| 1 |
204 |
dgisselq |
///////////////////////////////////////////////////////////////////////////////
|
| 2 |
|
|
//
|
| 3 |
|
|
// Filename: mpy_tb.cpp
|
| 4 |
|
|
//
|
| 5 |
|
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
| 6 |
|
|
//
|
| 7 |
|
|
// Purpose: Bench testing for the multiply ALU instructions used within the
|
| 8 |
|
|
// Zip CPU. This depends upon the cpuops.v module, but should be
|
| 9 |
|
|
// independent of the internal settings within the module.
|
| 10 |
|
|
//
|
| 11 |
|
|
//
|
| 12 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
| 13 |
|
|
// Gisselquist Technology, LLC
|
| 14 |
|
|
//
|
| 15 |
|
|
///////////////////////////////////////////////////////////////////////////////
|
| 16 |
|
|
//
|
| 17 |
|
|
// Copyright (C) 2015-2016, Gisselquist Technology, LLC
|
| 18 |
|
|
//
|
| 19 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
| 20 |
|
|
// modify it under the terms of the GNU General Public License as published
|
| 21 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
| 22 |
|
|
// your option) any later version.
|
| 23 |
|
|
//
|
| 24 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
| 25 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
| 26 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 27 |
|
|
// for more details.
|
| 28 |
|
|
//
|
| 29 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
| 30 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
| 31 |
|
|
//
|
| 32 |
|
|
//
|
| 33 |
|
|
///////////////////////////////////////////////////////////////////////////////
|
| 34 |
|
|
//
|
| 35 |
|
|
//
|
| 36 |
|
|
#include <signal.h>
|
| 37 |
|
|
#include <time.h>
|
| 38 |
|
|
#include <unistd.h>
|
| 39 |
|
|
#include <assert.h>
|
| 40 |
|
|
|
| 41 |
|
|
#include <stdlib.h>
|
| 42 |
|
|
#include <ctype.h>
|
| 43 |
|
|
|
| 44 |
|
|
#include "verilated.h"
|
| 45 |
|
|
#include "Vcpuops.h"
|
| 46 |
|
|
|
| 47 |
|
|
#include "testb.h"
|
| 48 |
|
|
#include "cpudefs.h"
|
| 49 |
|
|
// #include "twoc.h"
|
| 50 |
|
|
|
| 51 |
|
|
class CPUOPS_TB : public TESTB<Vcpuops> {
|
| 52 |
|
|
public:
|
| 53 |
|
|
// Nothing special to do in a startup.
|
| 54 |
|
|
CPUOPS_TB(void) {}
|
| 55 |
|
|
|
| 56 |
|
|
// ~CPUOPS_TB(void) {}
|
| 57 |
|
|
|
| 58 |
|
|
//
|
| 59 |
|
|
// Calls TESTB<>::reset to reset the core. Makes sure the i_ce line
|
| 60 |
|
|
// is low during this reset.
|
| 61 |
|
|
//
|
| 62 |
|
|
void reset(void) {
|
| 63 |
|
|
// m_flash.debug(false);
|
| 64 |
|
|
m_core->i_ce = 0;
|
| 65 |
|
|
|
| 66 |
|
|
TESTB<Vcpuops>::reset();
|
| 67 |
|
|
}
|
| 68 |
|
|
|
| 69 |
|
|
//
|
| 70 |
|
|
// dbgdump();
|
| 71 |
|
|
//
|
| 72 |
|
|
// Just before the positive edge of every clock, we call this function
|
| 73 |
|
|
// (if the debug flag is set). This prints out a line of information
|
| 74 |
|
|
// telling us what is going on within the logic, allowing us access
|
| 75 |
|
|
// for debugging purposes to inspect things.
|
| 76 |
|
|
//
|
| 77 |
|
|
// Other than debugging, this isn't necessary for the functioning of the
|
| 78 |
|
|
// test bench. At the same time, what are you using a test bench for if
|
| 79 |
|
|
// not for debugging?
