| 1 |
2 |
dgisselq |
///////////////////////////////////////////////////////////////////////////
|
| 2 |
|
|
//
|
| 3 |
|
|
// Filename: zipsystem.v
|
| 4 |
|
|
//
|
| 5 |
|
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
| 6 |
|
|
//
|
| 7 |
|
|
// Purpose: This portion of the ZIP CPU implements a number of soft
|
| 8 |
|
|
// peripherals to the CPU nearby its CORE. The functionality
|
| 9 |
|
|
// sits on the data bus, and does not include any true
|
| 10 |
|
|
// external hardware peripherals. The peripherals included here
|
| 11 |
|
|
// include:
|
| 12 |
|
|
//
|
| 13 |
|
|
//
|
| 14 |
|
|
// Local interrupt controller--for any/all of the interrupts generated
|
| 15 |
|
|
// here. This would include a pin for interrupts generated
|
| 16 |
|
|
// elsewhere, so this interrupt controller could be a master
|
| 17 |
|
|
// handling all interrupts. My interrupt controller would work
|
| 18 |
|
|
// for this purpose.
|
| 19 |
|
|
//
|
| 20 |
|
|
// The ZIP-CPU supports only one interrupt because, as I understand
|
| 21 |
|
|
// modern systems (Linux), they tend to send all interrupts to the
|
| 22 |
|
|
// same interrupt vector anyway. Hence, that's what we do here.
|
| 23 |
|
|
//
|
| 24 |
|
|
// Bus Error interrupts -- generates an interrupt any time the wishbone
|
| 25 |
|
|
// bus produces an error on a given access, for whatever purpose
|
| 26 |
|
|
// also records the address on the bus at the time of the error.
|
| 27 |
|
|
//
|
| 28 |
|
|
// Trap instructions
|
| 29 |
|
|
// Writing to this "register" will always create an interrupt.
|
| 30 |
|
|
// After the interrupt, this register may be read to see what
|
| 31 |
|
|
// value had been written to it.
|
| 32 |
|
|
//
|
| 33 |
|
|
// Bit reverse register ... ?
|
| 34 |
|
|
//
|
| 35 |
|
|
// (Potentially an eventual floating point co-processor ...)
|
| 36 |
|
|
//
|
| 37 |
|
|
// Real-time clock
|
| 38 |
|
|
//
|
| 39 |
|
|
// Interval timer(s) (Count down from fixed value, and either stop on
|
| 40 |
|
|
// zero, or issue an interrupt and restart automatically on zero)
|
| 41 |
|
|
// These can be implemented as watchdog timers if desired--the
|
| 42 |
|
|
// only difference is that a watchdog timer's interrupt feeds the
|
| 43 |
|
|
// reset line instead of the processor interrupt line.
|
| 44 |
|
|
//
|
| 45 |
|
|
// Watch-dog timer: this is the same as an interval timer, only it's
|
| 46 |
|
|
// interrupt/time-out line is wired to the reset line instead of
|
| 47 |
|
|
// the interrupt line of the CPU.
|
| 48 |
|
|
//
|
| 49 |
|
|
// ROM Memory map
|
| 50 |
|
|
// Set a register to control this map, and a DMA will begin to
|
| 51 |
|
|
// fill this memory from a slower FLASH. Once filled, accesses
|
| 52 |
|
|
// will be from this memory instead of
|
| 53 |
|
|
//
|
| 54 |
|
|
//
|
| 55 |
|
|
// Doing some market comparison, let's look at what peripherals a TI
|
| 56 |
|
|
// MSP430 might offer: MSP's may have I2C ports, SPI, UART, DMA, ADC,
|
| 57 |
|
|
// Comparators, 16,32-bit timers, 16x16 or 32x32 timers, AES, BSL,
|
| 58 |
|
|
// brown-out-reset(s), real-time-clocks, temperature sensors, USB ports,
|
| 59 |
|
|
// Spi-Bi-Wire, UART Boot-strap Loader (BSL), programmable digital I/O,
|
| 60 |
|
|
// watchdog-timers,
|
| 61 |
|
|
//
|
| 62 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
| 63 |
|
|
// Gisselquist Tecnology, LLC
|
| 64 |
|
|
//
|
| 65 |
|
|
///////////////////////////////////////////////////////////////////////////
|
| 66 |
|
|
//
|
| 67 |
|
|
// Copyright (C) 2015, Gisselquist Technology, LLC
|
| 68 |
|
|
//
|
| 69 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
| 70 |
|
|
// modify it under the terms of the GNU General Public License as published
|
| 71 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
| 72 |
|
|
// your option) any later version.
|
| 73 |
|
|
//
|
| 74 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
| 75 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
| 76 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 77 |
|
|
// for more details.
