1 |
36 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
2 |
|
|
//
|
3 |
|
|
//
|
4 |
|
|
// Filename: wbdmac.v
|
5 |
|
|
//
|
6 |
|
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
7 |
|
|
//
|
8 |
|
|
// Purpose: Wishbone DMA controller
|
9 |
|
|
//
|
10 |
|
|
// This module is controllable via the wishbone, and moves values from
|
11 |
|
|
// one location in the wishbone address space to another. The amount of
|
12 |
|
|
// memory moved at any given time can be up to 4kB, or equivalently 1kW.
|
13 |
|
|
// Four registers control this DMA controller: a control/status register,
|
14 |
|
|
// a length register, a source WB address and a destination WB address.
|
15 |
|
|
// These register may be read at any time, but they may only be written
|
16 |
|
|
// to when the controller is idle.
|
17 |
|
|
//
|
18 |
|
|
// The meanings of three of the setup registers should be self explanatory:
|
19 |
|
|
// - The length register controls the total number of words to
|
20 |
|
|
// transfer.
|
21 |
|
|
// - The source address register controls where the DMA controller
|
22 |
|
|
// reads from. This address may or may not be incremented
|
23 |
|
|
// after each read, depending upon the setting in the
|
24 |
|
|
// control/status register.
|
25 |
|
|
// - The destination address register, which controls where the DMA
|
26 |
|
|
// controller writes to. This address may or may not be
|
27 |
|
|
// incremented after each write, also depending upon the
|
28 |
|
|
// setting in the control/status register.
|
29 |
|
|
//
|
30 |
|
|
// It is the control/status register, at local address zero, that needs
|
31 |
|
|
// more definition:
|
32 |
|
|
//
|
33 |
|
|
// Bits:
|
34 |
|
|
// 31 R Write protect If this is set to one, it means the
|
35 |
|
|
// write protect bit is set and the controller
|
36 |
|
|
// is therefore idle. This bit will be set upon
|
37 |
|
|
// completing any transfer.
|
38 |
|
|
// 30 R Error. The controller stopped mid-transfer
|
39 |
|
|
// after receiving a bus error.
|
40 |
|
|
// 29 R/W inc_s_n If set to one, the source address
|
41 |
|
|
// will not increment from one read to the next.
|
42 |
|
|
// 28 R/W inc_d_n If set to one, the destination address
|
43 |
|
|
// will not increment from one write to the next.
|
44 |
|
|
// 27 R Always 0
|
45 |
|
|
// 26..16 R nread Indicates how many words have been read,
|
46 |
|
|
// and not necessarily written (yet). This
|
47 |
|
|
// combined with the cfg_len parameter should tell
|
48 |
|
|
// exactly where the controller is at mid-transfer.
|
49 |
|
|
// 27..16 W WriteProtect When a 12'h3db is written to these
|
50 |
|
|
// bits, the write protect bit will be cleared.
|
51 |
|
|
//
|
52 |
|
|
// 15 R/W on_dev_trigger When set to '1', the controller will
|
53 |
|
|
// wait for an external interrupt before starting.
|
54 |
|
|
// 14..10 R/W device_id This determines which external interrupt
|
55 |
|
|
// will trigger a transfer.
|
56 |
|
|
// 9..0 R/W transfer_len How many bytes to transfer at one time.
|
57 |
|
|
// The minimum transfer length is one, while zero
|
58 |
|
|
// is mapped to a transfer length of 1kW.
|
59 |
|
|
//
|
60 |
|
|
//
|
61 |
|
|
// To use this, follow this checklist:
|
62 |
|
|
// 1. Wait for any prior DMA operation to complete
|
63 |
|
|
// (Read address 0, wait 'till either top bit is set or cfg_len==0)
|
64 |
|
|
// 2. Write values into length, source and destination address.
|
65 |
|
|
// (writei(3, &vals) should be sufficient for this.)
|
66 |
|
|
// 3. Enable the DMAC interrupt in whatever interrupt controller is present
|
67 |
|
|
// on the system.
|
68 |
|
|
// 4. Write the final start command to the setup/control/status register:
|
69 |
|
|
// Set inc_s_n, inc_d_n, on_dev_trigger, dev_trigger,
|
70 |
|
|
// appropriately for your task
|
71 |
|
|
// Write 12'h3db to the upper word.
