1 |
2 |
dgisselq |
///////////////////////////////////////////////////////////////////////////
|
2 |
|
|
//
|
3 |
|
|
// Filename: zipsystem.v
|
4 |
|
|
//
|
5 |
|
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
6 |
|
|
//
|
7 |
|
|
// Purpose: This portion of the ZIP CPU implements a number of soft
|
8 |
|
|
// peripherals to the CPU nearby its CORE. The functionality
|
9 |
|
|
// sits on the data bus, and does not include any true
|
10 |
|
|
// external hardware peripherals. The peripherals included here
|
11 |
|
|
// include:
|
12 |
|
|
//
|
13 |
|
|
//
|
14 |
|
|
// Local interrupt controller--for any/all of the interrupts generated
|
15 |
|
|
// here. This would include a pin for interrupts generated
|
16 |
|
|
// elsewhere, so this interrupt controller could be a master
|
17 |
|
|
// handling all interrupts. My interrupt controller would work
|
18 |
|
|
// for this purpose.
|
19 |
|
|
//
|
20 |
|
|
// The ZIP-CPU supports only one interrupt because, as I understand
|
21 |
|
|
// modern systems (Linux), they tend to send all interrupts to the
|
22 |
|
|
// same interrupt vector anyway. Hence, that's what we do here.
|
23 |
|
|
//
|
24 |
|
|
// Bus Error interrupts -- generates an interrupt any time the wishbone
|
25 |
|
|
// bus produces an error on a given access, for whatever purpose
|
26 |
|
|
// also records the address on the bus at the time of the error.
|
27 |
|
|
//
|
28 |
|
|
// Trap instructions
|
29 |
|
|
// Writing to this "register" will always create an interrupt.
|
30 |
|
|
// After the interrupt, this register may be read to see what
|
31 |
|
|
// value had been written to it.
|
32 |
|
|
//
|
33 |
|
|
// Bit reverse register ... ?
|
34 |
|
|
//
|
35 |
|
|
// (Potentially an eventual floating point co-processor ...)
|
36 |
|
|
//
|
37 |
|
|
// Real-time clock
|
38 |
|
|
//
|
39 |
|
|
// Interval timer(s) (Count down from fixed value, and either stop on
|
40 |
|
|
// zero, or issue an interrupt and restart automatically on zero)
|
41 |
|
|
// These can be implemented as watchdog timers if desired--the
|
42 |
|
|
// only difference is that a watchdog timer's interrupt feeds the
|
43 |
|
|
// reset line instead of the processor interrupt line.
|
44 |
|
|
//
|
45 |
|
|
// Watch-dog timer: this is the same as an interval timer, only it's
|
46 |
|
|
// interrupt/time-out line is wired to the reset line instead of
|
47 |
|
|
// the interrupt line of the CPU.
|
48 |
|
|
//
|
49 |
|
|
// ROM Memory map
|
50 |
|
|
// Set a register to control this map, and a DMA will begin to
|
51 |
|
|
// fill this memory from a slower FLASH. Once filled, accesses
|
52 |
|
|
// will be from this memory instead of
|
53 |
|
|
//
|
54 |
|
|
//
|
55 |
|
|
// Doing some market comparison, let's look at what peripherals a TI
|
56 |
|
|
// MSP430 might offer: MSP's may have I2C ports, SPI, UART, DMA, ADC,
|
57 |
|
|
// Comparators, 16,32-bit timers, 16x16 or 32x32 timers, AES, BSL,
|
58 |
|
|
// brown-out-reset(s), real-time-clocks, temperature sensors, USB ports,
|
59 |
|
|
// Spi-Bi-Wire, UART Boot-strap Loader (BSL), programmable digital I/O,
|
60 |
|
|
// watchdog-timers,
|
61 |
|
|
//
|
62 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
63 |
|
|
// Gisselquist Tecnology, LLC
|
64 |
|
|
//
|
65 |
|
|
///////////////////////////////////////////////////////////////////////////
|
66 |
|
|
//
|
67 |
|
|
// Copyright (C) 2015, Gisselquist Technology, LLC
|
68 |
|
|
//
|
69 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
70 |
|
|
// modify it under the terms of the GNU General Public License as published
|
71 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
72 |
|
|
// your option) any later version.
|
73 |
|
|
//
|
74 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
75 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
76 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
77 |
|
|
// for more details.
