| 1 |
36 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
| 2 |
|
|
//
|
| 3 |
|
|
//
|
| 4 |
|
|
// Filename: wbdmac.v
|
| 5 |
|
|
//
|
| 6 |
|
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
| 7 |
|
|
//
|
| 8 |
|
|
// Purpose: Wishbone DMA controller
|
| 9 |
|
|
//
|
| 10 |
|
|
// This module is controllable via the wishbone, and moves values from
|
| 11 |
|
|
// one location in the wishbone address space to another. The amount of
|
| 12 |
|
|
// memory moved at any given time can be up to 4kB, or equivalently 1kW.
|
| 13 |
|
|
// Four registers control this DMA controller: a control/status register,
|
| 14 |
|
|
// a length register, a source WB address and a destination WB address.
|
| 15 |
|
|
// These register may be read at any time, but they may only be written
|
| 16 |
|
|
// to when the controller is idle.
|
| 17 |
|
|
//
|
| 18 |
|
|
// The meanings of three of the setup registers should be self explanatory:
|
| 19 |
|
|
// - The length register controls the total number of words to
|
| 20 |
|
|
// transfer.
|
| 21 |
|
|
// - The source address register controls where the DMA controller
|
| 22 |
|
|
// reads from. This address may or may not be incremented
|
| 23 |
|
|
// after each read, depending upon the setting in the
|
| 24 |
|
|
// control/status register.
|
| 25 |
|
|
// - The destination address register, which controls where the DMA
|
| 26 |
|
|
// controller writes to. This address may or may not be
|
| 27 |
|
|
// incremented after each write, also depending upon the
|
| 28 |
|
|
// setting in the control/status register.
|
| 29 |
|
|
//
|
| 30 |
|
|
// It is the control/status register, at local address zero, that needs
|
| 31 |
|
|
// more definition:
|
| 32 |
|
|
//
|
| 33 |
|
|
// Bits:
|
| 34 |
|
|
// 31 R Write protect If this is set to one, it means the
|
| 35 |
|
|
// write protect bit is set and the controller
|
| 36 |
|
|
// is therefore idle. This bit will be set upon
|
| 37 |
|
|
// completing any transfer.
|
| 38 |
|
|
// 30 R Error. The controller stopped mid-transfer
|
| 39 |
|
|
// after receiving a bus error.
|
| 40 |
|
|
// 29 R/W inc_s_n If set to one, the source address
|
| 41 |
|
|
// will not increment from one read to the next.
|
| 42 |
|
|
// 28 R/W inc_d_n If set to one, the destination address
|
| 43 |
|
|
// will not increment from one write to the next.
|
| 44 |
|
|
// 27 R Always 0
|
| 45 |
|
|
// 26..16 R nread Indicates how many words have been read,
|
| 46 |
|
|
// and not necessarily written (yet). This
|
| 47 |
|
|
// combined with the cfg_len parameter should tell
|
| 48 |
|
|
// exactly where the controller is at mid-transfer.
|
| 49 |
|
|
// 27..16 W WriteProtect When a 12'h3db is written to these
|
| 50 |
|
|
// bits, the write protect bit will be cleared.
|
| 51 |
|
|
//
|
| 52 |
|
|
// 15 R/W on_dev_trigger When set to '1', the controller will
|
| 53 |
|
|
// wait for an external interrupt before starting.
|
| 54 |
|
|
// 14..10 R/W device_id This determines which external interrupt
|
| 55 |
|
|
// will trigger a transfer.
|
| 56 |
|
|
// 9..0 R/W transfer_len How many bytes to transfer at one time.
|
| 57 |
|
|
// The minimum transfer length is one, while zero
|
| 58 |
|
|
// is mapped to a transfer length of 1kW.
|
| 59 |
|
|
//
|
| 60 |
|
|
//
|
| 61 |
|
|
// To use this, follow this checklist:
|
| 62 |
|
|
// 1. Wait for any prior DMA operation to complete
|
| 63 |
|
|
// (Read address 0, wait 'till either top bit is set or cfg_len==0)
|
| 64 |
|
|
// 2. Write values into length, source and destination address.
|
| 65 |
|
|
// (writei(3, &vals) should be sufficient for this.)
|
| 66 |
|
|
// 3. Enable the DMAC interrupt in whatever interrupt controller is present
|
| 67 |
|
|
// on the system.
|
| 68 |
|
|
// 4. Write the final start command to the setup/control/status register:
|
| 69 |
|
|
// Set inc_s_n, inc_d_n, on_dev_trigger, dev_trigger,
|
| 70 |
|
|
// appropriately for your task
|
| 71 |
|
|
// Write 12'h3db to the upper word.