|
| 80 |
|
|
//
|
| 81 |
|
|
void dbgdump(void) {
|
| 82 |
|
|
char outstr[2048], *s;
|
| 83 |
|
|
sprintf(outstr, "Tick %4ld %s%s ",
|
| 84 |
|
|
m_tickcount,
|
| 85 |
|
|
(m_core->i_rst)?"R":" ",
|
| 86 |
|
|
(m_core->i_ce)?"CE":" ");
|
| 87 |
|
|
switch(m_core->i_op) {
|
| 88 |
|
|
case 0: strcat(outstr, " SUB"); break;
|
| 89 |
|
|
case 1: strcat(outstr, " AND"); break;
|
| 90 |
|
|
case 2: strcat(outstr, " ADD"); break;
|
| 91 |
|
|
case 3: strcat(outstr, " OR"); break;
|
| 92 |
|
|
case 4: strcat(outstr, " XOR"); break;
|
| 93 |
|
|
case 5: strcat(outstr, " LSR"); break;
|
| 94 |
|
|
case 6: strcat(outstr, " LSL"); break;
|
| 95 |
|
|
case 7: strcat(outstr, " ASR"); break;
|
| 96 |
|
|
case 8: strcat(outstr, " MPY"); break;
|
| 97 |
|
|
case 9: strcat(outstr, "LODILO"); break;
|
| 98 |
|
|
case 10: strcat(outstr, "MPYUHI"); break;
|
| 99 |
|
|
case 11: strcat(outstr, "MPYSHI"); break;
|
| 100 |
|
|
case 12: strcat(outstr, " BREV"); break;
|
| 101 |
|
|
case 13: strcat(outstr, " POPC"); break;
|
| 102 |
|
|
case 14: strcat(outstr, " ROL"); break;
|
| 103 |
|
|
case 15: strcat(outstr, " MOV"); break;
|
| 104 |
|
|
default: strcat(outstr, "UNKWN!"); break;
|
| 105 |
|
|
} s = &outstr[strlen(outstr)];
|
| 106 |
|
|
sprintf(s, "(%x) 0x%08x 0x%08x -> 0x%08x [%x] %s%s",
|
| 107 |
|
|
m_core->i_op,
|
| 108 |
|
|
m_core->i_a, m_core->i_b,
|
| 109 |
|
|
m_core->o_c, m_core->o_f,
|
| 110 |
|
|
(m_core->o_valid)?"V":" ",
|
| 111 |
|
|
(m_core->o_busy)?"B":" ");
|
| 112 |
|
|
s = &outstr[strlen(outstr)];
|
| 113 |
|
|
|
| 114 |
|
|
#if(OPT_MULTIPLY==1)
|
| 115 |
|
|
sprintf(s, "1,MPY[][][%016lx]",
|
| 116 |
|
|
m_core->v__DOT__mpy_result);
|
| 117 |
|
|
s = &outstr[strlen(outstr)];
|
| 118 |
|
|
#elif(OPT_MULTIPLY==2)
|
| 119 |
|
|
sprintf(s, "2,MPY[%016lx][%016lx][%016lx]",
|
| 120 |
|
|
m_core->v__DOT__genblk2__DOT__genblk2__DOT__genblk1__DOT__r_mpy_a_input,
|
| 121 |
|
|
m_core->v__DOT__genblk2__DOT__genblk2__DOT__genblk1__DOT__r_mpy_b_input,
|
| 122 |
|
|
m_core->v__DOT__mpy_result);
|
| 123 |
|
|
s = &outstr[strlen(outstr)];
|
| 124 |
|
|
#elif(OPT_MULTIPLY==3)
|
| 125 |
|
|
sprintf(s, "3,MPY[%08x][%08x][%016lx], P[%d]",
|
| 126 |
|
|
m_core->v__DOT__genblk2__DOT__genblk2__DOT__genblk2__DOT__genblk1__DOT__r_mpy_a_input,
|
| 127 |
|
|
m_core->v__DOT__genblk2__DOT__genblk2__DOT__genblk2__DOT__genblk1__DOT__r_mpy_b_input,
|
| 128 |
|
|
m_core->v__DOT__genblk2__DOT__genblk2__DOT__genblk2__DOT__genblk1__DOT__r_smpy_result,
|
| 129 |
|
|
m_core->v__DOT__genblk2__DOT__genblk2__DOT__genblk2__DOT__genblk1__DOT__mpypipe);
|
| 130 |
|
|
|
| 131 |
|
|
#endif
|
| 132 |
|
|
|
| 133 |
|
|
#if(OPT_MULTIPLY != 1)
|
| 134 |
|
|
if (m_core->v__DOT__this_is_a_multiply_op)
|
| 135 |
|
|
strcat(s, " MPY-OP");
|
| 136 |
|
|
#endif
|
| 137 |
|
|
puts(outstr);
|
| 138 |
|
|
}
|
| 139 |
|
|
|
| 140 |
|
|
//
|
| 141 |
|
|
// tick()
|
| 142 |
|
|
//
|
| 143 |
|
|
// Call this to step the processor.