|
78 |
|
|
//
|
79 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
80 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
81 |
|
|
//
|
82 |
|
|
//
|
83 |
|
|
///////////////////////////////////////////////////////////////////////////
|
84 |
|
|
//
|
85 |
3 |
dgisselq |
// While I hate adding delays to any bus access, these two are required
|
86 |
|
|
// to make timing close in my Basys-3 design.
|
87 |
|
|
`define DELAY_EXT_BUS
|
88 |
|
|
`define DELAY_DBG_BUS
|
89 |
|
|
//
|
90 |
|
|
//
|
91 |
|
|
// Now, where am I placing all of my peripherals?
|
92 |
2 |
dgisselq |
`define PERIPHBASE 32'hc0000000
|
93 |
|
|
`define INTCTRL 4'h0 //
|
94 |
|
|
`define WATCHDOG 4'h1 // Interrupt generates reset signal
|
95 |
|
|
`define CACHECTRL 4'h2 // Sets IVEC[0]
|
96 |
|
|
`define CTRINT 4'h3 // Sets IVEC[5]
|
97 |
|
|
`define TIMER_A 4'h4 // Sets IVEC[4]
|
98 |
|
|
`define TIMER_B 4'h5 // Sets IVEC[3]
|
99 |
|
|
`define TIMER_C 4'h6 // Sets IVEC[2]
|
100 |
|
|
`define JIFFIES 4'h7 // Sets IVEC[1]
|
101 |
|
|
|
102 |
|
|
`define MSTR_TASK_CTR 4'h8
|
103 |
|
|
`define MSTR_MSTL_CTR 4'h9
|
104 |
|
|
`define MSTR_PSTL_CTR 4'ha
|
105 |
|
|
`define MSTR_ASTL_CTR 4'hb
|
106 |
|
|
`define USER_TASK_CTR 4'hc
|
107 |
|
|
`define USER_MSTL_CTR 4'hd
|
108 |
|
|
`define USER_PSTL_CTR 4'he
|
109 |
|
|
`define USER_ASTL_CTR 4'hf
|
110 |
|
|
|
111 |
|
|
`define CACHEBASE 16'hc010 //
|
112 |
|
|
// `define RTC_CLOCK 32'hc0000008 // A global something
|
113 |
|
|
// `define BITREV 32'hc0000003
|
114 |
|
|
//
|
115 |
|
|
// DBGCTRL
|
116 |
|
|
// 10 HALT
|
117 |
|
|
// 9 HALT(ED)
|
118 |
|
|
// 8 STEP (W=1 steps, and returns to halted)
|
119 |
|
|
// 7 INTERRUPT-FLAG
|
120 |
|
|
// 6 RESET_FLAG
|
121 |
|
|
// ADDRESS:
|
122 |
|
|
// 5 PERIPHERAL-BIT
|
123 |
|
|
// [4:0] REGISTER-ADDR
|
124 |
|
|
// DBGDATA
|
125 |
|
|
// read/writes internal registers
|
126 |
|
|
module zipsystem(i_clk, i_rst,
|
127 |
|
|
// Wishbone master interface from the CPU
|
128 |
|
|
o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data,
|
129 |
|
|
i_wb_ack, i_wb_stall, i_wb_data,
|
130 |
|
|
// Incoming interrupts
|
131 |
|
|
i_ext_int,
|
132 |
|
|
// Wishbone slave interface for debugging purposes
|
133 |
|
|
i_dbg_cyc, i_dbg_stb, i_dbg_we, i_dbg_addr, i_dbg_data,
|
134 |
|
|
o_dbg_ack, o_dbg_stall, o_dbg_data);
|
135 |
|
|
parameter RESET_ADDRESS=32'h0100000;
|
136 |
|
|
input i_clk, i_rst;
|
137 |
|
|
// Wishbone master
|
138 |
|
|
output wire o_wb_cyc, o_wb_stb, o_wb_we;
|
139 |
|
|
output wire [31:0] o_wb_addr;
|
140 |
|
|
output wire [31:0] o_wb_data;
|
141 |
|
|
input i_wb_ack, i_wb_stall;
|
142 |
|
|
input [31:0] i_wb_data;
|
143 |
|
|
// Incoming interrupts
|
144 |
|
|
input i_ext_int;
|
145 |
|
|
// Wishbone slave
|
146 |
|
|
input i_dbg_cyc, i_dbg_stb, i_dbg_we, i_dbg_addr;