|
| 78 |
|
|
//
|
| 79 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
| 80 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
| 81 |
|
|
//
|
| 82 |
|
|
//
|
| 83 |
|
|
///////////////////////////////////////////////////////////////////////////
|
| 84 |
|
|
//
|
| 85 |
3 |
dgisselq |
// While I hate adding delays to any bus access, these two are required
|
| 86 |
|
|
// to make timing close in my Basys-3 design.
|
| 87 |
|
|
`define DELAY_EXT_BUS
|
| 88 |
|
|
`define DELAY_DBG_BUS
|
| 89 |
|
|
//
|
| 90 |
|
|
//
|
| 91 |
|
|
// Now, where am I placing all of my peripherals?
|
| 92 |
2 |
dgisselq |
`define PERIPHBASE 32'hc0000000
|
| 93 |
|
|
`define INTCTRL 4'h0 //
|
| 94 |
|
|
`define WATCHDOG 4'h1 // Interrupt generates reset signal
|
| 95 |
|
|
`define CACHECTRL 4'h2 // Sets IVEC[0]
|
| 96 |
|
|
`define CTRINT 4'h3 // Sets IVEC[5]
|
| 97 |
|
|
`define TIMER_A 4'h4 // Sets IVEC[4]
|
| 98 |
|
|
`define TIMER_B 4'h5 // Sets IVEC[3]
|
| 99 |
|
|
`define TIMER_C 4'h6 // Sets IVEC[2]
|
| 100 |
|
|
`define JIFFIES 4'h7 // Sets IVEC[1]
|
| 101 |
|
|
|
| 102 |
|
|
`define MSTR_TASK_CTR 4'h8
|
| 103 |
|
|
`define MSTR_MSTL_CTR 4'h9
|
| 104 |
|
|
`define MSTR_PSTL_CTR 4'ha
|
| 105 |
|
|
`define MSTR_ASTL_CTR 4'hb
|
| 106 |
|
|
`define USER_TASK_CTR 4'hc
|
| 107 |
|
|
`define USER_MSTL_CTR 4'hd
|
| 108 |
|
|
`define USER_PSTL_CTR 4'he
|
| 109 |
|
|
`define USER_ASTL_CTR 4'hf
|
| 110 |
|
|
|
| 111 |
|
|
`define CACHEBASE 16'hc010 //
|
| 112 |
|
|
// `define RTC_CLOCK 32'hc0000008 // A global something
|
| 113 |
|
|
// `define BITREV 32'hc0000003
|
| 114 |
|
|
//
|
| 115 |
|
|
// DBGCTRL
|
| 116 |
|
|
// 10 HALT
|
| 117 |
|
|
// 9 HALT(ED)
|
| 118 |
|
|
// 8 STEP (W=1 steps, and returns to halted)
|
| 119 |
|
|
// 7 INTERRUPT-FLAG
|
| 120 |
|
|
// 6 RESET_FLAG
|
| 121 |
|
|
// ADDRESS:
|
| 122 |
|
|
// 5 PERIPHERAL-BIT
|
| 123 |
|
|
// [4:0] REGISTER-ADDR
|
| 124 |
|
|
// DBGDATA
|
| 125 |
|
|
// read/writes internal registers
|
| 126 |
|
|
module zipsystem(i_clk, i_rst,
|
| 127 |
|
|
// Wishbone master interface from the CPU
|
| 128 |
|
|
o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data,
|
| 129 |
|
|
i_wb_ack, i_wb_stall, i_wb_data,
|
| 130 |
|
|
// Incoming interrupts
|
| 131 |
|
|
i_ext_int,
|
| 132 |
|
|
// Wishbone slave interface for debugging purposes
|
| 133 |
|
|
i_dbg_cyc, i_dbg_stb, i_dbg_we, i_dbg_addr, i_dbg_data,
|
| 134 |
|
|
o_dbg_ack, o_dbg_stall, o_dbg_data);
|
| 135 |
|
|
parameter RESET_ADDRESS=32'h0100000;
|
| 136 |
|
|
input i_clk, i_rst;
|
| 137 |
|
|
// Wishbone master
|
| 138 |
|
|
