1 |
2 |
dgisselq |
///////////////////////////////////////////////////////////////////////////
|
2 |
|
|
//
|
3 |
|
|
// Filename: ziptimer.v
|
4 |
|
|
//
|
5 |
|
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
6 |
|
|
//
|
7 |
|
|
// Purpose:
|
8 |
|
|
//
|
9 |
|
|
// Interface:
|
10 |
|
|
// Two options:
|
11 |
|
|
// 1. One combined register for both control and value, and ...
|
12 |
|
|
// The reload value is set any time the timer data value is "set".
|
13 |
|
|
// Reading the register returns the timer value. Controls are
|
14 |
|
|
// set so that writing a value to the timer automatically starts
|
15 |
|
|
// it counting down.
|
16 |
|
|
// 2. Two registers, one for control one for value.
|
17 |
|
|
// The control register would have the reload value in it.
|
18 |
|
|
// On the clock when the interface is set to zero the interrupt is set.
|
19 |
|
|
// Hence setting the timer to zero will disable the timer without
|
20 |
|
|
// setting any interrupts. Thus setting it to five will count
|
21 |
|
|
// 5 clocks: 5, 4, 3, 2, 1, Interrupt.
|
22 |
|
|
//
|
23 |
|
|
//
|
24 |
|
|
// Control bits:
|
25 |
|
|
// Start_n/Stop. Writing a '0' starts the timer, '1' stops it.
|
26 |
|
|
// Thus, ignoring this bit sets it to start.
|
27 |
|
|
// AutoReload. If set, then on reset the timer automatically
|
28 |
|
|
// loads the last set value and starts over. This is
|
29 |
|
|
// useful for distinguishing between a one-time interrupt
|
30 |
|
|
// timer, and a repetitive interval timer.
|
31 |
|
|
// (COUNT: If set, the timer only ticks whenever an external
|
32 |
|
|
// line goes high. What this external line is ... is
|
33 |
|
|
// not specified here. This, however, breaks my
|
34 |
|
|
// interface ideal of having our peripheral set not depend
|
35 |
|
|
// upon anything. Hence, this is an advanced option
|
36 |
|
|
// enabled at compile time only.)
|
37 |
|
|
// (INTEN. Interrupt enable--reaching zero always creates an
|
38 |
|
|
// interrupt, so this control bit isn't needed. The
|
39 |
|
|
// interrupt controller can be used to mask the interrupt.)
|
40 |
|
|
// (COUNT-DOWN/UP: This timer is *only* a count-down timer.
|
41 |
|
|
// There is no means of setting it to count up.)
|
42 |
|
|
// WatchDog
|
43 |
|
|
// This timer can be implemented as a watchdog timer simply by
|
44 |
|
|
// connecting the interrupt line to the reset line of the CPU.
|
45 |
|
|
// When the timer then expires, it will trigger a CPU reset.
|
46 |
|
|
//
|
47 |
|
|
//
|
48 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
49 |
|
|
// Gisselquist Tecnology, LLC
|
50 |
|
|
//
|
51 |
|
|
///////////////////////////////////////////////////////////////////////////
|
52 |
|
|
//
|
53 |
|
|
// Copyright (C) 2015, Gisselquist Technology, LLC
|
54 |
|
|
//
|
55 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
56 |
|
|
// modify it under the terms of the GNU General Public License as published
|
57 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
58 |
|
|
// your option) any later version.
|
59 |
|
|
//
|
60 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
61 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
62 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
63 |
|
|
// for more details.
|
64 |
|
|
//
|
65 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
66 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
67 |
|
|
//
|
68 |
|
|
//
|
69 |
|
|
///////////////////////////////////////////////////////////////////////////
|
70 |
|
|
//
|
71 |
|
|
module ziptimer(i_clk, i_rst, i_ce,
|
72 |
|
|
i_wb_cyc, i_wb_stb, i_wb_we, i_wb_data,
|
73 |
|
|
o_wb_ack, o_wb_stall, o_wb_data,
|
74 |
|
|
o_int);
|
75 |
|
|
parameter BW = 32, VW = (BW-2);
|
76 |
|
|
input i_clk, i_rst, i_ce;
|
77 |
|
|
// Wishbone inputs
|
78 |
|
|
input i_wb_cyc, i_wb_stb, i_wb_we;
|
79 |
|
|
input [(BW-1):0] i_wb_data;
|
80 |
|
|
// Wishbone outputs
|
81 |
|
|
output reg o_wb_ack;
|
82 |
|
|
output wire o_wb_stall;
|
83 |
|
|
output wire [(BW-1):0] o_wb_data;
|
84 |
|
|
// Interrupt line
|
85 |
|
|
output reg o_int;
|
86 |
|
|
|
87 |
|
|
reg r_auto_reload, r_running;
|
88 |
|
|
reg [(VW-1):0] r_reload_value;
|
89 |
|
|
initial r_running = 1'b0;
|
90 |
|
|
initial r_auto_reload = 1'b0;
|
91 |
|
|
always @(posedge i_clk)
|
92 |
|
|
if (i_rst)
|
93 |
|
|
begin
|
94 |
|
|
r_running <= 1'b0;
|
95 |
|
|
r_auto_reload <= 1'b0;
|
96 |
|
|
end else if ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_we))
|
97 |
|
|
begin
|
98 |
|
|
r_running <= (~i_wb_data[(BW-1)])&&(|i_wb_data[(BW-2):0]);
|
99 |
|
|
r_auto_reload <= (i_wb_data[(BW-2)]);
|
100 |
|
|
|
101 |
|
|
// If setting auto-reload mode, and the value to other
|
102 |
|
|
// than zero, set the auto-reload value
|
103 |
|
|
if ((i_wb_data[(BW-2)])&&(|i_wb_data[(BW-3):0]))
|
104 |
|
|
r_reload_value <= i_wb_data[(BW-3):0];
|
105 |
|
|
end
|
106 |
|
|
|
107 |
|
|
reg [(VW-1):0] r_value;
|
108 |
|
|
initial r_value = 0;
|
109 |
|
|
always @(posedge i_clk)
|
110 |
|
|
if ((r_running)&&(|r_value)&&(i_ce))
|
111 |
|
|
begin
|
112 |
|
|
r_value <= r_value - 1;
|
113 |
|
|
end else if ((r_running)&&(r_auto_reload))
|
114 |
|
|
r_value <= r_reload_value;
|
115 |
|
|
else if ((~r_running)&&(i_wb_cyc)&&(i_wb_stb)&&(i_wb_we))
|
116 |
|
|
r_value <= i_wb_data[(VW-1):0];
|
117 |
|
|
|
118 |
|
|
// Set the interrupt on our last tick.
|
119 |
|
|
initial o_int = 1'b0;
|
120 |
|
|
always @(posedge i_clk)
|
121 |
|
|
if (i_ce)
|
122 |
|
|
o_int <= (r_running)&&(r_value == { {(VW-1){1'b0}}, 1'b1 });
|
123 |
|
|
else
|
124 |
|
|
o_int <= 1'b0;
|
125 |
|
|
|
126 |
|
|
initial o_wb_ack = 1'b0;
|
127 |
|
|
always @(posedge i_clk)
|
128 |
|
|
o_wb_ack <= (i_wb_cyc)&&(i_wb_stb);
|
129 |
|
|
assign o_wb_stall = 1'b0;
|
130 |
|
|
|
131 |
|
|
assign o_wb_data = { ~r_running, r_auto_reload, r_value };
|
132 |
|
|
|
133 |
|
|
endmodule
|