|
147 |
|
|
input [31:0] i_dbg_data;
|
148 |
|
|
output wire o_dbg_ack;
|
149 |
|
|
output wire o_dbg_stall;
|
150 |
|
|
output wire [31:0] o_dbg_data;
|
151 |
|
|
|
152 |
|
|
wire [31:0] ext_idata;
|
153 |
|
|
|
154 |
|
|
// Delay the debug port by one clock, to meet timing requirements
|
155 |
|
|
wire dbg_cyc, dbg_stb, dbg_we, dbg_addr, dbg_stall;
|
156 |
|
|
wire [31:0] dbg_idata, dbg_odata;
|
157 |
|
|
reg dbg_ack;
|
158 |
3 |
dgisselq |
`ifdef DELAY_DBG_BUS
|
159 |
2 |
dgisselq |
busdelay #(1,32) wbdelay(i_clk,
|
160 |
|
|
i_dbg_cyc, i_dbg_stb, i_dbg_we, i_dbg_addr, i_dbg_data,
|
161 |
|
|
o_dbg_ack, o_dbg_stall, o_dbg_data,
|
162 |
|
|
dbg_cyc, dbg_stb, dbg_we, dbg_addr, dbg_idata,
|
163 |
|
|
dbg_ack, dbg_stall, dbg_odata);
|
164 |
3 |
dgisselq |
`else
|
165 |
|
|
assign dbg_cyc = i_dbg_cyc;
|
166 |
|
|
assign dbg_stb = i_dbg_stb;
|
167 |
|
|
assign dbg_we = i_dbg_we;
|
168 |
|
|
assign dbg_addr = i_dbg_addr;
|
169 |
|
|
assign dbg_idata = i_dbg_data;
|
170 |
|
|
assign o_dbg_ack = dbg_ack;
|
171 |
|
|
assign o_dbg_stall = dbg_stall;
|
172 |
|
|
assign o_dbg_data = dbg_odata;
|
173 |
|
|
`endif
|
174 |
2 |
dgisselq |
|
175 |
|
|
//
|
176 |
|
|
//
|
177 |
|
|
//
|
178 |
|
|
wire sys_cyc, sys_stb, sys_we;
|
179 |
|
|
wire [3:0] sys_addr;
|
180 |
|
|
wire [31:0] cpu_addr;
|
181 |
|
|
wire [31:0] sys_data;
|
182 |
|
|
// wire sys_ack, sys_stall;
|
183 |
|
|
|
184 |
|
|
//
|
185 |
|
|
// The external debug interface
|
186 |
|
|
//
|
187 |
|
|
// We offer only a limited interface here, requiring a pre-register
|
188 |
|
|
// write to set the local address. This interface allows access to
|
189 |
|
|
// the Zip System on a debug basis only, and not to the rest of the
|
190 |
|
|
// wishbone bus. Further, to access these registers, the control
|
191 |
|
|
// register must first be accessed to both stop the CPU and to
|
192 |
|
|
// set the following address in question. Hence all accesses require
|
193 |
|
|
// two accesses: write the address to the control register (and halt
|
194 |
|
|
// the CPU if not halted), then read/write the data from the data
|
195 |
|
|
// register.
|
196 |
|
|
//
|
197 |
9 |
dgisselq |
wire cpu_break, dbg_cmd_write;
|
198 |
2 |
dgisselq |
reg cmd_reset, cmd_halt, cmd_step;
|
199 |
|
|
reg [5:0] cmd_addr;
|
200 |
9 |
dgisselq |
assign dbg_cmd_write = (dbg_cyc)&&(dbg_stb)&&(dbg_we)&&(~dbg_addr);
|
201 |
|
|
//
|
202 |
2 |
dgisselq |
initial cmd_reset = 1'b1;
|
203 |
9 |
dgisselq |
always @(posedge i_clk)
|
204 |
|
|
cmd_reset <= ((dbg_cmd_write)&&(dbg_idata[6]));
|
205 |
|
|
//
|
206 |
2 |
dgisselq |
initial cmd_halt = 1'b1;
|
207 |
|
|
always @(posedge i_clk)
|
208 |
|
|
if (i_rst)
|
209 |
11 |
dgisselq |
cmd_halt <= 1'b1;
|
210 |
9 |
dgisselq |
else if (dbg_cmd_write)
|
211 |
2 |
dgisselq |
cmd_halt <= dbg_idata[10];