output wire o_wb_cyc, o_wb_stb, o_wb_we;
|
| 139 |
|
|
output wire [31:0] o_wb_addr;
|
| 140 |
|
|
output wire [31:0] o_wb_data;
|
| 141 |
|
|
input i_wb_ack, i_wb_stall;
|
| 142 |
|
|
input [31:0] i_wb_data;
|
| 143 |
|
|
// Incoming interrupts
|
| 144 |
|
|
input i_ext_int;
|
| 145 |
|
|
// Wishbone slave
|
| 146 |
|
|
input i_dbg_cyc, i_dbg_stb, i_dbg_we, i_dbg_addr;
|
| 147 |
|
|
input [31:0] i_dbg_data;
|
| 148 |
|
|
output wire o_dbg_ack;
|
| 149 |
|
|
output wire o_dbg_stall;
|
| 150 |
|
|
output wire [31:0] o_dbg_data;
|
| 151 |
|
|
|
| 152 |
|
|
wire [31:0] ext_idata;
|
| 153 |
|
|
|
| 154 |
|
|
// Delay the debug port by one clock, to meet timing requirements
|
| 155 |
|
|
wire dbg_cyc, dbg_stb, dbg_we, dbg_addr, dbg_stall;
|
| 156 |
|
|
wire [31:0] dbg_idata, dbg_odata;
|
| 157 |
|
|
reg dbg_ack;
|
| 158 |
3 |
dgisselq |
`ifdef DELAY_DBG_BUS
|
| 159 |
2 |
dgisselq |
busdelay #(1,32) wbdelay(i_clk,
|
| 160 |
|
|
i_dbg_cyc, i_dbg_stb, i_dbg_we, i_dbg_addr, i_dbg_data,
|
| 161 |
|
|
o_dbg_ack, o_dbg_stall, o_dbg_data,
|
| 162 |
|
|
dbg_cyc, dbg_stb, dbg_we, dbg_addr, dbg_idata,
|
| 163 |
|
|
dbg_ack, dbg_stall, dbg_odata);
|
| 164 |
3 |
dgisselq |
`else
|
| 165 |
|
|
assign dbg_cyc = i_dbg_cyc;
|
| 166 |
|
|
assign dbg_stb = i_dbg_stb;
|
| 167 |
|
|
assign dbg_we = i_dbg_we;
|
| 168 |
|
|
assign dbg_addr = i_dbg_addr;
|
| 169 |
|
|
assign dbg_idata = i_dbg_data;
|
| 170 |
|
|
assign o_dbg_ack = dbg_ack;
|
| 171 |
|
|
assign o_dbg_stall = dbg_stall;
|
| 172 |
|
|
assign o_dbg_data = dbg_odata;
|
| 173 |
|
|
`endif
|
| 174 |
2 |
dgisselq |
|
| 175 |
|
|
//
|
| 176 |
|
|
//
|
| 177 |
|
|
//
|
| 178 |
|
|
wire sys_cyc, sys_stb, sys_we;
|
| 179 |
|
|
wire [3:0] sys_addr;
|
| 180 |
|
|
wire [31:0] cpu_addr;
|
| 181 |
|
|
wire [31:0] sys_data;
|
| 182 |
|
|
// wire sys_ack, sys_stall;
|
| 183 |
|
|
|
| 184 |
|
|
//
|
| 185 |
|
|
// The external debug interface
|
| 186 |
|
|
//
|
| 187 |
|
|
// We offer only a limited interface here, requiring a pre-register
|
| 188 |
|
|
// write to set the local address. This interface allows access to
|
| 189 |
|
|
// the Zip System on a debug basis only, and not to the rest of the
|
| 190 |
|
|
// wishbone bus. Further, to access these registers, the control
|
| 191 |
|
|
// register must first be accessed to both stop the CPU and to
|
| 192 |
|
|
// set the following address in question. Hence all accesses require
|
| 193 |
|
|
// two accesses: write the address to the control register (and halt
|
| 194 |
|
|
// the CPU if not halted), then read/write the data from the data
|
| 195 |
|
|
// register.