|
| 144 |
|
|
//
|
| 145 |
|
|
// This is a bit unusual compared to other tick() functions I have in
|
| 146 |
|
|
// my simulators in that there are a lot of calls to eval() with clk==0.
|
| 147 |
|
|
// This is because the multiply logic for OPT_MULTIPLY < 3 depends upon
|
| 148 |
|
|
// it to be valid. I assume any true Xilinx, or even higher level,
|
| 149 |
|
|
// implementation wouldn't have this problem.
|
| 150 |
|
|
//
|
| 151 |
|
|
void tick(void) {
|
| 152 |
|
|
bool debug = false;
|
| 153 |
|
|
|
| 154 |
|
|
// Insist that we are never both busy and producing a valid
|
| 155 |
|
|
// result at the same time. One or the other may be true,
|
| 156 |
|
|
// but never both.
|
| 157 |
|
|
assert((!m_core->o_busy)||(!m_core->o_valid));
|
| 158 |
|
|
//
|
| 159 |
|
|
TESTB<Vcpuops>::tick();
|
| 160 |
|
|
|
| 161 |
|
|
if (debug)
|
| 162 |
|
|
dbgdump();
|
| 163 |
|
|
}
|
| 164 |
|
|
|
| 165 |
|
|
//
|
| 166 |
|
|
// clear_ops
|
| 167 |
|
|
//
|
| 168 |
|
|
// Runs enough clocks through the device until it is neither busy nor
|
| 169 |
|
|
// valid. At this point, the ALU should be thoroughly clear. Then
|
| 170 |
|
|
// we tick things once more.
|
| 171 |
|
|
//
|
| 172 |
|
|
void clear_ops(void) {
|
| 173 |
|
|
m_core->i_ce = 0;
|
| 174 |
|
|
m_core->i_op = 0;
|
| 175 |
|
|
|
| 176 |
|
|
do {
|
| 177 |
|
|
tick();
|
| 178 |
|
|
} while((m_core->o_busy)||(m_core->o_valid));
|
| 179 |
|
|
tick();
|
| 180 |
|
|
}
|
| 181 |
|
|
|
| 182 |
|
|
//
|
| 183 |
|
|
// This is a fairly generic CPU operation call. What makes it less
|
| 184 |
|
|
// than generic are two things: 1) the ALU is cleared before any
|
| 185 |
|
|
// new instruction, and 2) the tick count at the end is compared
|
| 186 |
|
|
// against the tick count OPT_MULTIPLY says we should be getting.
|
| 187 |
|
|
// A third difference between this call in simulation and a real
|
| 188 |
|
|
// call within the CPU is that we never set the reset mid-call, whereas
|
| 189 |
|
|
// the CPU may need to do that if a jump is made and the pipeline needs
|
| 190 |
|
|
// to be cleared.
|
| 191 |
|
|
//
|
| 192 |
|
|
unsigned op(int op, int a, int b) {
|
| 193 |
|
|
// Make sure we start witht he core idle
|
| 194 |
|
|
if (m_core->o_valid)
|
| 195 |
|
|
clear_ops();
|
| 196 |
|
|
|
| 197 |
|
|
// Set the arguments to the CPUOPS core to get a multiple
|
| 198 |
|
|
// started
|
| 199 |
|
|
m_core->i_ce = 1;
|
| 200 |
|
|
m_core->i_op = op;
|
| 201 |
|
|
m_core->i_a = a;
|
| 202 |
|
|
m_core->i_b = b;
|
| 203 |
|
|
|
| 204 |
|
|
unsigned long now = m_tickcount;
|
| 205 |
|
|
|
| 206 |
|
|
// Tick once to get it going
|
| 207 |
|
|
tick();
|
| 208 |
|
|
|
| 209 |
|
|
// Clear the input arguments to the multiply
|
| 210 |
|
|
m_core->i_ce = 0;
|
| 211 |
|
|
m_core->i_a = 0;
|
| 212 |
|
|
m_core->i_b = 0;
|
| 213 |
|
|
|
| 214 |
|
|
// Wait for the result to be valid
|
| 215 |
|
|
while(!m_core->o_valid)
|
| 216 |
|
|
tick();
|
| 217 |
|
|
|
| 218 |
|
|
// Check that we used the number of clock ticks we said we'd
|
| 219 |
|
|
// be using. OPT_MULTIPLY is *supposed* to be equal to this
|
| 220 |
|
|
// number.