|
212 |
9 |
dgisselq |
else if ((cmd_step)||(cpu_break))
|
213 |
|
|
cmd_halt <= 1'b1;
|
214 |
|
|
//
|
215 |
|
|
initial cmd_step = 1'b0;
|
216 |
|
|
always @(posedge i_clk)
|
217 |
|
|
cmd_step <= (dbg_cmd_write)&&(dbg_idata[8]);
|
218 |
|
|
//
|
219 |
|
|
always @(posedge i_clk)
|
220 |
|
|
if (dbg_cmd_write)
|
221 |
2 |
dgisselq |
cmd_addr <= dbg_idata[5:0];
|
222 |
9 |
dgisselq |
|
223 |
2 |
dgisselq |
wire cpu_reset;
|
224 |
|
|
assign cpu_reset = (i_rst)||(cmd_reset)||(wdt_reset);
|
225 |
|
|
|
226 |
|
|
wire cpu_halt, cpu_dbg_stall;
|
227 |
|
|
assign cpu_halt = (cmd_halt)&&(~cmd_step);
|
228 |
|
|
wire [31:0] pic_data;
|
229 |
|
|
wire [31:0] cmd_data;
|
230 |
|
|
assign cmd_data = { 21'h00, cmd_halt, (~cpu_dbg_stall), 1'b0, pic_data[15],
|
231 |
|
|
cpu_reset, cmd_addr };
|
232 |
|
|
|
233 |
|
|
`ifdef USE_TRAP
|
234 |
|
|
//
|
235 |
|
|
// The TRAP peripheral
|
236 |
|
|
//
|
237 |
|
|
wire trap_ack, trap_stall, trap_int;
|
238 |
|
|
wire [31:0] trap_data;
|
239 |
|
|
ziptrap trapp(i_clk,
|
240 |
|
|
sys_cyc, (sys_stb)&&(sys_addr == `TRAP_ADDR), sys_we,
|
241 |
|
|
sys_data,
|
242 |
|
|
trap_ack, trap_stall, trap_data, trap_int);
|
243 |
|
|
`endif
|
244 |
|
|
|
245 |
|
|
//
|
246 |
|
|
// The WATCHDOG Timer
|
247 |
|
|
//
|
248 |
|
|
wire wdt_ack, wdt_stall, wdt_reset;
|
249 |
|
|
wire [31:0] wdt_data;
|
250 |
|
|
ziptimer watchdog(i_clk, cpu_reset, ~cmd_halt,
|
251 |
|
|
sys_cyc, ((sys_stb)&&(sys_addr == `WATCHDOG)), sys_we,
|
252 |
|
|
sys_data,
|
253 |
|
|
wdt_ack, wdt_stall, wdt_data, wdt_reset);
|
254 |
|
|
|
255 |
|
|
//
|
256 |
|
|
// The Flash Cache, a pre-read cache to memory that can be used to
|
257 |
|
|
// create a fast memory access area
|
258 |
|
|
//
|
259 |
|
|
wire cache_int;
|
260 |
|
|
wire [31:0] cache_data;
|
261 |
|
|
wire cache_stb, cache_ack, cache_stall;
|
262 |
|
|
wire fc_cyc, fc_stb, fc_we, fc_ack, fc_stall;
|
263 |
|
|
wire [31:0] fc_data, fc_addr;
|
264 |
|
|
flashcache #(10) manualcache(i_clk,
|
265 |
|
|
sys_cyc, cache_stb,
|
266 |
|
|
((sys_stb)&&(sys_addr == `CACHECTRL)),
|
267 |
|
|
sys_we, cpu_addr[9:0], sys_data,
|
268 |
|
|
cache_ack, cache_stall, cache_data,
|
269 |
|
|
// Need the outgoing CACHE wishbone bus
|
270 |
|
|
fc_cyc, fc_stb, fc_we, fc_addr, fc_data,
|
271 |
|
|
fc_ack, fc_stall, ext_idata,
|
272 |
|
|
// Cache interrupt, for upon completion
|
273 |
|
|
cache_int);
|
274 |
|
|
|
275 |
|
|
|
276 |
|
|
// Counters -- for performance measurement and accounting
|
277 |
|
|
//
|
278 |
|
|
// Here's the stuff we'll be counting ....
|
279 |
|
|
//
|
280 |
9 |
dgisselq |
wire cpu_op_stall, cpu_pf_stall, cpu_i_count;
|
281 |
2 |
dgisselq |
|
282 |
|
|
//
|
283 |
|
|
// The master counters will, in general, not be reset. They'll be used
|
284 |
|
|
// for an overall counter.