|
| 196 |
|
|
//
|
| 197 |
|
|
wire cpu_break;
|
| 198 |
|
|
reg cmd_reset, cmd_halt, cmd_step;
|
| 199 |
|
|
reg [5:0] cmd_addr;
|
| 200 |
|
|
initial cmd_reset = 1'b1;
|
| 201 |
|
|
initial cmd_halt = 1'b1;
|
| 202 |
|
|
initial cmd_step = 1'b0;
|
| 203 |
|
|
always @(posedge i_clk)
|
| 204 |
|
|
if (i_rst)
|
| 205 |
|
|
begin
|
| 206 |
|
|
cmd_halt <= 1'b0;
|
| 207 |
|
|
cmd_step <= 1'b0;
|
| 208 |
|
|
cmd_reset<= 1'b0;
|
| 209 |
|
|
cmd_addr <= 6'h00;
|
| 210 |
|
|
end else if ((dbg_cyc)&&(dbg_stb)
|
| 211 |
|
|
&&(dbg_we)&&(~dbg_addr))
|
| 212 |
|
|
begin
|
| 213 |
|
|
cmd_halt <= dbg_idata[10];
|
| 214 |
|
|
cmd_step <= dbg_idata[ 8];
|
| 215 |
|
|
cmd_reset<= dbg_idata[ 6];
|
| 216 |
|
|
cmd_addr <= dbg_idata[5:0];
|
| 217 |
|
|
end else if (cmd_step)
|
| 218 |
|
|
begin
|
| 219 |
|
|
cmd_halt <= 1'b1;
|
| 220 |
|
|
cmd_step <= 1'b0;
|
| 221 |
|
|
end else if (cpu_break)
|
| 222 |
|
|
cmd_halt <= 1'b1;
|
| 223 |
|
|
wire cpu_reset;
|
| 224 |
|
|
assign cpu_reset = (i_rst)||(cmd_reset)||(wdt_reset);
|
| 225 |
|
|
|
| 226 |
|
|
wire cpu_halt, cpu_dbg_stall;
|
| 227 |
|
|
assign cpu_halt = (cmd_halt)&&(~cmd_step);
|
| 228 |
|
|
wire [31:0] pic_data;
|
| 229 |
|
|
wire [31:0] cmd_data;
|
| 230 |
|
|
assign cmd_data = { 21'h00, cmd_halt, (~cpu_dbg_stall), 1'b0, pic_data[15],
|
| 231 |
|
|
cpu_reset, cmd_addr };
|
| 232 |
|
|
|
| 233 |
|
|
`ifdef USE_TRAP
|
| 234 |
|
|
//
|
| 235 |
|
|
// The TRAP peripheral
|
| 236 |
|
|
//
|
| 237 |
|
|
wire trap_ack, trap_stall, trap_int;
|
| 238 |
|
|
wire [31:0] trap_data;
|
| 239 |
|
|
ziptrap trapp(i_clk,
|
| 240 |
|
|
sys_cyc, (sys_stb)&&(sys_addr == `TRAP_ADDR), sys_we,
|
| 241 |
|
|
sys_data,
|
| 242 |
|
|
trap_ack, trap_stall, trap_data, trap_int);
|
| 243 |
|
|
`endif
|
| 244 |
|
|
|
| 245 |
|
|
//
|
| 246 |
|
|
// The WATCHDOG Timer
|
| 247 |
|
|
//
|
| 248 |
|
|
wire wdt_ack, wdt_stall, wdt_reset;
|
| 249 |
|
|
wire [31:0] wdt_data;
|
| 250 |
|
|
ziptimer watchdog(i_clk, cpu_reset, ~cmd_halt,
|
| 251 |
|
|
sys_cyc, ((sys_stb)&&(sys_addr == `WATCHDOG)), sys_we,
|
| 252 |
|
|
sys_data,
|
| 253 |
|
|
wdt_ack, wdt_stall, wdt_data, wdt_reset);
|
| 254 |
|
|
|
| 255 |
|
|
//
|
| 256 |
|
|
// The Flash Cache, a pre-read cache to memory that can be used to
|
| 257 |
|
|
// create a fast memory access area
|
| 258 |
|
|
//
|
| 259 |
|
|
wire cache_int;
|
| 260 |
|
|
wire [31:0] cache_data;
|
| 261 |
|
|
wire cache_stb, cache_ack, cache_stall;
|
| 262 |
|
|
wire fc_cyc, fc_stb, fc_we, fc_ack, fc_stall;
|
| 263 |
|
|
wire [31:0] fc_data, fc_addr;
|
| 264 |
|
|
flashcache #(10) manualcache(i_clk,
|
| 265 |
|
|
sys_cyc, cache_stb,
|
| 266 |
|
|
((sys_stb)&&(sys_addr == `CACHECTRL)),
|
| 267 |
|
|
sys_we, cpu_addr[9:0], sys_data,
|
| 268 |
|
|
cache_ack, cache_stall, cache_data,
|
| 269 |
|
|
// Need the outgoing CACHE wishbone bus
|
| 270 |
|
|
fc_cyc, fc_stb, fc_we, fc_addr, fc_data,
|
| 271 |
|
|
fc_ack, fc_stall, ext_idata,
|
| 272 |
|
|
// Cache interrupt, for upon completion
|
| 273 |
|
|
cache_int);
|
| 274 |
|
|
|
| 275 |
|
|
|
| 276 |
|
|
// Counters -- for performance measurement and accounting
|
| 277 |
|
|
//
|
| 278 |
|
|
// Here's the stuff we'll be counting ....
|
| 279 |
|
|
//
|
| 280 |
|
|
wire cpu_mem_stall, cpu_pf_stall, cpu_alu_stall;
|
| 281 |
|
|
|
| 282 |
|
|
//
|
| 283 |
|
|
// The master counters will, in general, not be reset. They'll be used
|
| 284 |
|
|
// for an overall counter.
