OpenCores
URL https://opencores.org/ocsvn/altor32/altor32/trunk

Subversion Repositories altor32

[/] [altor32/] [trunk/] [gcc-x64/] [or1knd-elf/] [or1knd-elf/] [include/] [c++/] [4.8.0/] [bits/] [hashtable_policy.h] - Blame information for rev 35

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 35 ultra_embe
// Internal policy header for unordered_set and unordered_map -*- C++ -*-
2
 
3
// Copyright (C) 2010, 2011, 2012 Free Software Foundation, Inc.
4
//
5
// This file is part of the GNU ISO C++ Library.  This library is free
6
// software; you can redistribute it and/or modify it under the
7
// terms of the GNU General Public License as published by the
8
// Free Software Foundation; either version 3, or (at your option)
9
// any later version.
10
 
11
// This library is distributed in the hope that it will be useful,
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
// GNU General Public License for more details.
15
 
16
// Under Section 7 of GPL version 3, you are granted additional
17
// permissions described in the GCC Runtime Library Exception, version
18
// 3.1, as published by the Free Software Foundation.
19
 
20
// You should have received a copy of the GNU General Public License and
21
// a copy of the GCC Runtime Library Exception along with this program;
22
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23
// <http://www.gnu.org/licenses/>.
24
 
25
/** @file bits/hashtable_policy.h
26
 *  This is an internal header file, included by other library headers.
27
 *  Do not attempt to use it directly.
28
 *  @headername{unordered_map,unordered_set}
29
 */
30
 
31
#ifndef _HASHTABLE_POLICY_H
32
#define _HASHTABLE_POLICY_H 1
33
 
34
namespace std _GLIBCXX_VISIBILITY(default)
35
{
36
_GLIBCXX_BEGIN_NAMESPACE_VERSION
37
 
38
  template<typename _Key, typename _Value, typename _Alloc,
39
           typename _ExtractKey, typename _Equal,
40
           typename _H1, typename _H2, typename _Hash,
41
           typename _RehashPolicy, typename _Traits>
42
    class _Hashtable;
43
 
44
_GLIBCXX_END_NAMESPACE_VERSION
45
 
46
namespace __detail
47
{
48
_GLIBCXX_BEGIN_NAMESPACE_VERSION
49
 
50
  /**
51
   *  @defgroup hashtable-detail Base and Implementation Classes
52
   *  @ingroup unordered_associative_containers
53
   *  @{
54
   */
55
  template<typename _Key, typename _Value,
56
           typename _ExtractKey, typename _Equal,
57
           typename _H1, typename _H2, typename _Hash, typename _Traits>
58
    struct _Hashtable_base;
59
 
60
  // Helper function: return distance(first, last) for forward
61
  // iterators, or 0 for input iterators.
62
  template<class _Iterator>
63
    inline typename std::iterator_traits<_Iterator>::difference_type
64
    __distance_fw(_Iterator __first, _Iterator __last,
65
                  std::input_iterator_tag)
66
    { return 0; }
67
 
68
  template<class _Iterator>
69
    inline typename std::iterator_traits<_Iterator>::difference_type
70
    __distance_fw(_Iterator __first, _Iterator __last,
71
                  std::forward_iterator_tag)
72
    { return std::distance(__first, __last); }
73
 
74
  template<class _Iterator>
75
    inline typename std::iterator_traits<_Iterator>::difference_type
76
    __distance_fw(_Iterator __first, _Iterator __last)
77
    {
78
      typedef typename std::iterator_traits<_Iterator>::iterator_category _Tag;
79
      return __distance_fw(__first, __last, _Tag());
80
    }
81
 
82
  // Helper type used to detect whether the hash functor is noexcept.
83
  template <typename _Key, typename _Hash>
84
    struct __is_noexcept_hash : std::integral_constant<bool,
85
        noexcept(declval<const _Hash&>()(declval<const _Key&>()))>
86
    { };
87
 
88
  struct _Identity
89
  {
90
    template<typename _Tp>
91
      _Tp&&
92
      operator()(_Tp&& __x) const
93
      { return std::forward<_Tp>(__x); }
94
  };
95
 
96
  struct _Select1st
97
  {
98
    template<typename _Tp>
99
      auto
100
      operator()(_Tp&& __x) const
101
      -> decltype(std::get<0>(std::forward<_Tp>(__x)))
102
      { return std::get<0>(std::forward<_Tp>(__x)); }
103
  };
104
 
105
  // Auxiliary types used for all instantiations of _Hashtable nodes
106
  // and iterators.
107
 
108
  /**
109
   *  struct _Hashtable_traits
110
   *
111
   *  Important traits for hash tables.
112
   *
113
   *  @tparam _Cache_hash_code  Boolean value. True if the value of
114
   *  the hash function is stored along with the value. This is a
115
   *  time-space tradeoff.  Storing it may improve lookup speed by
116
   *  reducing the number of times we need to call the _Equal
117
   *  function.
118
   *
119
   *  @tparam _Constant_iterators  Boolean value. True if iterator and
120
   *  const_iterator are both constant iterator types. This is true
121
   *  for unordered_set and unordered_multiset, false for
122
   *  unordered_map and unordered_multimap.
123
   *
124
   *  @tparam _Unique_keys  Boolean value. True if the return value
125
   *  of _Hashtable::count(k) is always at most one, false if it may
126
   *  be an arbitrary number. This is true for unordered_set and
127
   *  unordered_map, false for unordered_multiset and
128
   *  unordered_multimap.
129
   */
130
  template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys>
131
    struct _Hashtable_traits
132
    {
133
      template<bool _Cond>
134
        using __bool_constant = integral_constant<bool, _Cond>;
135
 
136
      using __hash_cached = __bool_constant<_Cache_hash_code>;
137
      using __constant_iterators = __bool_constant<_Constant_iterators>;
138
      using __unique_keys = __bool_constant<_Unique_keys>;
139
    };
140
 
141
  /**
142
   *  struct _Hash_node_base
143
   *
144
   *  Nodes, used to wrap elements stored in the hash table.  A policy
145
   *  template parameter of class template _Hashtable controls whether
146
   *  nodes also store a hash code. In some cases (e.g. strings) this
147
   *  may be a performance win.
148
   */
149
  struct _Hash_node_base
150
  {
151
    _Hash_node_base* _M_nxt;
152
 
153
    _Hash_node_base() : _M_nxt() { }
154
 
155
    _Hash_node_base(_Hash_node_base* __next) : _M_nxt(__next) { }
156
  };
157
 
158
  /**
159
   *  Primary template struct _Hash_node.
160
   */
161
  template<typename _Value, bool _Cache_hash_code>
162
    struct _Hash_node;
163
 
164
  /**
165
   *  Specialization for nodes with caches, struct _Hash_node.
166
   *
167
   *  Base class is __detail::_Hash_node_base.
168
   */
169
  template<typename _Value>
170
    struct _Hash_node<_Value, true> : _Hash_node_base
171
    {
172
      _Value       _M_v;
173
      std::size_t  _M_hash_code;
174
 