|
| 72 |
|
|
// Set the lower word to either all zeros, or a smaller transfer
|
| 73 |
|
|
// length if desired.
|
| 74 |
|
|
// 5. wait() for the interrupt and the operation to complete.
|
| 75 |
|
|
// Prior to completion, number of items successfully transferred
|
| 76 |
|
|
// be read from the length register. If the internal buffer is
|
| 77 |
|
|
// being used, then you can read how much has been read into that
|
| 78 |
|
|
// buffer by reading from bits 25..16 of this control/status
|
| 79 |
|
|
// register.
|
| 80 |
|
|
//
|
| 81 |
|
|
// Creator: Dan Gisselquist
|
| 82 |
|
|
// Gisselquist Tecnology, LLC
|
| 83 |
|
|
//
|
| 84 |
|
|
// Copyright: 2015
|
| 85 |
|
|
//
|
| 86 |
|
|
//
|
| 87 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
| 88 |
|
|
//
|
| 89 |
|
|
// Copyright (C) 2015, Gisselquist Technology, LLC
|
| 90 |
|
|
//
|
| 91 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
| 92 |
|
|
// modify it under the terms of the GNU General Public License as published
|
| 93 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
| 94 |
|
|
// your option) any later version.
|
| 95 |
|
|
//
|
| 96 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
| 97 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
| 98 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 99 |
|
|
// for more details.
|
| 100 |
|
|
//
|
| 101 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
| 102 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
| 103 |
|
|
//
|
| 104 |
|
|
//
|
| 105 |
|
|
///////////////////////////////////////////////////////////////////////////
|
| 106 |
|
|
//
|
| 107 |
|
|
//
|
| 108 |
|
|
module wbdmac(i_clk,
|
| 109 |
|
|
i_swb_cyc, i_swb_stb, i_swb_we, i_swb_addr, i_swb_data,
|
| 110 |
|
|
o_swb_ack, o_swb_stall, o_swb_data,
|
| 111 |
|
|
o_mwb_cyc, o_mwb_stb, o_mwb_we, o_mwb_addr, o_mwb_data,
|
| 112 |
|
|
i_mwb_ack, i_mwb_stall, i_mwb_data, i_mwb_err,
|
| 113 |
|
|
i_dev_ints,
|
| 114 |
|
|
o_interrupt,
|
| 115 |
|
|
i_other_busmaster_requests_bus);
|
| 116 |
48 |
dgisselq |
parameter ADDRESS_WIDTH=32, LGMEMLEN = 10,
|
| 117 |
|
|
DW=32, LGDV=5,AW=ADDRESS_WIDTH;
|
| 118 |
36 |
dgisselq |
input i_clk;
|
| 119 |
|
|
// Slave/control wishbone inputs
|
| 120 |
|
|
input i_swb_cyc, i_swb_stb, i_swb_we;
|
| 121 |
|
|
input [1:0] i_swb_addr;
|
| 122 |
|
|
input [(DW-1):0] i_swb_data;
|
| 123 |
|
|
// Slave/control wishbone outputs
|
| 124 |
|
|
output reg o_swb_ack;
|
| 125 |
|
|
output wire o_swb_stall;
|
| 126 |
|
|
output reg [(DW-1):0] o_swb_data;
|
| 127 |
|
|
// Master/DMA wishbone control
|
| 128 |
|
|
output reg o_mwb_cyc, o_mwb_stb, o_mwb_we;
|
| 129 |
48 |
dgisselq |
output reg [(AW-1):0] o_mwb_addr;
|
| 130 |
|
|
output reg [(DW-1):0] o_mwb_data;
|
| 131 |
36 |
dgisselq |
// Master/DMA wishbone responses from the bus
|
| 132 |
|
|
input i_mwb_ack, i_mwb_stall;
|
| 133 |
|
|
input [(DW-1):0] i_mwb_data;
|
| 134 |
|
|
input i_mwb_err;
|
| 135 |
|
|
// The interrupt device interrupt lines
|
| 136 |
|
|
input [(DW-1):0] i_dev_ints;
|
| 137 |
|
|
// An interrupt to be set upon completion
|
| 138 |
|
|
output reg o_interrupt;
|
| 139 |
|
|
// Need to release the bus for a higher priority user
|
| 140 |
|
|
input i_other_busmaster_requests_bus;
|
| 141 |
|
|
|
| 142 |
|
|
|
| 143 |
|
|
reg cfg_wp; // Write protect
|
| 144 |
|
|
reg cfg_err;
|
| 145 |
48 |
dgisselq |
reg [(AW-1):0] cfg_waddr, cfg_raddr, cfg_len;
|
| 146 |
36 |
dgisselq |
reg [(LGMEMLEN-1):0] cfg_blocklen_sub_one;
|
| 147 |
|
|
reg cfg_incs, cfg_incd;
|
| 148 |
|
|
reg [(LGDV-1):0] cfg_dev_trigger;
|
| 149 |
|
|
reg cfg_on_dev_trigger;
|
| 150 |
|
|
|
| 151 |
|
|
// Single block operations: We'll read, then write, up to a single
|
| 152 |
|
|
// memory block here.