|
| 285 |
|
|
//
|
| 286 |
|
|
// Master task counter
|
| 287 |
|
|
wire mtc_ack, mtc_stall, mtc_int;
|
| 288 |
|
|
wire [31:0] mtc_data;
|
| 289 |
|
|
zipcounter mtask_ctr(i_clk, (~cmd_halt), sys_cyc,
|
| 290 |
|
|
(sys_stb)&&(sys_addr == `MSTR_TASK_CTR),
|
| 291 |
|
|
sys_we, sys_data,
|
| 292 |
|
|
mtc_ack, mtc_stall, mtc_data, mtc_int);
|
| 293 |
|
|
|
| 294 |
|
|
// Master Memory-Stall counter
|
| 295 |
|
|
wire mmc_ack, mmc_stall, mmc_int;
|
| 296 |
|
|
wire [31:0] mmc_data;
|
| 297 |
|
|
zipcounter mmstall_ctr(i_clk,(~cmd_halt)&&(cpu_mem_stall), sys_cyc,
|
| 298 |
|
|
(sys_stb)&&(sys_addr == `MSTR_MSTL_CTR),
|
| 299 |
|
|
sys_we, sys_data,
|
| 300 |
|
|
mmc_ack, mmc_stall, mmc_data, mmc_int);
|
| 301 |
|
|
|
| 302 |
|
|
// Master PreFetch-Stall counter
|
| 303 |
|
|
wire mpc_ack, mpc_stall, mpc_int;
|
| 304 |
|
|
wire [31:0] mpc_data;
|
| 305 |
|
|
zipcounter mpstall_ctr(i_clk,(~cmd_halt)&&(cpu_pf_stall), sys_cyc,
|
| 306 |
|
|
(sys_stb)&&(sys_addr == `MSTR_PSTL_CTR),
|
| 307 |
|
|
sys_we, sys_data,
|
| 308 |
|
|
mpc_ack, mpc_stall, mpc_data, mpc_int);
|
| 309 |
|
|
|
| 310 |
|
|
// Master ALU-Stall counter
|
| 311 |
|
|
wire mac_ack, mac_stall, mac_int;
|
| 312 |
|
|
wire [31:0] mac_data;
|
| 313 |
|
|
zipcounter mastall_ctr(i_clk,(~cmd_halt)&&(cpu_alu_stall), sys_cyc,
|
| 314 |
|
|
(sys_stb)&&(sys_addr == `MSTR_ASTL_CTR),
|
| 315 |
|
|
sys_we, sys_data,
|
| 316 |
|
|
mac_ack, mac_stall, mac_data, mac_int);
|
| 317 |
|
|
|
| 318 |
|
|
//
|
| 319 |
|
|
// The user counters are different from those of the master. They will
|
| 320 |
|
|
// be reset any time a task is given control of the CPU.
|
| 321 |
|
|
//
|
| 322 |
|
|
// User task counter
|
| 323 |
|
|
wire utc_ack, utc_stall, utc_int;
|
| 324 |
|
|
wire [31:0] utc_data;
|
| 325 |
|
|
zipcounter utask_ctr(i_clk,(~cmd_halt), sys_cyc,
|
| 326 |
|
|
(sys_stb)&&(sys_addr == `USER_TASK_CTR),
|
| 327 |
|
|
sys_we, sys_data,
|
| 328 |
|
|
utc_ack, utc_stall, utc_data, utc_int);
|
| 329 |
|
|
|
| 330 |
|
|
// User Memory-Stall counter
|
| 331 |
|
|
wire umc_ack, umc_stall, umc_int;
|
| 332 |
|
|
wire [31:0] umc_data;
|
| 333 |
|
|
zipcounter umstall_ctr(i_clk,(~cmd_halt)&&(cpu_mem_stall), sys_cyc,
|
| 334 |
|
|
(sys_stb)&&(sys_addr == `USER_MSTL_CTR),
|
| 335 |
|
|
sys_we, sys_data,
|
| 336 |
|
|
umc_ack, umc_stall, umc_data, umc_int);
|
| 337 |
|
|
|
| 338 |
|
|
// User PreFetch-Stall counter
|
| 339 |
|
|
wire upc_ack, upc_stall, upc_int;
|
| 340 |
|
|
wire [31:0] upc_data;
|
| 341 |
|
|
zipcounter upstall_ctr(i_clk,(~cmd_halt)&&(cpu_pf_stall), sys_cyc,
|
| 342 |
|
|
(sys_stb)&&(sys_addr == `USER_PSTL_CTR),
|
| 343 |
|
|
sys_we, sys_data,
|
| 344 |
|
|
upc_ack, upc_stall, upc_data, upc_int);
|
| 345 |
|
|
|
| 346 |
|
|
// User ALU-Stall counter
|
| 347 |
|
|
wire uac_ack, uac_stall, uac_int;
|
| 348 |
|
|
wire [31:0] uac_data;
|
| 349 |
|
|
zipcounter uastall_ctr(i_clk,(~cmd_halt)&&(cpu_alu_stall), sys_cyc,
|
| 350 |
|
|