175
      template<typename... _Args>
176
        _Hash_node(_Args&&... __args)
177
        : _M_v(std::forward<_Args>(__args)...), _M_hash_code() { }
178
 
179
      _Hash_node*
180
      _M_next() const { return static_cast<_Hash_node*>(_M_nxt); }
181
    };
182
 
183
  /**
184
   *  Specialization for nodes without caches, struct _Hash_node.
185
   *
186
   *  Base class is __detail::_Hash_node_base.
187
   */
188
  template<typename _Value>
189
    struct _Hash_node<_Value, false> : _Hash_node_base
190
    {
191
      _Value       _M_v;
192
 
193
      template<typename... _Args>
194
        _Hash_node(_Args&&... __args)
195
        : _M_v(std::forward<_Args>(__args)...) { }
196
 
197
      _Hash_node*
198
      _M_next() const { return static_cast<_Hash_node*>(_M_nxt); }
199
    };
200
 
201
  /// Base class for node iterators.
202
  template<typename _Value, bool _Cache_hash_code>
203
    struct _Node_iterator_base
204
    {
205
      typedef _Hash_node<_Value, _Cache_hash_code>      __node_type;
206
 
207
      __node_type*  _M_cur;
208
 
209
      _Node_iterator_base(__node_type* __p)
210
      : _M_cur(__p) { }
211
 
212
      void
213
      _M_incr()
214
      { _M_cur = _M_cur->_M_next(); }
215
    };
216
 
217
  template<typename _Value, bool _Cache_hash_code>
218
    inline bool
219
    operator==(const _Node_iterator_base<_Value, _Cache_hash_code>& __x,
220
               const _Node_iterator_base<_Value, _Cache_hash_code >& __y)
221
    { return __x._M_cur == __y._M_cur; }
222
 
223
  template<typename _Value, bool _Cache_hash_code>
224
    inline bool
225
    operator!=(const _Node_iterator_base<_Value, _Cache_hash_code>& __x,
226
               const _Node_iterator_base<_Value, _Cache_hash_code>& __y)
227
    { return __x._M_cur != __y._M_cur; }
228
 
229
  /// Node iterators, used to iterate through all the hashtable.
230
  template<typename _Value, bool __constant_iterators, bool __cache>
231
    struct _Node_iterator
232
    : public _Node_iterator_base<_Value, __cache>
233
    {
234
    private:
235
      using __base_type = _Node_iterator_base<_Value, __cache>;
236
      using __node_type = typename __base_type::__node_type;
237
 
238
    public:
239
      typedef _Value                                   value_type;
240
      typedef std::ptrdiff_t                           difference_type;
241
      typedef std::forward_iterator_tag                iterator_category;
242
 
243
      using pointer = typename std::conditional<__constant_iterators,
244
                                                const _Value*, _Value*>::type;
245
 
246
      using reference = typename std::conditional<__constant_iterators,
247
                                                  const _Value&, _Value&>::type;
248
 
249
      _Node_iterator()
250
      : __base_type(0) { }
251
 
252
      explicit
253
      _Node_iterator(__node_type* __p)
254
      : __base_type(__p) { }
255
 
256
      reference
257
      operator*() const
258
      { return this->_M_cur->_M_v; }
259
 
260
      pointer
261
      operator->() const
262
      { return std::__addressof(this->_M_cur->_M_v); }
263
 
264
      _Node_iterator&
265
      operator++()
266
      {
267
        this->_M_incr();
268
        return *this;
269
      }
270
 
271
      _Node_iterator
272
      operator++(int)
273
      {
274
        _Node_iterator __tmp(*this);
275
        this->_M_incr();
276
        return __tmp;
277
      }
278
    };
279
 
280
  /// Node const_iterators, used to iterate through all the hashtable.
281
  template<typename _Value, bool __constant_iterators, bool __cache>
282
    struct _Node_const_iterator
283
    : public _Node_iterator_base<_Value, __cache>
284
    {
285
     private:
286
      using __base_type = _Node_iterator_base<_Value, __cache>;
287
      using __node_type = typename __base_type::__node_type;
288
 
289
    public:
290
      typedef _Value                                   value_type;
291
      typedef std::ptrdiff_t                           difference_type;
292
      typedef std::forward_iterator_tag                iterator_category;
293
 
294
      typedef const _Value*                            pointer;
295
      typedef const _Value&                            reference;
296
 
297
      _Node_const_iterator()
298
      : __base_type(0) { }
299
 
300
      explicit
301
      _Node_const_iterator(__node_type* __p)
302
      : __base_type(__p) { }
303
 
304
      _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
305
                           __cache>& __x)
306
      : __base_type(__x._M_cur) { }
307
 
308
      reference
309
      operator*() const
310
      { return this->_M_cur->_M_v; }
311
 
312
      pointer
313
      operator->() const
314
      { return std::__addressof(this->_M_cur->_M_v); }
315
 
316
      _Node_const_iterator&
317
      operator++()
318
      {
319
        this->_M_incr();
320
        return *this;
321
      }
322
 
323
      _Node_const_iterator
324
      operator++(int)
325
      {
326
        _Node_const_iterator __tmp(*this);
327
        this->_M_incr();
328
        return __tmp;
329
      }
330
    };
331
 
332
  // Many of class template _Hashtable's template parameters are policy
333
  // classes.  These are defaults for the policies.
334
 
335
  /// Default range hashing function: use division to fold a large number
336
  /// into the range [0, N).
337
  struct _Mod_range_hashing
338
  {
339
    typedef std::size_t first_argument_type;
340
    typedef std::size_t second_argument_type;
341
    typedef std::size_t result_type;
342
 
343
    result_type
344
    operator()(first_argument_type __num, second_argument_type __den) const
345
    { return __num % __den; }
346
  };
347
 
348
  /// Default ranged hash function H.  In principle it should be a
349
  /// function object composed from objects of type H1 and H2 such that
350
  /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of
351
  /// h1 and h2.  So instead we'll just use a tag to tell class template
352
  /// hashtable to do that composition.
353
  struct _Default_ranged_hash { };
354
 
355
  /// Default value for rehash policy.  Bucket size is (usually) the
356
  /// smallest prime that keeps the load factor small enough.
357
  struct _Prime_rehash_policy
358
  {
359
    _Prime_rehash_policy(float __z = 1.0)
360
    : _M_max_load_factor(__z), _M_next_resize(0) { }
361
 
362
    float
363
    max_load_factor() const noexcept
364
    { return _M_max_load_factor; }
365
 
366
    // Return a bucket size no smaller than n.
367
    std::size_t
368
    _M_next_bkt(std::size_t __n) const;
369
 
370
    // Return a bucket count appropriate for n elements
371
    std::size_t
372
    _M_bkt_for_elements(std::size_t __n) const;
373
 
374
    // __n_bkt is current bucket count, __n_elt is current element count,
375
    // and __n_ins is number of elements to be inserted.  Do we need to
376
    // increase bucket count?  If so, return make_pair(true, n), where n
377
    // is the new bucket count.  If not, return make_pair(false, 0).
378
    std::pair<bool, std::size_t>
379
    _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
380
                   std::size_t __n_ins) const;
381
 