|
285 |
|
|
//
|
286 |
|
|
// Master task counter
|
287 |
|
|
wire mtc_ack, mtc_stall, mtc_int;
|
288 |
|
|
wire [31:0] mtc_data;
|
289 |
|
|
zipcounter mtask_ctr(i_clk, (~cmd_halt), sys_cyc,
|
290 |
|
|
(sys_stb)&&(sys_addr == `MSTR_TASK_CTR),
|
291 |
|
|
sys_we, sys_data,
|
292 |
|
|
mtc_ack, mtc_stall, mtc_data, mtc_int);
|
293 |
|
|
|
294 |
9 |
dgisselq |
// Master Operand Stall counter
|
295 |
|
|
wire moc_ack, moc_stall, moc_int;
|
296 |
|
|
wire [31:0] moc_data;
|
297 |
|
|
zipcounter mmstall_ctr(i_clk,(cpu_op_stall), sys_cyc,
|
298 |
2 |
dgisselq |
(sys_stb)&&(sys_addr == `MSTR_MSTL_CTR),
|
299 |
|
|
sys_we, sys_data,
|
300 |
9 |
dgisselq |
moc_ack, moc_stall, moc_data, moc_int);
|
301 |
2 |
dgisselq |
|
302 |
|
|
// Master PreFetch-Stall counter
|
303 |
|
|
wire mpc_ack, mpc_stall, mpc_int;
|
304 |
|
|
wire [31:0] mpc_data;
|
305 |
9 |
dgisselq |
zipcounter mpstall_ctr(i_clk,(cpu_pf_stall), sys_cyc,
|
306 |
2 |
dgisselq |
(sys_stb)&&(sys_addr == `MSTR_PSTL_CTR),
|
307 |
|
|
sys_we, sys_data,
|
308 |
|
|
mpc_ack, mpc_stall, mpc_data, mpc_int);
|
309 |
|
|
|
310 |
9 |
dgisselq |
// Master Instruction counter
|
311 |
|
|
wire mic_ack, mic_stall, mic_int;
|
312 |
|
|
wire [31:0] mic_data;
|
313 |
|
|
zipcounter mins_ctr(i_clk,(cpu_i_count), sys_cyc,
|
314 |
2 |
dgisselq |
(sys_stb)&&(sys_addr == `MSTR_ASTL_CTR),
|
315 |
|
|
sys_we, sys_data,
|
316 |
9 |
dgisselq |
mic_ack, mic_stall, mic_data, mic_int);
|
317 |
2 |
dgisselq |
|
318 |
|
|
//
|
319 |
|
|
// The user counters are different from those of the master. They will
|
320 |
|
|
// be reset any time a task is given control of the CPU.
|
321 |
|
|
//
|
322 |
|
|
// User task counter
|
323 |
|
|
wire utc_ack, utc_stall, utc_int;
|
324 |
|
|
wire [31:0] utc_data;
|
325 |
|
|
zipcounter utask_ctr(i_clk,(~cmd_halt), sys_cyc,
|
326 |
|
|
(sys_stb)&&(sys_addr == `USER_TASK_CTR),
|
327 |
|
|
sys_we, sys_data,
|
328 |
|
|
utc_ack, utc_stall, utc_data, utc_int);
|
329 |
|
|
|
330 |
9 |
dgisselq |
// User Op-Stall counter
|
331 |
|
|
wire uoc_ack, uoc_stall, uoc_int;
|
332 |
|
|
wire [31:0] uoc_data;
|
333 |
|
|
zipcounter umstall_ctr(i_clk,(cpu_op_stall), sys_cyc,
|
334 |
2 |
dgisselq |
(sys_stb)&&(sys_addr == `USER_MSTL_CTR),
|
335 |
|
|
sys_we, sys_data,
|
336 |
9 |
dgisselq |
uoc_ack, uoc_stall, uoc_data, uoc_int);
|
337 |
2 |
dgisselq |
|
338 |
|
|
// User PreFetch-Stall counter
|
339 |
|
|
wire upc_ack, upc_stall, upc_int;
|
340 |
|
|
wire [31:0] upc_data;
|
341 |
9 |
dgisselq |
zipcounter upstall_ctr(i_clk,(cpu_pf_stall), sys_cyc,
|
342 |
2 |
dgisselq |
(sys_stb)&&(sys_addr == `USER_PSTL_CTR),
|
343 |
|
|
sys_we, sys_data,
|
344 |
|
|
upc_ack, upc_stall, upc_data, upc_int);
|
345 |
|
|
|
346 |
9 |
dgisselq |
// User instruction counter
|
347 |
|
|
wire uic_ack, uic_stall, uic_int;
|
348 |
|
|
wire [31:0] uic_data;
|
349 |
|
|
zipcounter uins_ctr(i_clk,(cpu_i_count), sys_cyc,
|
350 |