|
72 |
|
|
// Set the lower word to either all zeros, or a smaller transfer
|
73 |
|
|
// length if desired.
|
74 |
|
|
// 5. wait() for the interrupt and the operation to complete.
|
75 |
|
|
// Prior to completion, number of items successfully transferred
|
76 |
|
|
// be read from the length register. If the internal buffer is
|
77 |
|
|
// being used, then you can read how much has been read into that
|
78 |
|
|
// buffer by reading from bits 25..16 of this control/status
|
79 |
|
|
// register.
|
80 |
|
|
//
|
81 |
|
|
// Creator: Dan Gisselquist
|
82 |
69 |
dgisselq |
// Gisselquist Technology, LLC
|
83 |
36 |
dgisselq |
//
|
84 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
85 |
|
|
//
|
86 |
160 |
dgisselq |
// Copyright (C) 2015-2016, Gisselquist Technology, LLC
|
87 |
36 |
dgisselq |
//
|
88 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
89 |
|
|
// modify it under the terms of the GNU General Public License as published
|
90 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
91 |
|
|
// your option) any later version.
|
92 |
|
|
//
|
93 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
94 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
95 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
96 |
|
|
// for more details.
|
97 |
|
|
//
|
98 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
99 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
100 |
|
|
//
|
101 |
|
|
//
|
102 |
|
|
///////////////////////////////////////////////////////////////////////////
|
103 |
|
|
//
|
104 |
|
|
//
|
105 |
160 |
dgisselq |
`define DMA_IDLE 3'b000
|
106 |
|
|
`define DMA_WAIT 3'b001
|
107 |
|
|
`define DMA_READ_REQ 3'b010
|
108 |
|
|
`define DMA_READ_ACK 3'b011
|
109 |
|
|
`define DMA_PRE_WRITE 3'b100
|
110 |
|
|
`define DMA_WRITE_REQ 3'b101
|
111 |
|
|
`define DMA_WRITE_ACK 3'b110
|
112 |
|
|
|
113 |
|
|
module wbdmac(i_clk, i_rst,
|
114 |
36 |
dgisselq |
i_swb_cyc, i_swb_stb, i_swb_we, i_swb_addr, i_swb_data,
|
115 |
|
|
o_swb_ack, o_swb_stall, o_swb_data,
|
116 |
|
|
o_mwb_cyc, o_mwb_stb, o_mwb_we, o_mwb_addr, o_mwb_data,
|
117 |
|
|
i_mwb_ack, i_mwb_stall, i_mwb_data, i_mwb_err,
|
118 |
|
|
i_dev_ints,
|
119 |
69 |
dgisselq |
o_interrupt);
|
120 |
48 |
dgisselq |
parameter ADDRESS_WIDTH=32, LGMEMLEN = 10,
|
121 |
|
|
DW=32, LGDV=5,AW=ADDRESS_WIDTH;
|
122 |
160 |
dgisselq |
input i_clk, i_rst;
|
123 |
36 |
dgisselq |
// Slave/control wishbone inputs
|
124 |
|
|
input i_swb_cyc, i_swb_stb, i_swb_we;
|
125 |
|
|
input [1:0] i_swb_addr;
|
126 |
|
|
input [(DW-1):0] i_swb_data;
|
127 |
|
|
// Slave/control wishbone outputs
|
128 |
|
|
output reg o_swb_ack;
|
129 |
|
|
output wire o_swb_stall;
|
130 |
|
|
output reg [(DW-1):0] o_swb_data;
|
131 |
|
|
// Master/DMA wishbone control
|
132 |
160 |
dgisselq |
output wire o_mwb_cyc, o_mwb_stb, o_mwb_we;
|
133 |
48 |
dgisselq |
output reg [(AW-1):0] o_mwb_addr;
|
134 |
|
|
output reg [(DW-1):0] o_mwb_data;
|
135 |
36 |
dgisselq |
// Master/DMA wishbone responses from the bus
|
136 |
|
|
input i_mwb_ack, i_mwb_stall;
|
137 |
|
|
input [(DW-1):0] i_mwb_data;
|
138 |
|
|
input i_mwb_err;
|
139 |
|
|
// The interrupt device interrupt lines
|
140 |
|
|
input [(DW-1):0] i_dev_ints;
|
141 |
|
|
// An interrupt to be set upon completion
|
142 |
|
|
output reg o_interrupt;
|
143 |
|
|
// Need to release the bus for a higher priority user
|
144 |
69 |
dgisselq |
// This logic had lots of problems, so it is being
|
145 |
|
|
// removed. If you want to make sure the bus is available
|
146 |
|
|
// for a higher priority user, adjust the transfer length
|
147 |
|
|
// accordingly.