382
    typedef std::size_t _State;
383
 
384
    _State
385
    _M_state() const
386
    { return _M_next_resize; }
387
 
388
    void
389
    _M_reset(_State __state)
390
    { _M_next_resize = __state; }
391
 
392
    enum { _S_n_primes = sizeof(unsigned long) != 8 ? 256 : 256 + 48 };
393
 
394
    static const std::size_t _S_growth_factor = 2;
395
 
396
    float                _M_max_load_factor;
397
    mutable std::size_t  _M_next_resize;
398
  };
399
 
400
  extern const unsigned long __prime_list[];
401
 
402
  // XXX This is a hack.  There's no good reason for any of
403
  // _Prime_rehash_policy's member functions to be inline.
404
 
405
  // Return a prime no smaller than n.
406
  inline std::size_t
407
  _Prime_rehash_policy::
408
  _M_next_bkt(std::size_t __n) const
409
  {
410
    // Optimize lookups involving the first elements of __prime_list.
411
    // (useful to speed-up, eg, constructors)
412
    static const unsigned char __fast_bkt[12]
413
      = { 2, 2, 2, 3, 5, 5, 7, 7, 11, 11, 11, 11 };
414
 
415
    if (__n <= 11)
416
      {
417
        _M_next_resize
418
          = __builtin_ceil(__fast_bkt[__n]
419
                           * (long double)_M_max_load_factor);
420
        return __fast_bkt[__n];
421
      }
422
 
423
    const unsigned long* __next_bkt
424
      = std::lower_bound(__prime_list + 5, __prime_list + _S_n_primes,
425
                         __n);
426
    _M_next_resize
427
      = __builtin_ceil(*__next_bkt * (long double)_M_max_load_factor);
428
    return *__next_bkt;
429
  }
430
 
431
  // Return the smallest integer p such that alpha p >= n, where alpha
432
  // is the load factor.
433
  inline std::size_t
434
  _Prime_rehash_policy::
435
  _M_bkt_for_elements(std::size_t __n) const
436
  { return __builtin_ceil(__n / (long double)_M_max_load_factor); }
437
 
438
  // Finds the smallest prime p such that alpha p > __n_elt + __n_ins.
439
  // If p > __n_bkt, return make_pair(true, p); otherwise return
440
  // make_pair(false, 0).  In principle this isn't very different from
441
  // _M_bkt_for_elements.
442
 
443
  // The only tricky part is that we're caching the element count at
444
  // which we need to rehash, so we don't have to do a floating-point
445
  // multiply for every insertion.
446
 
447
  inline std::pair<bool, std::size_t>
448
  _Prime_rehash_policy::
449
  _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
450
                 std::size_t __n_ins) const
451
  {
452
    if (__n_elt + __n_ins >= _M_next_resize)
453
      {
454
        long double __min_bkts = (__n_elt + __n_ins)
455
                                 / (long double)_M_max_load_factor;
456
        if (__min_bkts >= __n_bkt)
457
          return std::make_pair(true,
458
            _M_next_bkt(std::max<std::size_t>(__builtin_floor(__min_bkts) + 1,
459
                                              __n_bkt * _S_growth_factor)));
460
        else
461
          {
462
            _M_next_resize
463
              = __builtin_floor(__n_bkt * (long double)_M_max_load_factor);
464
            return std::make_pair(false, 0);
465
          }
466
      }
467
    else
468
      return std::make_pair(false, 0);
469
  }
470
 
471
  // Base classes for std::_Hashtable.  We define these base classes
472
  // because in some cases we want to do different things depending on
473
  // the value of a policy class.  In some cases the policy class
474
  // affects which member functions and nested typedefs are defined;
475
  // we handle that by specializing base class templates.  Several of
476
  // the base class templates need to access other members of class
477
  // template _Hashtable, so we use a variant of the "Curiously
478
  // Recurring Template Pattern" (CRTP) technique.
479
 
480
  /**
481
   *  Primary class template _Map_base.
482
   *
483
   *  If the hashtable has a value type of the form pair<T1, T2> and a
484
   *  key extraction policy (_ExtractKey) that returns the first part
485
   *  of the pair, the hashtable gets a mapped_type typedef.  If it
486
   *  satisfies those criteria and also has unique keys, then it also
487
   *  gets an operator[].
488
   */
489
  template<typename _Key, typename _Value, typename _Alloc,
490
           typename _ExtractKey, typename _Equal,
491
           typename _H1, typename _H2, typename _Hash,
492
           typename _RehashPolicy, typename _Traits,
493
           bool _Unique_keys = _Traits::__unique_keys::value>
494
    struct _Map_base { };
495
 
496
  /// Partial specialization, __unique_keys set to false.
497
  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
498
           typename _H1, typename _H2, typename _Hash,
499
           typename _RehashPolicy, typename _Traits>
500
    struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
501
                     _H1, _H2, _Hash, _RehashPolicy, _Traits, false>
502
    {
503
      using mapped_type = typename std::tuple_element<1, _Pair>::type;
504
    };
505
 
506
  /// Partial specialization, __unique_keys set to true.
507
  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
508
           typename _H1, typename _H2, typename _Hash,
509
           typename _RehashPolicy, typename _Traits>
510
    struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
511
                     _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
512
    {
513
    private:
514
      using __hashtable_base = __detail::_Hashtable_base<_Key, _Pair,
515
                                                         _Select1st,
516
                                                        _Equal, _H1, _H2, _Hash,
517
                                                          _Traits>;
518
 
519
      using __hashtable = _Hashtable<_Key, _Pair, _Alloc,
520
                                     _Select1st, _Equal,
521
                                     _H1, _H2, _Hash, _RehashPolicy, _Traits>;
522
 
523
      using __hash_code = typename __hashtable_base::__hash_code;
524
      using __node_type = typename __hashtable_base::__node_type;
525
 
526
    public:
527
      using key_type = typename __hashtable_base::key_type;
528
      using iterator = typename __hashtable_base::iterator;
529
      using mapped_type = typename std::tuple_element<1, _Pair>::type;
530
 
531
      mapped_type&
532
      operator[](const key_type& __k);
533
 
534
      mapped_type&
535
      operator[](key_type&& __k);
536
 
537
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
538
      // DR 761. unordered_map needs an at() member function.
539
      mapped_type&
540
      at(const key_type& __k);
541
 
542
      const mapped_type&
543
      at(const key_type& __k) const;
544
    };
545
 
546
  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
547
           typename _H1, typename _H2, typename _Hash,
548
           typename _RehashPolicy, typename _Traits>
549
    typename _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
550
                       _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
551
                       ::mapped_type&
552
    _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
553
              _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
554
    operator[](const key_type& __k)
555
    {
556
      __hashtable* __h = static_cast<__hashtable*>(this);
557
      __hash_code __code = __h->_M_hash_code(__k);
558
      std::size_t __n = __h->_M_bucket_index(__k, __code);
559
      __node_type* __p = __h->_M_find_node(__n, __k, __code);
560
 