|
| 221 |
|
|
if((m_tickcount - now)!=OPT_MULTIPLY) {
|
| 222 |
|
|
printf("%ld ticks seen, %d ticks expected\n",
|
| 223 |
|
|
m_tickcount-now, OPT_MULTIPLY);
|
| 224 |
|
|
dbgdump();
|
| 225 |
|
|
printf("TEST-FAILURE!\n");
|
| 226 |
|
|
closetrace();
|
| 227 |
|
|
exit(EXIT_FAILURE);
|
| 228 |
|
|
}
|
| 229 |
|
|
|
| 230 |
|
|
return m_core->o_c;
|
| 231 |
|
|
}
|
| 232 |
|
|
|
| 233 |
|
|
//
|
| 234 |
|
|
// Here's our testing function. Pardon the verbosity of the error
|
| 235 |
|
|
// messages within it, but ... well, hopefully you won't ever encounter
|
| 236 |
|
|
// any of those errors. ;)
|
| 237 |
|
|
//
|
| 238 |
|
|
// The function works by applying the two inputs to all three of the
|
| 239 |
|
|
// multiply functions, MPY, MPSHI, and MPYUHI. Results are compared
|
| 240 |
|
|
// against a local multiply on the local (host) machine. If there's
|
| 241 |
|
|
// any mismatch, an error message is printed and the test fails.
|
| 242 |
|
|
void mpy_test(int a, int b) {
|
| 243 |
|
|
const int OP_MPY = 0x08, OP_MPYSHI=0xb, OP_MPYUHI=0x0a;
|
| 244 |
|
|
long ia, ib, sv;
|
| 245 |
|
|
unsigned long ua, ub, uv;
|
| 246 |
|
|
unsigned r, s, u;
|
| 247 |
|
|
|
| 248 |
|
|
clear_ops();
|
| 249 |
|
|
|
| 250 |
|
|
printf("MPY-TEST: 0x%08x x 0x%08x\n", a, b);
|
| 251 |
|
|
|
| 252 |
|
|
ia = (long)a; ib = (long)b; sv = ia * ib;
|
| 253 |
|
|
ua = ((unsigned long)a)&0x0ffffffffu;
|
| 254 |
|
|
ub = ((unsigned long)b)&0x0ffffffffu;
|
| 255 |
|
|
uv = ua * ub;
|
| 256 |
|
|
|
| 257 |
|
|
r = op(OP_MPY, a, b);
|
| 258 |
|
|
s = op(OP_MPYSHI, a, b);
|
| 259 |
|
|
u = op(OP_MPYUHI, a, b);
|
| 260 |
|
|
tick();
|
| 261 |
|
|
|
| 262 |
|
|
// Let's check our answers, and see if we got the right results
|
| 263 |
|
|
if ((r ^ sv)&0x0ffffffffu) {
|
| 264 |
|
|
printf("TEST FAILURE(MPY), MPY #1\n");
|
| 265 |
|
|
printf("Comparing 0x%08x to 0x%016lx\n", r, sv);
|
| 266 |
|
|
printf("TEST-FAILURE!\n");
|
| 267 |
|
|
closetrace();
|
| 268 |
|
|
exit(EXIT_FAILURE);
|
| 269 |
|
|
} if ((r ^ uv)&0x0ffffffffu) {
|
| 270 |
|
|
printf("TEST FAILURE(MPY), MPY #2\n");
|
| 271 |
|
|
printf("Comparing 0x%08x to 0x%016lx\n", r, uv);
|
| 272 |
|
|
printf("TEST-FAILURE!\n");
|
| 273 |
|
|
closetrace();
|
| 274 |
|
|
exit(EXIT_FAILURE);
|
| 275 |
|
|
}
|
| 276 |
|
|
|
| 277 |
|
|
if ((s^(sv>>32))&0x0ffffffffu) {
|
| 278 |
|
|
printf("TEST FAILURE(MPYSHI), MPY #3\n");
|
| 279 |
|
|
printf("Comparing 0x%08x to 0x%016lx\n", s, sv);
|
| 280 |
|
|
printf("TEST-FAILURE!\n");
|
| 281 |
|
|
closetrace();
|
| 282 |
|
|
exit(EXIT_FAILURE);
|
| 283 |
|
|
} if ((u^(uv>>32))&0x0ffffffffu) {
|
| 284 |
|
|
printf("TEST FAILURE(MPYUHI), MPY #4\n");
|
| 285 |
|
|
printf("Comparing 0x%08x to 0x%016lx\n", u, uv);
|
| 286 |
|
|
printf("TEST-FAILURE!\n");
|
| 287 |
|
|
closetrace();
|
| 288 |
|
|
exit(EXIT_FAILURE);
|
| 289 |
|
|
}
|
| 290 |
|
|
}
|
| 291 |
|
|
};
|
| 292 |
|
|
|
| 293 |
|
|
void usage(void) {
|
| 294 |
|
|