|
148 |
|
|
//
|
149 |
|
|
// input i_other_busmaster_requests_bus;
|
150 |
|
|
//
|
151 |
36 |
dgisselq |
|
152 |
|
|
|
153 |
160 |
dgisselq |
reg [2:0] dma_state;
|
154 |
|
|
reg cfg_err, cfg_len_nonzero;
|
155 |
48 |
dgisselq |
reg [(AW-1):0] cfg_waddr, cfg_raddr, cfg_len;
|
156 |
36 |
dgisselq |
reg [(LGMEMLEN-1):0] cfg_blocklen_sub_one;
|
157 |
|
|
reg cfg_incs, cfg_incd;
|
158 |
|
|
reg [(LGDV-1):0] cfg_dev_trigger;
|
159 |
|
|
reg cfg_on_dev_trigger;
|
160 |
|
|
|
161 |
|
|
// Single block operations: We'll read, then write, up to a single
|
162 |
|
|
// memory block here.
|
163 |
|
|
|
164 |
|
|
reg [(DW-1):0] dma_mem [0:(((1<<LGMEMLEN))-1)];
|
165 |
160 |
dgisselq |
reg [(LGMEMLEN):0] nread, nwritten, nwacks, nracks;
|
166 |
|
|
wire [(AW-1):0] bus_nracks;
|
167 |
|
|
assign bus_nracks = { {(AW-LGMEMLEN-1){1'b0}}, nracks };
|
168 |
36 |
dgisselq |
|
169 |
160 |
dgisselq |
reg last_read_request, last_read_ack,
|
170 |
|
|
last_write_request, last_write_ack;
|
171 |
|
|
reg trigger, abort;
|
172 |
|
|
|
173 |
|
|
initial dma_state = `DMA_IDLE;
|
174 |
36 |
dgisselq |
initial o_interrupt = 1'b0;
|
175 |
48 |
dgisselq |
initial cfg_len = {(AW){1'b0}};
|
176 |
36 |
dgisselq |
initial cfg_blocklen_sub_one = {(LGMEMLEN){1'b1}};
|
177 |
|
|
initial cfg_on_dev_trigger = 1'b0;
|
178 |
160 |
dgisselq |
initial cfg_len_nonzero = 1'b0;
|
179 |
36 |
dgisselq |
always @(posedge i_clk)
|
180 |
160 |
dgisselq |
case(dma_state)
|
181 |
|
|
`DMA_IDLE: begin
|
182 |
|
|
o_mwb_addr <= cfg_raddr;
|
183 |
|
|
nwritten <= 0;
|
184 |
|
|
nread <= 0;
|
185 |
|
|
nracks <= 0;
|
186 |
|
|
nwacks <= 0;
|
187 |
|
|
cfg_len_nonzero <= (|cfg_len);
|
188 |
|
|
|
189 |
|
|
// When the slave wishbone writes, and we are in this
|
190 |
|
|
// (ready) configuration, then allow the DMA to be controlled
|
191 |
|
|
// and thus to start.