561
      if (!__p)
562
        {
563
          __p = __h->_M_allocate_node(std::piecewise_construct,
564
                                      std::tuple<const key_type&>(__k),
565
                                      std::tuple<>());
566
          return __h->_M_insert_unique_node(__n, __code, __p)->second;
567
        }
568
 
569
      return (__p->_M_v).second;
570
    }
571
 
572
  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
573
           typename _H1, typename _H2, typename _Hash,
574
           typename _RehashPolicy, typename _Traits>
575
    typename _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
576
                       _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
577
                       ::mapped_type&
578
    _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
579
              _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
580
    operator[](key_type&& __k)
581
    {
582
      __hashtable* __h = static_cast<__hashtable*>(this);
583
      __hash_code __code = __h->_M_hash_code(__k);
584
      std::size_t __n = __h->_M_bucket_index(__k, __code);
585
      __node_type* __p = __h->_M_find_node(__n, __k, __code);
586
 
587
      if (!__p)
588
        {
589
          __p = __h->_M_allocate_node(std::piecewise_construct,
590
                                      std::forward_as_tuple(std::move(__k)),
591
                                      std::tuple<>());
592
          return __h->_M_insert_unique_node(__n, __code, __p)->second;
593
        }
594
 
595
      return (__p->_M_v).second;
596
    }
597
 
598
  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
599
           typename _H1, typename _H2, typename _Hash,
600
           typename _RehashPolicy, typename _Traits>
601
    typename _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
602
                       _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
603
                       ::mapped_type&
604
    _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
605
              _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
606
    at(const key_type& __k)
607
    {
608
      __hashtable* __h = static_cast<__hashtable*>(this);
609
      __hash_code __code = __h->_M_hash_code(__k);
610
      std::size_t __n = __h->_M_bucket_index(__k, __code);
611
      __node_type* __p = __h->_M_find_node(__n, __k, __code);
612
 
613
      if (!__p)
614
        __throw_out_of_range(__N("_Map_base::at"));
615
      return (__p->_M_v).second;
616
    }
617
 
618
  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
619
           typename _H1, typename _H2, typename _Hash,
620
           typename _RehashPolicy, typename _Traits>
621
    const typename _Map_base<_Key, _Pair, _Alloc, _Select1st,
622
                             _Equal, _H1, _H2, _Hash, _RehashPolicy,
623
                             _Traits, true>::mapped_type&
624
    _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
625
              _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
626
    at(const key_type& __k) const
627
    {
628
      const __hashtable* __h = static_cast<const __hashtable*>(this);
629
      __hash_code __code = __h->_M_hash_code(__k);
630
      std::size_t __n = __h->_M_bucket_index(__k, __code);
631
      __node_type* __p = __h->_M_find_node(__n, __k, __code);
632
 
633
      if (!__p)
634
        __throw_out_of_range(__N("_Map_base::at"));
635
      return (__p->_M_v).second;
636
    }
637
 
638
  /**
639
   *  Primary class template _Insert_base.
640
   *
641
   *  insert member functions appropriate to all _Hashtables.
642
   */
643
  template<typename _Key, typename _Value, typename _Alloc,
644
           typename _ExtractKey, typename _Equal,
645
           typename _H1, typename _H2, typename _Hash,
646
           typename _RehashPolicy, typename _Traits>
647
    struct _Insert_base
648
    {
649
      using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
650
                                     _Equal, _H1, _H2, _Hash,
651
                                     _RehashPolicy, _Traits>;
652
 
653
      using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey,
654
                                               _Equal, _H1, _H2, _Hash,
655
                                               _Traits>;
656
 
657
      using value_type = typename __hashtable_base::value_type;
658
      using iterator = typename __hashtable_base::iterator;
659
      using const_iterator =  typename __hashtable_base::const_iterator;
660
      using size_type = typename __hashtable_base::size_type;
661
 
662
      using __unique_keys = typename __hashtable_base::__unique_keys;
663
      using __ireturn_type = typename __hashtable_base::__ireturn_type;
664
      using __iconv_type = typename __hashtable_base::__iconv_type;
665
 
666
      __hashtable&
667
      _M_conjure_hashtable()
668
      { return *(static_cast<__hashtable*>(this)); }
669
 
670
      __ireturn_type
671
      insert(const value_type& __v)
672
      {
673
        __hashtable& __h = _M_conjure_hashtable();
674
        return __h._M_insert(__v, __unique_keys());
675
      }
676
 
677
      iterator
678
      insert(const_iterator, const value_type& __v)
679
      { return __iconv_type()(insert(__v)); }
680
 
681
      void
682
      insert(initializer_list<value_type> __l)
683
      { this->insert(__l.begin(), __l.end()); }
684
 
685
      template<typename _InputIterator>
686
        void
687
        insert(_InputIterator __first, _InputIterator __last);
688
    };
689
 
690
  template<typename _Key, typename _Value, typename _Alloc,
691
           typename _ExtractKey, typename _Equal,
692
           typename _H1, typename _H2, typename _Hash,
693
           typename _RehashPolicy, typename _Traits>
694
    template<typename _InputIterator>
695
      void
696
      _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
697
                    _RehashPolicy, _Traits>::
698
      insert(_InputIterator __first, _InputIterator __last)
699
      {
700
        using __rehash_type = typename __hashtable::__rehash_type;
701
        using __rehash_state = typename __hashtable::__rehash_state;
702
        using pair_type = std::pair<bool, std::size_t>;
703
 
704
        size_type __n_elt = __detail::__distance_fw(__first, __last);
705
 
706
        __hashtable& __h = _M_conjure_hashtable();
707
        __rehash_type& __rehash = __h._M_rehash_policy;
708
        const __rehash_state& __saved_state = __rehash._M_state();
709
        pair_type __do_rehash = __rehash._M_need_rehash(__h._M_bucket_count,
710
                                                        __h._M_element_count,
711
                                                        __n_elt);
712
 
713
        if (__do_rehash.first)
714
          __h._M_rehash(__do_rehash.second, __saved_state);
715
 
716
        for (; __first != __last; ++__first)
717
          this->insert(*__first);
718
      }
719
 
720
  /**
721
   *  Primary class template _Insert.
722
   *
723
   *  Select insert member functions appropriate to _Hashtable policy choices.
724
   */
725
  template<typename _Key, typename _Value, typename _Alloc,
726
           typename _ExtractKey, typename _Equal,
727
           typename _H1, typename _H2, typename _Hash,
728
           typename _RehashPolicy, typename _Traits,
729
           bool _Constant_iterators = _Traits::__constant_iterators::value,
730
           bool _Unique_keys = _Traits::__unique_keys::value>
731
    struct _Insert;
732
 