(sys_stb)&&(sys_addr == `USER_ASTL_CTR),
|
| 351 |
|
|
sys_we, sys_data,
|
| 352 |
|
|
uac_ack, uac_stall, uac_data, uac_int);
|
| 353 |
|
|
|
| 354 |
|
|
// A little bit of pre-cleanup (actr = accounting counters)
|
| 355 |
|
|
wire actr_ack, actr_stall;
|
| 356 |
|
|
wire [31:0] actr_data;
|
| 357 |
|
|
assign actr_ack = ((mtc_ack | mmc_ack | mpc_ack | mac_ack)
|
| 358 |
|
|
|(utc_ack | umc_ack | upc_ack | uac_ack));
|
| 359 |
|
|
assign actr_stall = ((mtc_stall | mmc_stall | mpc_stall | mac_stall)
|
| 360 |
|
|
|(utc_stall | umc_stall | upc_stall|uac_stall));
|
| 361 |
|
|
assign actr_data = ((mtc_ack) ? mtc_data
|
| 362 |
|
|
: ((mmc_ack) ? mmc_data
|
| 363 |
|
|
: ((mpc_ack) ? mpc_data
|
| 364 |
|
|
: ((mac_ack) ? mac_data
|
| 365 |
|
|
: ((utc_ack) ? utc_data
|
| 366 |
|
|
: ((umc_ack) ? umc_data
|
| 367 |
|
|
: ((upc_ack) ? upc_data
|
| 368 |
|
|
: uac_data)))))));
|
| 369 |
|
|
|
| 370 |
|
|
|
| 371 |
|
|
|
| 372 |
|
|
//
|
| 373 |
|
|
// Counter Interrupt controller
|
| 374 |
|
|
//
|
| 375 |
|
|
reg ctri_ack;
|
| 376 |
|
|
wire ctri_stall, ctri_int, ctri_sel;
|
| 377 |
|
|
wire [7:0] ctri_vector;
|
| 378 |
|
|
wire [31:0] ctri_data;
|
| 379 |
|
|
assign ctri_sel = (sys_cyc)&&(sys_stb)&&(sys_addr == `CTRINT);
|
| 380 |
|
|
assign ctri_vector = { mtc_int, mmc_int, mpc_int, mac_int,
|
| 381 |
|
|
utc_int, umc_int, upc_int, uac_int };
|
| 382 |
|
|
icontrol #(8) ctri(i_clk, cpu_reset, (ctri_sel)&&(sys_addr==`CTRINT),
|
| 383 |
|
|
sys_data, ctri_data, ctri_vector, ctri_int);
|
| 384 |
|
|
always @(posedge i_clk)
|
| 385 |
|
|
ctri_ack <= ctri_sel;
|
| 386 |
|
|
|
| 387 |
|
|
|
| 388 |
|
|
//
|
| 389 |
|
|
// Timer A
|
| 390 |
|
|
//
|
| 391 |
|
|
wire tma_ack, tma_stall, tma_int;
|
| 392 |
|
|
wire [31:0] tma_data;
|
| 393 |
|
|
ziptimer timer_a(i_clk, cpu_reset, ~cmd_halt,
|
| 394 |
|
|
sys_cyc, (sys_stb)&&(sys_addr == `TIMER_A), sys_we,
|
| 395 |
|
|
sys_data,
|
| 396 |
|
|
tma_ack, tma_stall, tma_data, tma_int);
|
| 397 |
|
|
|
| 398 |
|
|
//
|
| 399 |
|
|
// Timer B
|
| 400 |
|
|
//
|
| 401 |
|
|
wire tmb_ack, tmb_stall, tmb_int;
|
| 402 |
|
|
wire [31:0] tmb_data;
|
| 403 |
|
|
ziptimer timer_b(i_clk, cpu_reset, ~cmd_halt,
|
| 404 |
|
|
sys_cyc, (sys_stb)&&(sys_addr == `TIMER_B), sys_we,
|
| 405 |
|
|
sys_data,
|
| 406 |
|
|
tmb_ack, tmb_stall, tmb_data, tmb_int);
|
| 407 |
|
|
|
| 408 |
|
|
//
|
| 409 |
|
|
// Timer C
|
| 410 |
|
|
//
|
| 411 |
|
|
wire tmc_ack, tmc_stall, tmc_int;
|
| 412 |
|
|
wire [31:0] tmc_data;
|
| 413 |
|
|
ziptimer timer_c(i_clk, cpu_reset, ~cmd_halt,
|
| 414 |
|
|
sys_cyc, (sys_stb)&&(sys_addr == `TIMER_C), sys_we,
|
| 415 |
|
|
sys_data,
|
| 416 |
|
|
tmc_ack, tmc_stall, tmc_data, tmc_int);
|
| 417 |
|
|
|
| 418 |
|
|
//
|
| 419 |
|
|
// JIFFIES
|
| 420 |
|
|
//
|
| 421 |
|
|
wire jif_ack, jif_stall, jif_int;
|
| 422 |
|
|
wire [31:0] jif_data;
|
| 423 |
|
|
zipjiffies jiffies(i_clk, ~cmd_halt,
|
| 424 |
|
|
sys_cyc, (sys_stb)&&(sys_addr == `JIFFIES), sys_we,