2 |
dgisselq |
(sys_stb)&&(sys_addr == `USER_ASTL_CTR),
|
351 |
|
|
sys_we, sys_data,
|
352 |
9 |
dgisselq |
uic_ack, uic_stall, uic_data, uic_int);
|
353 |
2 |
dgisselq |
|
354 |
|
|
// A little bit of pre-cleanup (actr = accounting counters)
|
355 |
|
|
wire actr_ack, actr_stall;
|
356 |
|
|
wire [31:0] actr_data;
|
357 |
9 |
dgisselq |
assign actr_ack = ((mtc_ack | moc_ack | mpc_ack | mic_ack)
|
358 |
|
|
|(utc_ack | uoc_ack | upc_ack | uic_ack));
|
359 |
|
|
assign actr_stall = ((mtc_stall | moc_stall | mpc_stall | mic_stall)
|
360 |
|
|
|(utc_stall | uoc_stall | upc_stall|uic_stall));
|
361 |
2 |
dgisselq |
assign actr_data = ((mtc_ack) ? mtc_data
|
362 |
9 |
dgisselq |
: ((moc_ack) ? moc_data
|
363 |
2 |
dgisselq |
: ((mpc_ack) ? mpc_data
|
364 |
9 |
dgisselq |
: ((mic_ack) ? mic_data
|
365 |
2 |
dgisselq |
: ((utc_ack) ? utc_data
|
366 |
9 |
dgisselq |
: ((uoc_ack) ? uoc_data
|
367 |
2 |
dgisselq |
: ((upc_ack) ? upc_data
|
368 |
9 |
dgisselq |
: uic_data)))))));
|
369 |
2 |
dgisselq |
|
370 |
|
|
|
371 |
|
|
|
372 |
|
|
//
|
373 |
|
|
// Counter Interrupt controller
|
374 |
|
|
//
|
375 |
|
|
reg ctri_ack;
|
376 |
|
|
wire ctri_stall, ctri_int, ctri_sel;
|
377 |
|
|
wire [7:0] ctri_vector;
|
378 |
|
|
wire [31:0] ctri_data;
|
379 |
|
|
assign ctri_sel = (sys_cyc)&&(sys_stb)&&(sys_addr == `CTRINT);
|
380 |
9 |
dgisselq |
assign ctri_vector = { mtc_int, moc_int, mpc_int, mic_int,
|
381 |
|
|
utc_int, uoc_int, upc_int, uic_int };
|
382 |
2 |
dgisselq |
icontrol #(8) ctri(i_clk, cpu_reset, (ctri_sel)&&(sys_addr==`CTRINT),
|
383 |
|
|
sys_data, ctri_data, ctri_vector, ctri_int);
|
384 |
|
|
always @(posedge i_clk)
|
385 |
|
|
ctri_ack <= ctri_sel;
|
386 |
|
|
|
387 |
|
|
|
388 |
|
|
//
|
389 |
|
|
// Timer A
|
390 |
|
|
//
|
391 |
|
|
wire tma_ack, tma_stall, tma_int;
|
392 |
|
|
wire [31:0] tma_data;
|
393 |
|
|
ziptimer timer_a(i_clk, cpu_reset, ~cmd_halt,
|
394 |
|
|
sys_cyc, (sys_stb)&&(sys_addr == `TIMER_A), sys_we,
|
395 |
|
|
sys_data,
|
396 |
|
|
tma_ack, tma_stall, tma_data, tma_int);
|
397 |
|
|
|
398 |
|
|
//
|
399 |
|
|
// Timer B
|
400 |
|
|
//
|
401 |
|
|
wire tmb_ack, tmb_stall, tmb_int;
|
402 |
|
|
wire [31:0] tmb_data;
|
403 |
|
|
ziptimer timer_b(i_clk, cpu_reset, ~cmd_halt,
|
404 |
|
|
sys_cyc, (sys_stb)&&(sys_addr == `TIMER_B), sys_we,
|
405 |
|
|
sys_data,
|
406 |
|
|
tmb_ack, tmb_stall, tmb_data, tmb_int);
|
407 |
|
|
|
408 |
|
|
//
|
409 |
|
|
// Timer C
|
410 |
|
|
//
|
411 |
|
|
wire tmc_ack, tmc_stall, tmc_int;
|
412 |
|
|
wire [31:0] tmc_data;
|
413 |
|
|
ziptimer timer_c(i_clk, cpu_reset, ~cmd_halt,
|
414 |
|
|
sys_cyc, (sys_stb)&&(sys_addr == `TIMER_C), sys_we,
|
415 |
|
|
sys_data,
|
416 |
|
|
tmc_ack, tmc_stall, tmc_data, tmc_int);
|
417 |
|
|
|
418 |
|
|
//
|
419 |
|
|
// JIFFIES
|
420 |
|
|
//
|
421 |
|
|
wire jif_ack, jif_stall, jif_int;
|
422 |
|
|
wire [31:0] jif_data;
|
423 |
|
|
zipjiffies jiffies(i_clk, ~cmd_halt,