|
192 |
|
|
if ((i_swb_cyc)&&(i_swb_stb)&&(i_swb_we))
|
193 |
36 |
dgisselq |
begin
|
194 |
160 |
dgisselq |
case(i_swb_addr)
|
195 |
|
|
2'b00: begin
|
196 |
|
|
if ((i_swb_data[27:16] == 12'hfed)
|
197 |
|
|
&&(cfg_len_nonzero))
|
198 |
|
|
dma_state <= `DMA_WAIT;
|
199 |
|
|
cfg_blocklen_sub_one
|
200 |
|
|
<= i_swb_data[(LGMEMLEN-1):0]
|
201 |
|
|
+ {(LGMEMLEN){1'b1}};
|
202 |
|
|
// i.e. -1;
|
203 |
|
|
cfg_dev_trigger <= i_swb_data[14:10];
|
204 |
|
|
cfg_on_dev_trigger <= i_swb_data[15];
|
205 |
|
|
cfg_incs <= ~i_swb_data[29];
|
206 |
|
|
cfg_incd <= ~i_swb_data[28];
|
207 |
36 |
dgisselq |
end
|
208 |
160 |
dgisselq |
2'b01: begin
|
209 |
|
|
cfg_len <= i_swb_data[(AW-1):0];
|
210 |
|
|
cfg_len_nonzero <= (|i_swb_data[(AW-1):0]);
|
211 |
|
|
end
|
212 |
|
|
2'b10: cfg_raddr <= i_swb_data[(AW-1):0];
|
213 |
|
|
2'b11: cfg_waddr <= i_swb_data[(AW-1):0];
|
214 |
|
|
endcase
|
215 |
|
|
end end
|
216 |
|
|
`DMA_WAIT: begin
|
217 |
|
|
o_mwb_addr <= cfg_raddr;
|
218 |
|
|
nracks <= 0;
|
219 |
|
|
nwacks <= 0;
|
220 |
|
|
nwritten <= 0;
|
221 |
|
|
nread <= 0;
|
222 |
|
|
if (abort)
|
223 |
|
|
dma_state <= `DMA_IDLE;
|
224 |
|
|
else if (trigger)
|
225 |
|
|
dma_state <= `DMA_READ_REQ;
|
226 |
|
|
end
|
227 |
|
|
`DMA_READ_REQ: begin
|
228 |
|
|
nwritten <= 0;
|
229 |
36 |
dgisselq |
|
230 |
160 |
dgisselq |
if (~i_mwb_stall)
|
231 |
36 |
dgisselq |
begin
|
232 |
160 |
dgisselq |
// Number of read acknowledgements needed
|
233 |
|
|
nracks <= nracks+1;
|
234 |
|
|
if (last_read_request)
|
235 |
|
|
//((nracks == {1'b0, cfg_blocklen_sub_one})||(bus_nracks == cfg_len-1))
|
236 |
|
|
// Wishbone interruptus
|
237 |
|
|
dma_state <= `DMA_READ_ACK;
|
238 |
|
|
if (cfg_incs)
|
239 |
|
|
o_mwb_addr <= o_mwb_addr
|
240 |
|
|
+ {{(AW-1){1'b0}},1'b1};
|
241 |
|
|
end
|
242 |
|
|
|
243 |
|
|
if (i_mwb_err)
|
244 |
|
|
begin
|
245 |
|
|
cfg_len <= 0;
|
246 |
|
|
dma_state <= `DMA_IDLE;
|
247 |
|
|
end
|
248 |
|
|
if (abort)
|
249 |
|
|
dma_state <= `DMA_IDLE;
|
250 |
|
|
if (i_mwb_ack)
|
251 |
|
|
begin
|
252 |
|
|
nread <= nread+1;
|
253 |
|
|
if (cfg_incs)
|
254 |
|
|
cfg_raddr <= cfg_raddr
|
255 |
|
|
+ {{(AW-1){1'b0}},1'b1};
|
256 |
|
|
end end
|
257 |
|
|
`DMA_READ_ACK: begin
|
258 |
|
|
nwritten <= 0;
|
259 |
|
|
|
260 |
|
|
if (i_mwb_err)
|
261 |
|
|
begin
|
262 |
|
|
cfg_len <= 0;
|
263 |
|
|
dma_state <= `DMA_IDLE;
|
264 |
|
|
end else if (i_mwb_ack)
|
265 |
|
|
begin
|
266 |
|
|
nread <= nread+1;
|
267 |
|
|
if (last_read_ack) // (nread+1 == nracks)
|
268 |
|
|
dma_state <= `DMA_PRE_WRITE;
|
269 |
|
|
if (cfg_incs)
|
270 |
|
|
cfg_raddr <= cfg_raddr
|
271 |
|
|