|
| 425 |
|
|
sys_data,
|
| 426 |
|
|
jif_ack, jif_stall, jif_data, jif_int);
|
| 427 |
|
|
|
| 428 |
|
|
//
|
| 429 |
|
|
// The programmable interrupt controller peripheral
|
| 430 |
|
|
//
|
| 431 |
|
|
wire pic_interrupt;
|
| 432 |
|
|
wire [6:0] int_vector;
|
| 433 |
|
|
assign int_vector = { i_ext_int, ctri_int, tma_int, tmb_int, tmc_int,
|
| 434 |
|
|
jif_int, cache_int };
|
| 435 |
|
|
icontrol #(7) pic(i_clk, cpu_reset,
|
| 436 |
|
|
(sys_cyc)&&(sys_stb)&&(sys_we)
|
| 437 |
|
|
&&(sys_addr==`INTCTRL),
|
| 438 |
|
|
sys_data, pic_data,
|
| 439 |
|
|
int_vector, pic_interrupt);
|
| 440 |
|
|
reg pic_ack;
|
| 441 |
|
|
always @(posedge i_clk)
|
| 442 |
|
|
pic_ack <= (sys_cyc)&&(sys_stb)&&(sys_addr == `INTCTRL);
|
| 443 |
|
|
|
| 444 |
|
|
//
|
| 445 |
|
|
// The CPU itself
|
| 446 |
|
|
//
|
| 447 |
|
|
wire cpu_cyc, cpu_stb, cpu_we, cpu_dbg_we;
|
| 448 |
|
|
wire [31:0] cpu_data, wb_data;
|
| 449 |
|
|
wire cpu_ack, cpu_stall;
|
| 450 |
|
|
wire [31:0] cpu_dbg_data;
|
| 451 |
|
|
assign cpu_dbg_we = ((dbg_cyc)&&(dbg_stb)&&(~cmd_addr[5])
|
| 452 |
|
|
&&(dbg_we)&&(dbg_addr));
|
| 453 |
|
|
zipcpu #(RESET_ADDRESS) thecpu(i_clk, cpu_reset, pic_interrupt,
|
| 454 |
|
|
cpu_halt, cmd_addr[4:0], cpu_dbg_we,
|
| 455 |
|
|
dbg_idata, cpu_dbg_stall, cpu_dbg_data,
|
| 456 |
|
|
cpu_break,
|
| 457 |
|
|
cpu_cyc, cpu_stb, cpu_we, cpu_addr, cpu_data,
|
| 458 |
|
|
cpu_ack, cpu_stall, wb_data,
|
| 459 |
|
|
cpu_mem_stall, cpu_pf_stall, cpu_alu_stall);
|
| 460 |
|
|
|
| 461 |
|
|
// Now, arbitrate the bus ... first for the local peripherals
|
| 462 |
|
|
assign sys_cyc = (cpu_cyc)||((cpu_halt)&&(~cpu_dbg_stall)&&(dbg_cyc));
|
| 463 |
|
|
assign sys_stb = (cpu_cyc)
|
| 464 |
|
|
? ((cpu_stb)&&(cpu_addr[31:4] == 28'hc000000))
|
| 465 |
|
|
: ((dbg_stb)&&(dbg_addr)&&(cmd_addr[5]));
|
| 466 |
|
|
|
| 467 |
|
|
assign sys_we = (cpu_cyc) ? cpu_we : dbg_we;
|
| 468 |
|
|
assign sys_addr= (cpu_cyc) ? cpu_addr[3:0] : cmd_addr[3:0];
|
| 469 |
|
|
assign sys_data= (cpu_cyc) ? cpu_data : dbg_idata;
|
| 470 |
|
|
assign cache_stb=((cpu_cyc)&&(cpu_stb)&&(cpu_addr[31:16]==`CACHEBASE));
|
| 471 |
|
|
|
| 472 |
|
|
// Return debug response values
|
| 473 |
|
|
assign dbg_odata = (~dbg_addr)?cmd_data
|
| 474 |
|
|
:((~cmd_addr[5])?cpu_dbg_data : wb_data);
|
| 475 |
|
|
initial dbg_ack = 1'b0;
|
| 476 |
|
|
always @(posedge i_clk)
|
| 477 |
|
|
dbg_ack <= (dbg_cyc)&&(dbg_stb)&&
|
| 478 |
|
|
((~dbg_addr)||((cpu_halt)&&(~cpu_dbg_stall)));
|
| 479 |
|
|
assign dbg_stall=(dbg_addr)&&(dbg_cyc)
|
| 480 |
|
|
&&((cpu_cyc)||(~cpu_halt)||(cpu_dbg_stall));
|
| 481 |
|
|
|
| 482 |
|
|
// Now for the external wishbone bus
|
| 483 |
|
|
// Need to arbitrate between the flash cache and the CPU
|
| 484 |
|
|
// The way this works, though, the CPU will stall once the flash
|
| 485 |
|
|
// cache gets access to the bus--the CPU will be stuck until the
|
| 486 |
|
|
// flash cache is finished with the bus.