733
  /// Specialization.
734
  template<typename _Key, typename _Value, typename _Alloc,
735
           typename _ExtractKey, typename _Equal,
736
           typename _H1, typename _H2, typename _Hash,
737
           typename _RehashPolicy, typename _Traits>
738
    struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
739
                   _RehashPolicy, _Traits, true, true>
740
    : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
741
                           _H1, _H2, _Hash, _RehashPolicy, _Traits>
742
    {
743
      using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
744
                                        _Equal, _H1, _H2, _Hash,
745
                                        _RehashPolicy, _Traits>;
746
      using value_type = typename __base_type::value_type;
747
      using iterator = typename __base_type::iterator;
748
      using const_iterator =  typename __base_type::const_iterator;
749
 
750
      using __unique_keys = typename __base_type::__unique_keys;
751
      using __hashtable = typename __base_type::__hashtable;
752
 
753
      using __base_type::insert;
754
 
755
      std::pair<iterator, bool>
756
      insert(value_type&& __v)
757
      {
758
        __hashtable& __h = this->_M_conjure_hashtable();
759
        return __h._M_insert(std::move(__v), __unique_keys());
760
      }
761
 
762
      iterator
763
      insert(const_iterator, value_type&& __v)
764
      { return insert(std::move(__v)).first; }
765
    };
766
 
767
  /// Specialization.
768
  template<typename _Key, typename _Value, typename _Alloc,
769
           typename _ExtractKey, typename _Equal,
770
           typename _H1, typename _H2, typename _Hash,
771
           typename _RehashPolicy, typename _Traits>
772
    struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
773
                   _RehashPolicy, _Traits, true, false>
774
    : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
775
                           _H1, _H2, _Hash, _RehashPolicy, _Traits>
776
    {
777
      using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
778
                                        _Equal, _H1, _H2, _Hash,
779
                                        _RehashPolicy, _Traits>;
780
      using value_type = typename __base_type::value_type;
781
      using iterator = typename __base_type::iterator;
782
      using const_iterator =  typename __base_type::const_iterator;
783
 
784
      using __unique_keys = typename __base_type::__unique_keys;
785
      using __hashtable = typename __base_type::__hashtable;
786
 
787
      using __base_type::insert;
788
 
789
      iterator
790
      insert(value_type&& __v)
791
      {
792
        __hashtable& __h = this->_M_conjure_hashtable();
793
        return __h._M_insert(std::move(__v), __unique_keys());
794
      }
795
 
796
      iterator
797
      insert(const_iterator, value_type&& __v)
798
      { return insert(std::move(__v)); }
799
     };
800
 
801
  /// Specialization.
802
  template<typename _Key, typename _Value, typename _Alloc,
803
           typename _ExtractKey, typename _Equal,
804
           typename _H1, typename _H2, typename _Hash,
805
           typename _RehashPolicy, typename _Traits, bool _Unique_keys>
806
    struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
807
                   _RehashPolicy, _Traits, false, _Unique_keys>
808
    : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
809
                           _H1, _H2, _Hash, _RehashPolicy, _Traits>
810
    {
811
      using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
812
                                       _Equal, _H1, _H2, _Hash,
813
                                       _RehashPolicy, _Traits>;
814
      using value_type = typename __base_type::value_type;
815
      using iterator = typename __base_type::iterator;
816
      using const_iterator =  typename __base_type::const_iterator;
817
 
818
      using __unique_keys = typename __base_type::__unique_keys;
819
      using __hashtable = typename __base_type::__hashtable;
820
      using __ireturn_type = typename __base_type::__ireturn_type;
821
      using __iconv_type = typename __base_type::__iconv_type;
822
 
823
      using __base_type::insert;
824
 
825
      template<typename _Pair>
826
        using __is_cons = std::is_constructible<value_type, _Pair&&>;
827
 
828
      template<typename _Pair>
829
        using _IFcons = std::enable_if<__is_cons<_Pair>::value>;
830
 
831
      template<typename _Pair>
832
        using _IFconsp = typename _IFcons<_Pair>::type;
833
 
834
      template<typename _Pair, typename = _IFconsp<_Pair>>
835
        __ireturn_type
836
        insert(_Pair&& __v)
837
        {
838
          __hashtable& __h = this->_M_conjure_hashtable();
839
          return __h._M_insert(std::forward<_Pair>(__v), __unique_keys());
840
        }
841
 
842
      template<typename _Pair, typename = _IFconsp<_Pair>>
843
        iterator
844
        insert(const_iterator, _Pair&& __v)
845
        { return __iconv_type()(insert(std::forward<_Pair>(__v))); }
846
   };
847
 
848
  /**
849
   *  Primary class template  _Rehash_base.
850
   *
851
   *  Give hashtable the max_load_factor functions and reserve iff the
852
   *  rehash policy is _Prime_rehash_policy.
853
  */
854
  template<typename _Key, typename _Value, typename _Alloc,
855
           typename _ExtractKey, typename _Equal,
856
           typename _H1, typename _H2, typename _Hash,
857
           typename _RehashPolicy, typename _Traits>
858
    struct _Rehash_base;
859
 
860
  /// Specialization.
861
  template<typename _Key, typename _Value, typename _Alloc,
862
           typename _ExtractKey, typename _Equal,
863
           typename _H1, typename _H2, typename _Hash, typename _Traits>
864
    struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
865
                        _H1, _H2, _Hash, _Prime_rehash_policy, _Traits>
866
    {
867
      using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
868
                                     _Equal, _H1, _H2, _Hash,
869
                                     _Prime_rehash_policy, _Traits>;
870
 
871
      float
872
      max_load_factor() const noexcept
873
      {
874
        const __hashtable* __this = static_cast<const __hashtable*>(this);
875
        return __this->__rehash_policy().max_load_factor();
876
      }
877
 
878
      void
879
      max_load_factor(float __z)
880
      {
881
        __hashtable* __this = static_cast<__hashtable*>(this);
882
        __this->__rehash_policy(_Prime_rehash_policy(__z));
883
      }
884
 
885
      void
886
      reserve(std::size_t __n)
887
      {
888
        __hashtable* __this = static_cast<__hashtable*>(this);
889
        __this->rehash(__builtin_ceil(__n / max_load_factor()));
890
      }
891
    };
892
 
893
  /**
894
   *  Primary class template _Hashtable_ebo_helper.
895
   *
896
   *  Helper class using EBO when it is not forbidden, type is not
897
   *  final, and when it worth it, type is empty.
898
   */
899
  template<int _Nm, typename _Tp,
900
           bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)>
901
    struct _Hashtable_ebo_helper;
902
 
903
  /// Specialization using EBO.
904
  template<int _Nm, typename _Tp>
905
    struct _Hashtable_ebo_helper<_Nm, _Tp, true>
906
    : private _Tp
907
    {
908
      _Hashtable_ebo_helper() = default;
909
 
910
      _Hashtable_ebo_helper(const _Tp& __tp) : _Tp(__tp)
911
      { }
912
 
913
      static const _Tp&
914
      _S_cget(const _Hashtable_ebo_helper& __eboh)
915
      { return static_cast<const _Tp&>(__eboh); }
916
 
917
      static _Tp&
918
      _S_get(_Hashtable_ebo_helper& __eboh)
919
      { return static_cast<_Tp&>(__eboh); }
920
    };
921
 