|
| 153 |
|
|
|
| 154 |
|
|
reg [(DW-1):0] dma_mem [0:(((1<<LGMEMLEN))-1)];
|
| 155 |
|
|
reg [(LGMEMLEN):0] nread, nwritten, nacks;
|
| 156 |
48 |
dgisselq |
wire [(AW-1):0] bus_nacks;
|
| 157 |
|
|
assign bus_nacks = { {(AW-LGMEMLEN-1){1'b0}}, nacks };
|
| 158 |
36 |
dgisselq |
|
| 159 |
|
|
initial o_interrupt = 1'b0;
|
| 160 |
|
|
initial o_mwb_cyc = 1'b0;
|
| 161 |
|
|
initial cfg_err = 1'b0;
|
| 162 |
|
|
initial cfg_wp = 1'b0;
|
| 163 |
48 |
dgisselq |
initial cfg_len = {(AW){1'b0}};
|
| 164 |
36 |
dgisselq |
initial cfg_blocklen_sub_one = {(LGMEMLEN){1'b1}};
|
| 165 |
|
|
initial cfg_on_dev_trigger = 1'b0;
|
| 166 |
|
|
always @(posedge i_clk)
|
| 167 |
|
|
if ((o_mwb_cyc)&&(o_mwb_we)) // Write cycle
|
| 168 |
|
|
begin
|
| 169 |
|
|
if ((o_mwb_stb)&&(~i_mwb_stall))
|
| 170 |
|
|
begin
|
| 171 |
|
|
nwritten <= nwritten+1;
|
| 172 |
|
|
if ((nwritten == nread-1)
|
| 173 |
|
|
||(i_other_busmaster_requests_bus))
|
| 174 |
|
|
// Wishbone interruptus
|
| 175 |
|
|
o_mwb_stb <= 1'b0;
|
| 176 |
|
|
else if (cfg_incd) begin
|
| 177 |
|
|
o_mwb_addr <= o_mwb_addr + 1;
|
| 178 |
|
|
cfg_waddr <= cfg_waddr + 1;
|
| 179 |
|
|
end
|
| 180 |
|
|
// o_mwb_data <= dma_mem[nwritten + 1];
|
| 181 |
|
|
end
|
| 182 |
|
|
|
| 183 |
|
|
if (i_mwb_err)
|
| 184 |
|
|
begin
|
| 185 |
|
|
o_mwb_cyc <= 1'b0;
|
| 186 |
|
|
cfg_err <= 1'b1;
|
| 187 |
|
|
cfg_len <= 0;
|
| 188 |
|
|
nread <= 0;
|
| 189 |
|
|
end else if (i_mwb_ack)
|
| 190 |
|
|
begin
|
| 191 |
|
|
nacks <= nacks+1;
|
| 192 |
|
|
cfg_len <= cfg_len - 1;
|
| 193 |
|
|
if ((nacks+1 == nwritten)&&(~o_mwb_stb))
|
| 194 |
|
|
begin
|
| 195 |
|
|
o_mwb_cyc <= 1'b0;
|
| 196 |
|
|
nread <= 0;
|
| 197 |
|
|
o_interrupt <= (cfg_len == 1);
|
| 198 |
|
|
// Turn write protect back on
|
| 199 |
|
|
cfg_wp <= 1'b1;
|
| 200 |
|
|
end
|
| 201 |
|
|
end
|
| 202 |
|
|
end else if ((o_mwb_cyc)&&(~o_mwb_we)) // Read cycle
|
| 203 |
|
|
begin
|
| 204 |
|
|
if ((o_mwb_stb)&&(~i_mwb_stall))
|
| 205 |
|
|
begin
|
| 206 |
|
|
nacks <= nacks+1;
|
| 207 |
|
|
if ((nacks == {1'b0, cfg_blocklen_sub_one})
|
| 208 |
|
|
||(bus_nacks <= cfg_len-1)
|
| 209 |
|
|
||(i_other_busmaster_requests_bus))
|
| 210 |
|
|
// Wishbone interruptus
|
| 211 |
|
|
o_mwb_stb <= 1'b0;
|
| 212 |
|
|
else if (cfg_incs) begin
|
| 213 |
|
|
o_mwb_addr <= o_mwb_addr + 1;
|
| 214 |
|
|
end
|
| 215 |
|
|
end
|
| 216 |
|
|
|
| 217 |
|
|
if (i_mwb_err)
|
| 218 |
|
|
begin
|
| 219 |
|
|
o_mwb_cyc <= 1'b0;
|
| 220 |
|
|
cfg_err <= 1'b1;
|
| 221 |
|
|
cfg_len <= 0;
|
| 222 |
|
|
nread <= 0;
|
| 223 |
|
|
end else if (i_mwb_ack)
|
| 224 |
|
|
begin
|
| 225 |
|
|
nread <= nread+1;