+ {{(AW-1){1'b0}},1'b1};
|
272 |
|
|
end
|
273 |
|
|
if (abort)
|
274 |
|
|
dma_state <= `DMA_IDLE;
|
275 |
|
|
end
|
276 |
|
|
`DMA_PRE_WRITE: begin
|
277 |
|
|
o_mwb_addr <= cfg_waddr;
|
278 |
|
|
dma_state <= (abort)?`DMA_IDLE:`DMA_WRITE_REQ;
|
279 |
|
|
end
|
280 |
|
|
`DMA_WRITE_REQ: begin
|
281 |
|
|
if (~i_mwb_stall)
|
282 |
|
|
begin
|
283 |
|
|
nwritten <= nwritten+1;
|
284 |
|
|
if (last_write_request) // (nwritten == nread-1)
|
285 |
|
|
// Wishbone interruptus
|
286 |
|
|
dma_state <= `DMA_WRITE_ACK;
|
287 |
|
|
if (cfg_incd)
|
288 |
36 |
dgisselq |
begin
|
289 |
160 |
dgisselq |
o_mwb_addr <= o_mwb_addr
|
290 |
|
|
+ {{(AW-1){1'b0}},1'b1};
|
291 |
|
|
cfg_waddr <= cfg_waddr
|
292 |
|
|
+ {{(AW-1){1'b0}},1'b1};
|
293 |
36 |
dgisselq |
end
|
294 |
160 |
dgisselq |
end
|
295 |
36 |
dgisselq |
|
296 |
160 |
dgisselq |
if (i_mwb_err)
|
297 |
|
|
begin
|
298 |
|
|
cfg_len <= 0;
|
299 |
|
|
dma_state <= `DMA_IDLE;
|
300 |
|
|
end
|
301 |
|
|
if (i_mwb_ack)
|
302 |
|
|
begin
|
303 |
|
|
nwacks <= nwacks+1;
|
304 |
|
|
cfg_len <= cfg_len +{(AW){1'b1}}; // -1
|
305 |
|
|
end
|
306 |
|
|
if (abort)
|
307 |
|
|
dma_state <= `DMA_IDLE;
|
308 |
|
|
end
|
309 |
|
|
`DMA_WRITE_ACK: begin
|
310 |
|
|
if (i_mwb_err)
|
311 |
|
|
begin
|
312 |
|
|
cfg_len <= 0;
|
313 |
|
|
nread <= 0;
|
314 |
|
|
dma_state <= `DMA_IDLE;
|
315 |
|
|
end else if (i_mwb_ack)
|
316 |
|
|
begin
|
317 |
|
|
nwacks <= nwacks+1;
|
318 |
|
|
cfg_len <= cfg_len +{(AW){1'b1}};//cfg_len -= 1;
|
319 |
|
|
if (last_write_ack) // (nwacks+1 == nwritten)
|
320 |
36 |
dgisselq |
begin
|
321 |
|
|
nread <= 0;
|
322 |
160 |
dgisselq |
dma_state <= (cfg_len == 1)?`DMA_IDLE:`DMA_WAIT;
|
323 |
36 |
dgisselq |
end
|
324 |
|
|
end
|
325 |
|
|
|
326 |
160 |
dgisselq |
if (abort)
|
327 |
|
|
dma_state <= `DMA_IDLE;
|
328 |
|
|
end
|
329 |
|
|
default:
|
330 |
|
|
dma_state <= `DMA_IDLE;
|
331 |
|
|
endcase
|
332 |
|
|
|
333 |
|
|
initial o_interrupt = 1'b0;
|
334 |
|
|
always @(posedge i_clk)
|
335 |
|
|
o_interrupt <= (dma_state == `DMA_WRITE_ACK)&&(i_mwb_ack)
|
336 |
|
|
&&(last_write_ack)
|
337 |
|
|
&&(cfg_len == {{(AW-1){1'b0}},1'b1});
|
338 |
|
|
|
339 |
|
|
initial cfg_err = 1'b0;
|
340 |
|
|
always @(posedge i_clk)
|
341 |
|
|
if (dma_state == `DMA_IDLE)
|
342 |
|
|
begin
|
343 |
|
|
if ((i_swb_cyc)&&(i_swb_stb)&&(i_swb_we)
|
344 |
|
|
&&(i_swb_addr==2'b00))
|
345 |
|
|
cfg_err <= 1'b0;
|
346 |
|
|
end else if (((i_mwb_err)&&(o_mwb_cyc))||(abort))
|
347 |
|
|
cfg_err <= 1'b1;
|
348 |
|
|
|
349 |
|
|
initial last_read_request = 1'b0;
|
350 |
|
|
always @(posedge i_clk)
|
351 |
|
|
if ((dma_state == `DMA_WAIT)||(dma_state == `DMA_READ_REQ))