|
424 |
|
|
sys_cyc, (sys_stb)&&(sys_addr == `JIFFIES), sys_we,
|
425 |
|
|
sys_data,
|
426 |
|
|
jif_ack, jif_stall, jif_data, jif_int);
|
427 |
|
|
|
428 |
|
|
//
|
429 |
|
|
// The programmable interrupt controller peripheral
|
430 |
|
|
//
|
431 |
|
|
wire pic_interrupt;
|
432 |
|
|
wire [6:0] int_vector;
|
433 |
|
|
assign int_vector = { i_ext_int, ctri_int, tma_int, tmb_int, tmc_int,
|
434 |
|
|
jif_int, cache_int };
|
435 |
|
|
icontrol #(7) pic(i_clk, cpu_reset,
|
436 |
|
|
(sys_cyc)&&(sys_stb)&&(sys_we)
|
437 |
|
|
&&(sys_addr==`INTCTRL),
|
438 |
|
|
sys_data, pic_data,
|
439 |
|
|
int_vector, pic_interrupt);
|
440 |
|
|
reg pic_ack;
|
441 |
|
|
always @(posedge i_clk)
|
442 |
|
|
pic_ack <= (sys_cyc)&&(sys_stb)&&(sys_addr == `INTCTRL);
|
443 |
|
|
|
444 |
|
|
//
|
445 |
|
|
// The CPU itself
|
446 |
|
|
//
|
447 |
|
|
wire cpu_cyc, cpu_stb, cpu_we, cpu_dbg_we;
|
448 |
|
|
wire [31:0] cpu_data, wb_data;
|
449 |
|
|
wire cpu_ack, cpu_stall;
|
450 |
|
|
wire [31:0] cpu_dbg_data;
|
451 |
|
|
assign cpu_dbg_we = ((dbg_cyc)&&(dbg_stb)&&(~cmd_addr[5])
|
452 |
|
|
&&(dbg_we)&&(dbg_addr));
|
453 |
|
|
zipcpu #(RESET_ADDRESS) thecpu(i_clk, cpu_reset, pic_interrupt,
|
454 |
|
|
cpu_halt, cmd_addr[4:0], cpu_dbg_we,
|
455 |
|
|
dbg_idata, cpu_dbg_stall, cpu_dbg_data,
|
456 |
|
|
cpu_break,
|
457 |
|
|
cpu_cyc, cpu_stb, cpu_we, cpu_addr, cpu_data,
|
458 |
|
|
cpu_ack, cpu_stall, wb_data,
|
459 |
9 |
dgisselq |
cpu_op_stall, cpu_pf_stall, cpu_i_count);
|
460 |
2 |
dgisselq |
|
461 |
|
|
// Now, arbitrate the bus ... first for the local peripherals
|
462 |
|
|
assign sys_cyc = (cpu_cyc)||((cpu_halt)&&(~cpu_dbg_stall)&&(dbg_cyc));
|
463 |
|
|
assign sys_stb = (cpu_cyc)
|
464 |
|
|
? ((cpu_stb)&&(cpu_addr[31:4] == 28'hc000000))
|
465 |
|
|
: ((dbg_stb)&&(dbg_addr)&&(cmd_addr[5]));
|
466 |
|
|
|
467 |
|
|
assign sys_we = (cpu_cyc) ? cpu_we : dbg_we;
|
468 |
|
|
assign sys_addr= (cpu_cyc) ? cpu_addr[3:0] : cmd_addr[3:0];
|
469 |
|
|
assign sys_data= (cpu_cyc) ? cpu_data : dbg_idata;
|
470 |
|
|
assign cache_stb=((cpu_cyc)&&(cpu_stb)&&(cpu_addr[31:16]==`CACHEBASE));
|
471 |
|
|
|
472 |
|
|
// Return debug response values
|
473 |
|
|
assign dbg_odata = (~dbg_addr)?cmd_data
|
474 |
|
|
:((~cmd_addr[5])?cpu_dbg_data : wb_data);
|
475 |
|
|
initial dbg_ack = 1'b0;
|
476 |
|
|
always @(posedge i_clk)
|
477 |
|
|
dbg_ack <= (dbg_cyc)&&(dbg_stb)&&
|
478 |
|
|
((~dbg_addr)||((cpu_halt)&&(~cpu_dbg_stall)));
|
479 |
|
|
assign dbg_stall=(dbg_addr)&&(dbg_cyc)
|
480 |
|
|
&&((cpu_cyc)||(~cpu_halt)||(cpu_dbg_stall));
|
481 |
|
|
|
482 |
|
|
// Now for the external wishbone bus
|
483 |
|
|
// Need to arbitrate between the flash cache and the CPU
|
484 |
|
|
// The way this works, though, the CPU will stall once the flash
|
485 |
|
|
// cache gets access to the bus--the CPU will be stuck until the
|
486 |
|
|
// flash cache is finished with the bus.