|
| 226 |
|
|
if ((~o_mwb_stb)&&(nread+1 == nacks))
|
| 227 |
|
|
begin
|
| 228 |
|
|
o_mwb_cyc <= 1'b0;
|
| 229 |
|
|
nacks <= 0;
|
| 230 |
|
|
end
|
| 231 |
|
|
if (cfg_incs)
|
| 232 |
|
|
cfg_raddr <= cfg_raddr + 1;
|
| 233 |
|
|
// dma_mem[nread[(LGMEMLEN-1):0]] <= i_mwb_data;
|
| 234 |
|
|
end
|
| 235 |
|
|
end else if ((~o_mwb_cyc)&&(nread > 0)&&(~cfg_err))
|
| 236 |
|
|
begin // Initiate/continue a write cycle
|
| 237 |
|
|
o_mwb_cyc <= 1'b1;
|
| 238 |
|
|
o_mwb_stb <= 1'b1;
|
| 239 |
|
|
o_mwb_we <= 1'b1;
|
| 240 |
|
|
// o_mwb_data <= dma_mem[0];
|
| 241 |
|
|
o_mwb_addr <= cfg_waddr;
|
| 242 |
|
|
// nwritten <= 0; // Can't set to zero, in case we're
|
| 243 |
|
|
// nacks <= 0; // continuing a cycle
|
| 244 |
|
|
end else if ((~o_mwb_cyc)&&(nread == 0)&&(cfg_len>0)&&(~cfg_wp)
|
| 245 |
|
|
&&((~cfg_on_dev_trigger)
|
| 246 |
|
|
||(i_dev_ints[cfg_dev_trigger])))
|
| 247 |
|
|
begin // Initiate a read cycle
|
| 248 |
|
|
o_mwb_cyc <= 1'b1;
|
| 249 |
|
|
o_mwb_stb <= 1'b1;
|
| 250 |
|
|
o_mwb_we <= 1'b0;
|
| 251 |
|
|
o_mwb_addr<= cfg_raddr;
|
| 252 |
|
|
nwritten <= 0;
|
| 253 |
|
|
nread <= 0;
|
| 254 |
|
|
nacks <= 0;
|
| 255 |
|
|
end else begin
|
| 256 |
|
|
o_mwb_cyc <= 1'b0;
|
| 257 |
|
|
o_mwb_stb <= 1'b0;
|
| 258 |
|
|
o_mwb_we <= 1'b0;
|
| 259 |
|
|
o_mwb_addr <= cfg_raddr;
|
| 260 |
|
|
o_interrupt<= 1'b0;
|
| 261 |
|
|
nwritten <= 0;
|
| 262 |
|
|
if ((i_swb_cyc)&&(i_swb_stb)&&(i_swb_we))
|
| 263 |
|
|
begin
|
| 264 |
|
|
cfg_wp <= 1'b1;
|
| 265 |
|
|
case(i_swb_addr)
|
| 266 |
|
|
2'b00: begin
|
| 267 |
|
|
cfg_wp <= (i_swb_data[27:16]!=12'hfed);
|
| 268 |
|
|
cfg_blocklen_sub_one
|
| 269 |
|
|
<= i_swb_data[(LGMEMLEN-1):0]-1;
|
| 270 |
|
|
cfg_dev_trigger <= i_swb_data[14:10];
|
| 271 |
|
|
cfg_on_dev_trigger <= i_swb_data[15];
|
| 272 |
|
|
cfg_incs <= ~i_swb_data[29];
|
| 273 |
|
|
cfg_incd <= ~i_swb_data[28];
|
| 274 |
|
|
cfg_err <= 1'b0;
|
| 275 |
|
|
end
|
| 276 |
48 |
dgisselq |
2'b01: cfg_len <= i_swb_data[(AW-1):0];
|
| 277 |
|
|
2'b10: cfg_raddr <= i_swb_data[(AW-1):0];
|
| 278 |
|
|
2'b11: cfg_waddr <= i_swb_data[(AW-1):0];
|
| 279 |
36 |
dgisselq |
endcase
|
| 280 |
|
|
end
|
| 281 |
|
|
end
|
| 282 |
|
|
|
| 283 |
|
|
//
|
| 284 |
|
|
// This is tricky. In order for Vivado to consider dma_mem to be a
|
| 285 |
|
|
// proper memory, it must have a simple address fed into it. Hence
|
| 286 |
|
|
// the read_address (rdaddr) register. The problem is that this
|
| 287 |
|
|
// register must always be one greater than the address we actually
|
| 288 |
|
|
// want to read from, unless we are idling. So ... the math is touchy.