printf("USAGE: mpy_tb [a b]\n");
|
| 295 |
|
|
printf("\n");
|
| 296 |
|
|
printf(
|
| 297 |
|
|
"The test is intended to be run with no arguments. When run in this fashion,\n"
|
| 298 |
|
|
"a series of multiplcation tests will be conducted using all three multiply\n"
|
| 299 |
|
|
"instructions. Any test failure will terminate the program with an exit\n"
|
| 300 |
|
|
"condition. Test success will terminate with a clear test condition. \n"
|
| 301 |
|
|
"During the test, you may expect a large amount of debug output to be\n"
|
| 302 |
|
|
"produced. This is a normal part of testing. For the meaning of the debug\n"
|
| 303 |
|
|
"output, please consider the source code. The last line of the debug output,\n"
|
| 304 |
|
|
"however, will always include either the word \"FAIL\" or \"SUCCESS\"\n"
|
| 305 |
|
|
"depending on whether the test succeeds or fails.\n\n"
|
| 306 |
|
|
"If the two arguments a and b are given, they will be interpreted according\n"
|
| 307 |
|
|
"to the form of strtol, and the test will only involve testing those two\n"
|
| 308 |
|
|
"parameters\n\n");
|
| 309 |
|
|
}
|
| 310 |
|
|
|
| 311 |
|
|
int main(int argc, char **argv) {
|
| 312 |
|
|
// Setup verilator
|
| 313 |
|
|
Verilated::commandArgs(argc, argv);
|
| 314 |
|
|
// Now, create a test bench.
|
| 315 |
|
|
CPUOPS_TB *tb = new CPUOPS_TB();
|
| 316 |
|
|
int rcode = EXIT_SUCCESS;
|
| 317 |
|
|
// tb->opentrace("mpy_tb.vcd");
|
| 318 |
|
|
|
| 319 |
|
|
// Get us started by a couple of clocks past reset. This isn't that
|
| 320 |
|
|
// unreasonable, since the CPU needs to load up the pipeline before
|
| 321 |
|
|
// any first instruction will be executed.
|
| 322 |
|
|
tb->reset();
|
| 323 |
|
|
tb->tick();
|
| 324 |
|
|
tb->tick();
|
| 325 |
|
|
tb->tick();
|
| 326 |
|
|
|
| 327 |
|
|
// Look for options, such as '-h'. Trap those here, and produce a usage
|
| 328 |
|
|
// statement.
|
| 329 |
|
|
if ((argc > 1)&&(argv[1][0]=='-')&&(isalpha(argv[1][1]))) {
|
| 330 |
|
|
usage();
|
| 331 |
|
|
exit(EXIT_SUCCESS);
|
| 332 |
|
|
}
|
| 333 |
|
|
|
| 334 |
|
|
if (argc == 3) {
|
| 335 |
|
|
// Were we given enough arguments to run a user-specified test?
|
| 336 |
|
|
tb->mpy_test(
|
| 337 |
|
|
strtol(argv[1], NULL, 0),
|
| 338 |
|
|
strtol(argv[2], NULL, 0));
|
| 339 |
|
|
} else {
|
| 340 |
|
|
// Otherwise we run through a canned set of tests.
|
| 341 |
|
|
tb->mpy_test(0,0);
|
| 342 |
|
|
tb->mpy_test(-1,0);
|
| 343 |
|
|
tb->mpy_test(-1,-1);
|
| 344 |
|
|
tb->mpy_test(1,-1);
|
| 345 |
|
|
tb->mpy_test(1,0);
|
| 346 |
|
|
tb->mpy_test(0,1);
|
| 347 |
|
|
tb->mpy_test(1,1);
|
| 348 |
|
|
|
| 349 |
|
|
for(int a=0; ((a&0xfff00000)==0); a+=137)
|
| 350 |
|
|
tb->mpy_test(139, a);
|
| 351 |
|
|
|
| 352 |
|
|
for(int a=0; ((a&0x80000000)==0); a+=0x197e2)
|
| 353 |
|
|
tb->mpy_test(0xf97e27ab, a);
|
| 354 |
|
|
}
|
| 355 |
|
|
|
| 356 |
|
|
printf("SUCCESS!\n");
|
| 357 |
|
|
exit(rcode);
|
| 358 |
|
|
}
|
| 359 |
|
|
|