922
  /// Specialization not using EBO.
923
  template<int _Nm, typename _Tp>
924
    struct _Hashtable_ebo_helper<_Nm, _Tp, false>
925
    {
926
      _Hashtable_ebo_helper() = default;
927
 
928
      _Hashtable_ebo_helper(const _Tp& __tp) : _M_tp(__tp)
929
      { }
930
 
931
      static const _Tp&
932
      _S_cget(const _Hashtable_ebo_helper& __eboh)
933
      { return __eboh._M_tp; }
934
 
935
      static _Tp&
936
      _S_get(_Hashtable_ebo_helper& __eboh)
937
      { return __eboh._M_tp; }
938
 
939
    private:
940
      _Tp _M_tp;
941
    };
942
 
943
  /**
944
   *  Primary class template _Hash_code_base.
945
   *
946
   *  Encapsulates two policy issues that aren't quite orthogonal.
947
   *   (1) the difference between using a ranged hash function and using
948
   *       the combination of a hash function and a range-hashing function.
949
   *       In the former case we don't have such things as hash codes, so
950
   *       we have a dummy type as placeholder.
951
   *   (2) Whether or not we cache hash codes.  Caching hash codes is
952
   *       meaningless if we have a ranged hash function.
953
   *
954
   *  We also put the key extraction objects here, for convenience.
955
   *  Each specialization derives from one or more of the template
956
   *  parameters to benefit from Ebo. This is important as this type
957
   *  is inherited in some cases by the _Local_iterator_base type used
958
   *  to implement local_iterator and const_local_iterator. As with
959
   *  any iterator type we prefer to make it as small as possible.
960
   *
961
   *  Primary template is unused except as a hook for specializations.
962
   */
963
  template<typename _Key, typename _Value, typename _ExtractKey,
964
           typename _H1, typename _H2, typename _Hash,
965
           bool __cache_hash_code>
966
    struct _Hash_code_base;
967
 
968
  /// Specialization: ranged hash function, no caching hash codes.  H1
969
  /// and H2 are provided but ignored.  We define a dummy hash code type.
970
  template<typename _Key, typename _Value, typename _ExtractKey,
971
           typename _H1, typename _H2, typename _Hash>
972
    struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, false>
973
    : private _Hashtable_ebo_helper<0, _ExtractKey>,
974
      private _Hashtable_ebo_helper<1, _Hash>
975
    {
976
    private:
977
      typedef _Hashtable_ebo_helper<0, _ExtractKey>      _EboExtractKey;
978
      typedef _Hashtable_ebo_helper<1, _Hash>           _EboHash;
979
 
980
    protected:
981
      typedef void*                                     __hash_code;
982
      typedef _Hash_node<_Value, false>                 __node_type;
983
 
984
      // We need the default constructor for the local iterators.
985
      _Hash_code_base() = default;
986
 
987
      _Hash_code_base(const _ExtractKey& __ex, const _H1&, const _H2&,
988
                      const _Hash& __h)
989
      : _EboExtractKey(__ex), _EboHash(__h) { }
990
 
991
      __hash_code
992
      _M_hash_code(const _Key& __key) const
993
      { return 0; }
994
 
995
      std::size_t
996
      _M_bucket_index(const _Key& __k, __hash_code, std::size_t __n) const
997
      { return _M_ranged_hash()(__k, __n); }
998
 
999
      std::size_t
1000
      _M_bucket_index(const __node_type* __p, std::size_t __n) const
1001
      { return _M_ranged_hash()(_M_extract()(__p->_M_v), __n); }
1002
 
1003
      void
1004
      _M_store_code(__node_type*, __hash_code) const
1005
      { }
1006
 
1007
      void
1008
      _M_copy_code(__node_type*, const __node_type*) const
1009
      { }
1010
 
1011
      void
1012
      _M_swap(_Hash_code_base& __x)
1013
      {
1014
        std::swap(_M_extract(), __x._M_extract());
1015
        std::swap(_M_ranged_hash(), __x._M_ranged_hash());
1016
      }
1017
 
1018
    protected:
1019
      const _ExtractKey&
1020
      _M_extract() const { return _EboExtractKey::_S_cget(*this); }
1021
 
1022
      _ExtractKey&
1023
      _M_extract() { return _EboExtractKey::_S_get(*this); }
1024
 
1025
      const _Hash&
1026
      _M_ranged_hash() const { return _EboHash::_S_cget(*this); }
1027
 
1028
      _Hash&
1029
      _M_ranged_hash() { return _EboHash::_S_get(*this); }
1030
    };
1031
 
1032
  // No specialization for ranged hash function while caching hash codes.
1033
  // That combination is meaningless, and trying to do it is an error.
1034
 
1035
  /// Specialization: ranged hash function, cache hash codes.  This
1036
  /// combination is meaningless, so we provide only a declaration
1037
  /// and no definition.
1038
  template<typename _Key, typename _Value, typename _ExtractKey,
1039
           typename _H1, typename _H2, typename _Hash>
1040
    struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, true>;
1041
 
1042
  /// Specialization: hash function and range-hashing function, no
1043
  /// caching of hash codes.
1044
  /// Provides typedef and accessor required by TR1.
1045
  template<typename _Key, typename _Value, typename _ExtractKey,
1046
           typename _H1, typename _H2>
1047
    struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
1048
                           _Default_ranged_hash, false>
1049
    : private _Hashtable_ebo_helper<0, _ExtractKey>,
1050
      private _Hashtable_ebo_helper<1, _H1>,
1051
      private _Hashtable_ebo_helper<2, _H2>
1052
    {
1053
    private:
1054
      typedef _Hashtable_ebo_helper<0, _ExtractKey>      _EboExtractKey;
1055
      typedef _Hashtable_ebo_helper<1, _H1>             _EboH1;
1056
      typedef _Hashtable_ebo_helper<2, _H2>             _EboH2;
1057
 
1058
    public:
1059
      typedef _H1                                       hasher;
1060
 
1061
      hasher
1062
      hash_function() const
1063
      { return _M_h1(); }
1064
 
1065
      typedef std::size_t                               __hash_code;
1066
      typedef _Hash_node<_Value, false>                 __node_type;
1067
 
1068
    protected:
1069
      // We need the default constructor for the local iterators.
1070
      _Hash_code_base() = default;
1071
 
1072
      _Hash_code_base(const _ExtractKey& __ex,
1073
                      const _H1& __h1, const _H2& __h2,
1074
                      const _Default_ranged_hash&)
1075
      : _EboExtractKey(__ex), _EboH1(__h1), _EboH2(__h2) { }
1076
 
1077
      __hash_code
1078
      _M_hash_code(const _Key& __k) const
1079
      { return _M_h1()(__k); }
1080
 
1081
      std::size_t
1082
      _M_bucket_index(const _Key&, __hash_code __c, std::size_t __n) const
1083
      { return _M_h2()(__c, __n); }
1084
 
1085
      std::size_t
1086
      _M_bucket_index(const __node_type* __p,
1087
                      std::size_t __n) const
1088
      { return _M_h2()(_M_h1()(_M_extract()(__p->_M_v)), __n); }
1089
 