|
487 |
|
|
wire ext_cyc, ext_stb, ext_we;
|
488 |
|
|
wire cpu_ext_ack, cpu_ext_stall, ext_ack, ext_stall;
|
489 |
|
|
wire [31:0] ext_addr, ext_odata;
|
490 |
|
|
wbarbiter #(32,32) flashvcpu(i_clk, i_rst,
|
491 |
|
|
fc_addr, fc_data, fc_we, fc_stb, fc_cyc,
|
492 |
|
|
fc_ack, fc_stall,
|
493 |
|
|
cpu_addr, cpu_data, cpu_we,
|
494 |
|
|
((cpu_stb)&&(~sys_stb)&&(~cache_stb)),
|
495 |
|
|
cpu_cyc, cpu_ext_ack, cpu_ext_stall,
|
496 |
|
|
ext_addr, ext_odata, ext_we, ext_stb,
|
497 |
|
|
ext_cyc, ext_ack, ext_stall);
|
498 |
|
|
|
499 |
3 |
dgisselq |
`ifdef DELAY_EXT_BUS
|
500 |
2 |
dgisselq |
busdelay #(32,32) extbus(i_clk,
|
501 |
|
|
ext_cyc, ext_stb, ext_we, ext_addr, ext_odata,
|
502 |
|
|
ext_ack, ext_stall, ext_idata,
|
503 |
|
|
o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data,
|
504 |
|
|
i_wb_ack, i_wb_stall, i_wb_data);
|
505 |
3 |
dgisselq |
`else
|
506 |
|
|
assign o_wb_cyc = ext_cyc;
|
507 |
|
|
assign o_wb_stb = ext_stb;
|
508 |
|
|
assign o_wb_we = ext_we;
|
509 |
|
|
assign o_wb_addr = ext_addr;
|
510 |
|
|
assign o_wb_data = ext_odata;
|
511 |
|
|
assign ext_ack = i_wb_ack;
|
512 |
|
|
assign ext_stall = i_wb_stall;
|
513 |
|
|
assign ext_idata = i_wb_data;
|
514 |
|
|
`endif
|
515 |
2 |
dgisselq |
|
516 |
|
|
wire tmr_ack;
|
517 |
|
|
assign tmr_ack = (tma_ack|tmb_ack|tmc_ack|jif_ack);
|
518 |
|
|
wire [31:0] tmr_data;
|
519 |
|
|
assign tmr_data = (tma_ack)?tma_data
|
520 |
|
|
:(tmb_ack ? tmb_data
|
521 |
|
|
:(tmc_ack ? tmc_data
|
522 |
|
|
:jif_data));
|
523 |
|
|
assign wb_data = (tmr_ack|wdt_ack)?((tmr_ack)?tmr_data:wdt_data)
|
524 |
|
|
:((actr_ack|cache_ack)?((actr_ack)?actr_data:cache_data)
|
525 |
|
|
:((pic_ack|ctri_ack)?((pic_ack)?pic_data:ctri_data)
|
526 |
|
|
:(ext_idata)));
|
527 |
|
|
|
528 |
|
|
assign cpu_stall = (tma_stall | tmb_stall | tmc_stall | jif_stall
|
529 |
|
|
| wdt_stall | cache_stall
|
530 |
|
|
| cpu_ext_stall);
|
531 |
|
|
assign cpu_ack = (tmr_ack|wdt_ack|cache_ack|cpu_ext_ack|ctri_ack|actr_ack|pic_ack);
|
532 |
|
|
endmodule
|