|
352 |
|
|
begin
|
353 |
|
|
if ((~i_mwb_stall)&&(dma_state == `DMA_READ_REQ))
|
354 |
|
|
begin
|
355 |
|
|
last_read_request <=
|
356 |
|
|
(nracks + 1 == { 1'b0, cfg_blocklen_sub_one})
|
357 |
|
|
||(bus_nracks == cfg_len-2);
|
358 |
|
|
end else
|
359 |
|
|
last_read_request <=
|
360 |
|
|
(nracks== { 1'b0, cfg_blocklen_sub_one})
|
361 |
|
|
||(bus_nracks == cfg_len-1);
|
362 |
|
|
end else
|
363 |
|
|
last_read_request <= 1'b0;
|
364 |
|
|
|
365 |
|
|
initial last_read_ack = 1'b0;
|
366 |
|
|
always @(posedge i_clk)
|
367 |
|
|
if ((dma_state == `DMA_READ_REQ)||(dma_state == `DMA_READ_ACK))
|
368 |
|
|
begin
|
369 |
|
|
if (i_mwb_ack)
|
370 |
|
|
last_read_ack <= (nread+2 == nracks);
|
371 |
|
|
else
|
372 |
|
|
last_read_ack <= (nread+1 == nracks);
|
373 |
|
|
end else
|
374 |
|
|
last_read_ack <= 1'b0;
|
375 |
|
|
|
376 |
|
|
initial last_write_request = 1'b0;
|
377 |
|
|
always @(posedge i_clk)
|
378 |
|
|
if (dma_state == `DMA_PRE_WRITE)
|
379 |
|
|
last_write_request <= (nread <= 1);
|
380 |
|
|
else if (dma_state == `DMA_WRITE_REQ)
|
381 |
|
|
begin
|
382 |
|
|
if (i_mwb_stall)
|
383 |
|
|
last_write_request <= (nwritten >= nread-1);
|
384 |
|
|
else
|
385 |
|
|
last_write_request <= (nwritten >= nread-2);
|
386 |
|
|
end else
|
387 |
|
|
last_write_request <= 1'b0;
|
388 |
|
|
|
389 |
|
|
initial last_write_ack = 1'b0;
|
390 |
|
|
always @(posedge i_clk)
|
391 |
|
|
if((dma_state == `DMA_WRITE_REQ)||(dma_state == `DMA_WRITE_ACK))
|
392 |
|
|
begin
|
393 |
|
|
if (i_mwb_ack)
|
394 |
|
|
last_write_ack <= (nwacks+2 == nwritten);
|
395 |
|
|
else
|
396 |
|
|
last_write_ack <= (nwacks+1 == nwritten);
|
397 |
|
|
end else
|
398 |
|
|
last_write_ack <= 1'b0;
|
399 |
|
|
|
400 |
|
|
assign o_mwb_cyc = (dma_state == `DMA_READ_REQ)
|
401 |
|
|
||(dma_state == `DMA_READ_ACK)
|
402 |
|
|
||(dma_state == `DMA_WRITE_REQ)
|
403 |
|
|
||(dma_state == `DMA_WRITE_ACK);
|
404 |
|
|
|
405 |
|
|
assign o_mwb_stb = (dma_state == `DMA_READ_REQ)
|
406 |
|
|
||(dma_state == `DMA_WRITE_REQ);
|
407 |
|
|
|
408 |
|
|
assign o_mwb_we = (dma_state == `DMA_PRE_WRITE)
|
409 |
|
|
||(dma_state == `DMA_WRITE_REQ)
|
410 |
|
|
||(dma_state == `DMA_WRITE_ACK);
|
411 |
|
|
|
412 |
36 |
dgisselq |
//
|
413 |
|
|
// This is tricky. In order for Vivado to consider dma_mem to be a
|
414 |
|
|
// proper memory, it must have a simple address fed into it. Hence
|
415 |
|
|
// the read_address (rdaddr) register. The problem is that this
|
416 |
|
|
// register must always be one greater than the address we actually
|
417 |
|
|
// want to read from, unless we are idling. So ... the math is touchy.