|
| 487 |
|
|
wire ext_cyc, ext_stb, ext_we;
|
| 488 |
|
|
wire cpu_ext_ack, cpu_ext_stall, ext_ack, ext_stall;
|
| 489 |
|
|
wire [31:0] ext_addr, ext_odata;
|
| 490 |
|
|
wbarbiter #(32,32) flashvcpu(i_clk, i_rst,
|
| 491 |
|
|
fc_addr, fc_data, fc_we, fc_stb, fc_cyc,
|
| 492 |
|
|
fc_ack, fc_stall,
|
| 493 |
|
|
cpu_addr, cpu_data, cpu_we,
|
| 494 |
|
|
((cpu_stb)&&(~sys_stb)&&(~cache_stb)),
|
| 495 |
|
|
cpu_cyc, cpu_ext_ack, cpu_ext_stall,
|
| 496 |
|
|
ext_addr, ext_odata, ext_we, ext_stb,
|
| 497 |
|
|
ext_cyc, ext_ack, ext_stall);
|
| 498 |
|
|
|
| 499 |
3 |
dgisselq |
`ifdef DELAY_EXT_BUS
|
| 500 |
2 |
dgisselq |
busdelay #(32,32) extbus(i_clk,
|
| 501 |
|
|
ext_cyc, ext_stb, ext_we, ext_addr, ext_odata,
|
| 502 |
|
|
ext_ack, ext_stall, ext_idata,
|
| 503 |
|
|
o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data,
|
| 504 |
|
|
i_wb_ack, i_wb_stall, i_wb_data);
|
| 505 |
3 |
dgisselq |
`else
|
| 506 |
|
|
assign o_wb_cyc = ext_cyc;
|
| 507 |
|
|
assign o_wb_stb = ext_stb;
|
| 508 |
|
|
assign o_wb_we = ext_we;
|
| 509 |
|
|
assign o_wb_addr = ext_addr;
|
| 510 |
|
|
assign o_wb_data = ext_odata;
|
| 511 |
|
|
assign ext_ack = i_wb_ack;
|
| 512 |
|
|
assign ext_stall = i_wb_stall;
|
| 513 |
|
|
assign ext_idata = i_wb_data;
|
| 514 |
|
|
`endif
|
| 515 |
2 |
dgisselq |
|
| 516 |
|
|
wire tmr_ack;
|
| 517 |
|
|
assign tmr_ack = (tma_ack|tmb_ack|tmc_ack|jif_ack);
|
| 518 |
|
|
wire [31:0] tmr_data;
|
| 519 |
|
|
assign tmr_data = (tma_ack)?tma_data
|
| 520 |
|
|
:(tmb_ack ? tmb_data
|
| 521 |
|
|
:(tmc_ack ? tmc_data
|
| 522 |
|
|
:jif_data));
|
| 523 |
|
|
assign wb_data = (tmr_ack|wdt_ack)?((tmr_ack)?tmr_data:wdt_data)
|
| 524 |
|
|
:((actr_ack|cache_ack)?((actr_ack)?actr_data:cache_data)
|
| 525 |
|
|
:((pic_ack|ctri_ack)?((pic_ack)?pic_data:ctri_data)
|
| 526 |
|
|
:(ext_idata)));
|
| 527 |
|
|
|
| 528 |
|
|
assign cpu_stall = (tma_stall | tmb_stall | tmc_stall | jif_stall
|
| 529 |
|
|
| wdt_stall | cache_stall
|
| 530 |
|
|
| cpu_ext_stall);
|
| 531 |
|
|
assign cpu_ack = (tmr_ack|wdt_ack|cache_ack|cpu_ext_ack|ctri_ack|actr_ack|pic_ack);
|
| 532 |
|
|
endmodule
|