION(1),
|
210 |
|
|
.F_OPT_DISCONTINUOUS(1))
|
211 |
|
|
f_wba(i_clk, f_reset,
|
212 |
|
|
i_a_cyc, i_a_stb, i_a_we, i_a_adr, i_a_dat, i_a_sel,
|
213 |
|
|
o_a_ack, o_a_stall, 32'h0, o_a_err,
|
214 |
|
|
f_a_nreqs, f_a_nacks, f_a_outstanding);
|
215 |
|
|
fwb_slave #(.F_MAX_STALL(0),
|
216 |
|
|
.F_LGDEPTH(F_LGDEPTH),
|
217 |
|
|
.F_MAX_ACK_DELAY(0),
|
218 |
|
|
.F_OPT_RMW_BUS_OPTION(1),
|
219 |
|
|
.F_OPT_DISCONTINUOUS(1))
|
220 |
|
|
f_wbb(i_clk, f_reset,
|
221 |
|
|
i_b_cyc, i_b_stb, i_b_we, i_b_adr, i_b_dat, i_b_sel,
|
222 |
|
|
o_b_ack, o_b_stall, 32'h0, o_b_err,
|
223 |
|
|
f_b_nreqs, f_b_nacks, f_b_outstanding);
|
224 |
|
|
|
225 |
|
|
always @(posedge i_clk)
|
226 |
|
|
if (r_a_owner)
|
227 |
|
|
begin
|
228 |
|
|
assert(f_b_nreqs == 0);
|
229 |
|
|
assert(f_b_nacks == 0);
|
230 |
|
|
assert(f_a_outstanding == f_outstanding);
|
231 |
|
|
end else begin
|
232 |
|
|
assert(f_a_nreqs == 0);
|
233 |
|
|
assert(f_a_nacks == 0);
|
234 |
|
|
assert(f_b_outstanding == f_outstanding);
|
235 |
|
|
end
|
236 |
|
|
|
237 |
|
|
always @(posedge i_clk)
|
238 |
|
|
if ((r_a_owner)&&(i_b_cyc))
|
239 |
|
|
assume(i_b_stb);
|
240 |
|
|
|
241 |
|
|
always @(posedge i_clk)
|
242 |
|
|
if ((r_a_owner)&&(i_a_cyc))
|
243 |
|
|
assume(i_a_stb);
|
244 |
|
|
|
245 |
|
|
`endif
|
246 |
|
|
endmodule
|