1090
      void
1091
      _M_store_code(__node_type*, __hash_code) const
1092
      { }
1093
 
1094
      void
1095
      _M_copy_code(__node_type*, const __node_type*) const
1096
      { }
1097
 
1098
      void
1099
      _M_swap(_Hash_code_base& __x)
1100
      {
1101
        std::swap(_M_extract(), __x._M_extract());
1102
        std::swap(_M_h1(), __x._M_h1());
1103
        std::swap(_M_h2(), __x._M_h2());
1104
      }
1105
 
1106
      const _ExtractKey&
1107
      _M_extract() const { return _EboExtractKey::_S_cget(*this); }
1108
 
1109
      _ExtractKey&
1110
      _M_extract() { return _EboExtractKey::_S_get(*this); }
1111
 
1112
      const _H1&
1113
      _M_h1() const { return _EboH1::_S_cget(*this); }
1114
 
1115
      _H1&
1116
      _M_h1() { return _EboH1::_S_get(*this); }
1117
 
1118
      const _H2&
1119
      _M_h2() const { return _EboH2::_S_cget(*this); }
1120
 
1121
      _H2&
1122
      _M_h2() { return _EboH2::_S_get(*this); }
1123
    };
1124
 
1125
  /// Specialization: hash function and range-hashing function,
1126
  /// caching hash codes.  H is provided but ignored.  Provides
1127
  /// typedef and accessor required by TR1.
1128
  template<typename _Key, typename _Value, typename _ExtractKey,
1129
           typename _H1, typename _H2>
1130
    struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
1131
                           _Default_ranged_hash, true>
1132
    : private _Hashtable_ebo_helper<0, _ExtractKey>,
1133
      private _Hashtable_ebo_helper<1, _H1>,
1134
      private _Hashtable_ebo_helper<2, _H2>
1135
    {
1136
    private:
1137
      typedef _Hashtable_ebo_helper<0, _ExtractKey>      _EboExtractKey;
1138
      typedef _Hashtable_ebo_helper<1, _H1>             _EboH1;
1139
      typedef _Hashtable_ebo_helper<2, _H2>             _EboH2;
1140
 
1141
    public:
1142
      typedef _H1                                       hasher;
1143
 
1144
      hasher
1145
      hash_function() const
1146
      { return _M_h1(); }
1147
 
1148
      typedef std::size_t                               __hash_code;
1149
      typedef _Hash_node<_Value, true>                  __node_type;
1150
 
1151
    protected:
1152
      _Hash_code_base(const _ExtractKey& __ex,
1153
                      const _H1& __h1, const _H2& __h2,
1154
                      const _Default_ranged_hash&)
1155
      : _EboExtractKey(__ex), _EboH1(__h1), _EboH2(__h2) { }
1156
 
1157
      __hash_code
1158
      _M_hash_code(const _Key& __k) const
1159
      { return _M_h1()(__k); }
1160
 
1161
      std::size_t
1162
      _M_bucket_index(const _Key&, __hash_code __c,
1163
                      std::size_t __n) const
1164
      { return _M_h2()(__c, __n); }
1165
 
1166
      std::size_t
1167
      _M_bucket_index(const __node_type* __p, std::size_t __n) const
1168
      { return _M_h2()(__p->_M_hash_code, __n); }
1169
 
1170
      void
1171
      _M_store_code(__node_type* __n, __hash_code __c) const
1172
      { __n->_M_hash_code = __c; }
1173
 
1174
      void
1175
      _M_copy_code(__node_type* __to, const __node_type* __from) const
1176
      { __to->_M_hash_code = __from->_M_hash_code; }
1177
 
1178
      void
1179
      _M_swap(_Hash_code_base& __x)
1180
      {
1181
        std::swap(_M_extract(), __x._M_extract());
1182
        std::swap(_M_h1(), __x._M_h1());
1183
        std::swap(_M_h2(), __x._M_h2());
1184
      }
1185
 
1186
      const _ExtractKey&
1187
      _M_extract() const { return _EboExtractKey::_S_cget(*this); }
1188
 
1189
      _ExtractKey&
1190
      _M_extract() { return _EboExtractKey::_S_get(*this); }
1191
 
1192
      const _H1&
1193
      _M_h1() const { return _EboH1::_S_cget(*this); }
1194
 
1195
      _H1&
1196
      _M_h1() { return _EboH1::_S_get(*this); }
1197
 
1198
      const _H2&
1199
      _M_h2() const { return _EboH2::_S_cget(*this); }
1200
 
1201
      _H2&
1202
      _M_h2() { return _EboH2::_S_get(*this); }
1203
    };
1204
 
1205
  /**
1206
   *  Primary class template _Equal_helper.
1207
   *
1208
   */
1209
  template <typename _Key, typename _Value, typename _ExtractKey,
1210
            typename _Equal, typename _HashCodeType,
1211
            bool __cache_hash_code>
1212
  struct _Equal_helper;
1213
 
1214
  /// Specialization.
1215
  template<typename _Key, typename _Value, typename _ExtractKey,
1216
           typename _Equal, typename _HashCodeType>
1217
  struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, true>
1218
  {
1219
    static bool
1220
    _S_equals(const _Equal& __eq, const _ExtractKey& __extract,
1221
              const _Key& __k, _HashCodeType __c, _Hash_node<_Value, true>* __n)
1222
    { return __c == __n->_M_hash_code && __eq(__k, __extract(__n->_M_v)); }
1223
  };
1224
 
1225
  /// Specialization.
1226
  template<typename _Key, typename _Value, typename _ExtractKey,
1227
           typename _Equal, typename _HashCodeType>
1228
  struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, false>
1229
  {
1230
    static bool
1231
    _S_equals(const _Equal& __eq, const _ExtractKey& __extract,
1232
              const _Key& __k, _HashCodeType, _Hash_node<_Value, false>* __n)
1233
    { return __eq(__k, __extract(__n->_M_v)); }
1234
  };
1235
 
1236
 
1237
  /**
1238
   *  Primary class template _Local_iterator_base.
1239
   *
1240
   *  Base class for local iterators, used to iterate within a bucket
1241
   *  but not between buckets.
1242
   */
1243
  template<typename _Key, typename _Value, typename _ExtractKey,
1244
           typename _H1, typename _H2, typename _Hash,
1245
           bool __cache_hash_code>
1246
    struct _Local_iterator_base;
1247
 
1248
  /// Specialization.
1249
  template<typename _Key, typename _Value, typename _ExtractKey,
1250
           typename _H1, typename _H2, typename _Hash>
1251
    struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1252
                                _H1, _H2, _Hash, true>
1253
    : private _H2
1254
    {
1255
      _Local_iterator_base() = default;
1256
      _Local_iterator_base(_Hash_node<_Value, true>* __p,
1257
                           std::size_t __bkt, std::size_t __bkt_count)
1258
      : _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { }
1259
 