|
| 289 |
|
|
//
|
| 290 |
|
|
reg [(LGMEMLEN-1):0] rdaddr;
|
| 291 |
|
|
always @(posedge i_clk)
|
| 292 |
|
|
if ((o_mwb_cyc)&&(o_mwb_we)&&(o_mwb_stb)&&(~i_mwb_stall))
|
| 293 |
|
|
// This would be the normal advance, save that we are
|
| 294 |
|
|
// already one ahead of nwritten
|
| 295 |
|
|
rdaddr <= rdaddr + 1; // {{(LGMEMLEN-1){1'b0}},1};
|
| 296 |
|
|
else if ((~o_mwb_cyc)&&(nread > 0)&&(~cfg_err))
|
| 297 |
|
|
// Here's where we do our extra advance
|
| 298 |
|
|
rdaddr <= nwritten[(LGMEMLEN-1):0]+1;
|
| 299 |
|
|
else if ((~o_mwb_cyc)||(~o_mwb_we))
|
| 300 |
|
|
rdaddr <= nwritten[(LGMEMLEN-1):0];
|
| 301 |
|
|
always @(posedge i_clk)
|
| 302 |
|
|
if ((~o_mwb_cyc)||((o_mwb_we)&&(o_mwb_stb)&&(~i_mwb_stall)))
|
| 303 |
|
|
o_mwb_data <= dma_mem[rdaddr];
|
| 304 |
|
|
always @(posedge i_clk)
|
| 305 |
|
|
if ((o_mwb_cyc)&&(~o_mwb_we)&&(i_mwb_ack))
|
| 306 |
|
|
dma_mem[nread[(LGMEMLEN-1):0]] <= i_mwb_data;
|
| 307 |
|
|
|
| 308 |
|
|
always @(posedge i_clk)
|
| 309 |
|
|
casez(i_swb_addr)
|
| 310 |
|
|
2'b00: o_swb_data <= { ~cfg_wp, cfg_err,
|
| 311 |
|
|
~cfg_incs, ~cfg_incd,
|
| 312 |
|
|
1'b0, nread,
|
| 313 |
|
|
cfg_on_dev_trigger, cfg_dev_trigger,
|
| 314 |
|
|
cfg_blocklen_sub_one
|
| 315 |
|
|
};
|
| 316 |
48 |
dgisselq |
2'b01: o_swb_data <= { {(DW-AW){1'b0}}, cfg_len };
|
| 317 |
|
|
2'b10: o_swb_data <= { {(DW-AW){1'b0}}, cfg_raddr};
|
| 318 |
|
|
2'b11: o_swb_data <= { {(DW-AW){1'b0}}, cfg_waddr};
|
| 319 |
36 |
dgisselq |
endcase
|
| 320 |
|
|
|
| 321 |
|
|
always @(posedge i_clk)
|
| 322 |
|
|
if ((i_swb_cyc)&&(i_swb_stb)) // &&(~i_swb_we))
|
| 323 |
|
|
o_swb_ack <= 1'b1;
|
| 324 |
|
|
// else if ((i_swb_cyc)&&(i_swb_stb)&&(i_swb_we)&&(~o_mwb_cyc)&&(nread == 0))
|
| 325 |
|
|
else
|
| 326 |
|
|
o_swb_ack <= 1'b0;
|
| 327 |
|
|
|
| 328 |
|
|
assign o_swb_stall = 1'b0;
|
| 329 |
|
|
|
| 330 |
|
|
endmodule
|
| 331 |
|
|
|