|
418 |
|
|
//
|
419 |
|
|
reg [(LGMEMLEN-1):0] rdaddr;
|
420 |
|
|
always @(posedge i_clk)
|
421 |
160 |
dgisselq |
if((dma_state == `DMA_IDLE)||(dma_state == `DMA_WAIT)
|
422 |
|
|
||(dma_state == `DMA_WRITE_ACK))
|
423 |
|
|
rdaddr <= 0;
|
424 |
|
|
else if ((dma_state == `DMA_PRE_WRITE)
|
425 |
|
|
||((dma_state==`DMA_WRITE_REQ)&&(~i_mwb_stall)))
|
426 |
|
|
rdaddr <= rdaddr + {{(LGMEMLEN-1){1'b0}},1'b1};
|
427 |
36 |
dgisselq |
always @(posedge i_clk)
|
428 |
160 |
dgisselq |
if ((dma_state != `DMA_WRITE_REQ)||(~i_mwb_stall))
|
429 |
36 |
dgisselq |
o_mwb_data <= dma_mem[rdaddr];
|
430 |
|
|
always @(posedge i_clk)
|
431 |
160 |
dgisselq |
if((dma_state == `DMA_READ_REQ)||(dma_state == `DMA_READ_ACK))
|
432 |
36 |
dgisselq |
dma_mem[nread[(LGMEMLEN-1):0]] <= i_mwb_data;
|
433 |
|
|
|
434 |
|
|
always @(posedge i_clk)
|
435 |
|
|
casez(i_swb_addr)
|
436 |
160 |
dgisselq |
2'b00: o_swb_data <= { (dma_state != `DMA_IDLE), cfg_err,
|
437 |
36 |
dgisselq |
~cfg_incs, ~cfg_incd,
|
438 |
|
|
1'b0, nread,
|
439 |
|
|
cfg_on_dev_trigger, cfg_dev_trigger,
|
440 |
|
|
cfg_blocklen_sub_one
|
441 |
|
|
};
|
442 |
48 |
dgisselq |
2'b01: o_swb_data <= { {(DW-AW){1'b0}}, cfg_len };
|
443 |
|
|
2'b10: o_swb_data <= { {(DW-AW){1'b0}}, cfg_raddr};
|
444 |
|
|
2'b11: o_swb_data <= { {(DW-AW){1'b0}}, cfg_waddr};
|
445 |
36 |
dgisselq |
endcase
|
446 |
|
|
|
447 |
160 |
dgisselq |
// This causes us to wait a minimum of two clocks before starting: One
|
448 |
|
|
// to go into the wait state, and then one while in the wait state to
|
449 |
|
|
// develop the trigger.
|
450 |
|
|
initial trigger = 1'b0;
|
451 |
36 |
dgisselq |
always @(posedge i_clk)
|
452 |
160 |
dgisselq |
trigger <= (dma_state == `DMA_WAIT)
|
453 |
|
|
&&((~cfg_on_dev_trigger)
|
454 |
|
|
||(i_dev_ints[cfg_dev_trigger]));
|
455 |
36 |
dgisselq |
|
456 |
160 |
dgisselq |
// Ack any access. We'll quietly ignore any access where we are busy,
|
457 |
|
|
// but ack it anyway. In other words, before writing to the device,
|
458 |
|
|
// double check that it isn't busy, and then write.
|
459 |
|
|
always @(posedge i_clk)
|
460 |
|
|
o_swb_ack <= (i_swb_cyc)&&(i_swb_stb);
|
461 |
|
|
|
462 |
36 |
dgisselq |
assign o_swb_stall = 1'b0;
|
463 |
|
|
|
464 |
160 |
dgisselq |
initial abort = 1'b0;
|
465 |
|
|
always @(posedge i_clk)
|
466 |
|
|
abort <= (i_rst)||((i_swb_cyc)&&(i_swb_stb)&&(i_swb_we)
|
467 |
|
|
&&(i_swb_addr == 2'b00)
|
468 |
|
|
&&(i_swb_data == 32'hffed0000));
|
469 |
|
|
|
470 |
36 |
dgisselq |
endmodule
|
471 |
|
|
|