1260
      void
1261
      _M_incr()
1262
      {
1263
        _M_cur = _M_cur->_M_next();
1264
        if (_M_cur)
1265
          {
1266
            std::size_t __bkt = _M_h2()(_M_cur->_M_hash_code, _M_bucket_count);
1267
            if (__bkt != _M_bucket)
1268
              _M_cur = nullptr;
1269
          }
1270
      }
1271
 
1272
      const _H2& _M_h2() const
1273
      { return *this; }
1274
 
1275
      _Hash_node<_Value, true>*  _M_cur;
1276
      std::size_t _M_bucket;
1277
      std::size_t _M_bucket_count;
1278
    };
1279
 
1280
  /// Specialization.
1281
  template<typename _Key, typename _Value, typename _ExtractKey,
1282
           typename _H1, typename _H2, typename _Hash>
1283
    struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1284
                                _H1, _H2, _Hash, false>
1285
    : private _Hash_code_base<_Key, _Value, _ExtractKey,
1286
                              _H1, _H2, _Hash, false>
1287
    {
1288
      _Local_iterator_base() = default;
1289
      _Local_iterator_base(_Hash_node<_Value, false>* __p,
1290
                           std::size_t __bkt, std::size_t __bkt_count)
1291
      : _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { }
1292
 
1293
      void
1294
      _M_incr()
1295
      {
1296
        _M_cur = _M_cur->_M_next();
1297
        if (_M_cur)
1298
          {
1299
            std::size_t __bkt = this->_M_bucket_index(_M_cur, _M_bucket_count);
1300
            if (__bkt != _M_bucket)
1301
              _M_cur = nullptr;
1302
          }
1303
      }
1304
 
1305
      _Hash_node<_Value, false>*  _M_cur;
1306
      std::size_t _M_bucket;
1307
      std::size_t _M_bucket_count;
1308
    };
1309
 
1310
  template<typename _Key, typename _Value, typename _ExtractKey,
1311
           typename _H1, typename _H2, typename _Hash, bool __cache>
1312
    inline bool
1313
    operator==(const _Local_iterator_base<_Key, _Value, _ExtractKey,
1314
                                          _H1, _H2, _Hash, __cache>& __x,
1315
               const _Local_iterator_base<_Key, _Value, _ExtractKey,
1316
                                          _H1, _H2, _Hash, __cache>& __y)
1317
    { return __x._M_cur == __y._M_cur; }
1318
 
1319
  template<typename _Key, typename _Value, typename _ExtractKey,
1320
           typename _H1, typename _H2, typename _Hash, bool __cache>
1321
    inline bool
1322
    operator!=(const _Local_iterator_base<_Key, _Value, _ExtractKey,
1323
                                          _H1, _H2, _Hash, __cache>& __x,
1324
               const _Local_iterator_base<_Key, _Value, _ExtractKey,
1325
                                          _H1, _H2, _Hash, __cache>& __y)
1326
    { return __x._M_cur != __y._M_cur; }
1327
 
1328
  /// local iterators
1329
  template<typename _Key, typename _Value, typename _ExtractKey,
1330
           typename _H1, typename _H2, typename _Hash,
1331
           bool __constant_iterators, bool __cache>
1332
    struct _Local_iterator
1333
    : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1334
                                  _H1, _H2, _Hash, __cache>
1335
    {
1336
      typedef _Value                                   value_type;
1337
      typedef typename std::conditional<__constant_iterators,
1338
                                        const _Value*, _Value*>::type
1339
                                                       pointer;
1340
      typedef typename std::conditional<__constant_iterators,
1341
                                        const _Value&, _Value&>::type
1342
                                                       reference;
1343
      typedef std::ptrdiff_t                           difference_type;
1344
      typedef std::forward_iterator_tag                iterator_category;
1345
 
1346
      _Local_iterator() = default;
1347
 
1348
      explicit
1349
      _Local_iterator(_Hash_node<_Value, __cache>* __p,
1350
                      std::size_t __bkt, std::size_t __bkt_count)
1351
      : _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash,
1352
                             __cache>(__p, __bkt, __bkt_count)
1353
      { }
1354
 
1355
      reference
1356
      operator*() const
1357
      { return this->_M_cur->_M_v; }
1358
 
1359
      pointer
1360
      operator->() const
1361
      { return std::__addressof(this->_M_cur->_M_v); }
1362
 
1363
      _Local_iterator&
1364
      operator++()
1365
      {
1366
        this->_M_incr();
1367
        return *this;
1368
      }
1369
 
1370
      _Local_iterator
1371
      operator++(int)
1372
      {
1373
        _Local_iterator __tmp(*this);
1374
        this->_M_incr();
1375
        return __tmp;
1376
      }
1377
    };
1378
 
1379
  /// local const_iterators
1380
  template<typename _Key, typename _Value, typename _ExtractKey,
1381
           typename _H1, typename _H2, typename _Hash,
1382
           bool __constant_iterators, bool __cache>
1383
    struct _Local_const_iterator
1384
    : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1385
                                  _H1, _H2, _Hash, __cache>
1386
    {
1387
      typedef _Value                                   value_type;
1388
      typedef const _Value*                            pointer;
1389
      typedef const _Value&                            reference;
1390
      typedef std::ptrdiff_t                           difference_type;
1391
      typedef std::forward_iterator_tag                iterator_category;
1392
 
1393
      _Local_const_iterator() = default;
1394
 
1395
      explicit
1396
      _Local_const_iterator(_Hash_node<_Value, __cache>* __p,
1397
                            std::size_t __bkt, std::size_t __bkt_count)
1398
      : _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash,
1399
                             __cache>(__p, __bkt, __bkt_count)
1400
      { }
1401
 
1402
      _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey,
1403
                                                  _H1, _H2, _Hash,
1404
                                                  __constant_iterators,
1405
                                                  __cache>& __x)
1406
      : _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash,
1407
                             __cache>(__x._M_cur, __x._M_bucket,
1408
                                      __x._M_bucket_count)
1409
      { }
1410
 
1411
      reference
1412
      operator*() const
1413
      { return this->_M_cur->_M_v; }
1414
 
1415
      pointer
1416
      operator->() const
1417
      { return std::__addressof(this->_M_cur->_M_v); }
1418
 
1419
      _Local_const_iterator&
1420
      operator++()
1421
      {
1422
        this->_M_incr();
1423
        return *this;
1424
      }
1425
 
1426
      _Local_const_iterator
1427
      operator++(int)
1428
      {
1429
        _Local_const_iterator __tmp(*this);
1430
        this->_M_incr();
1431
        return __tmp;
1432
      }
1433
    };
1434
 
1435
  /**
1436
   *  Primary class template _Hashtable_base.
1437
   *
1438
   *  Helper class adding management of _Equal functor to
1439
   *  _Hash_code_base type.
1440
   *
1441
   *  Base class templates are:
1442
   *    - __detail::_Hash_code_base
1443
   *    - __detail::_Hashtable_ebo_helper
1444
   */
1445
  template<typename _Key, typename _Value,
1446
           typename _ExtractKey, typename _Equal,
1447
           typename _H1, typename _H2, typename _Hash, typename _Traits>
1448
  struct _Hashtable_base
1449
  : public _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash,
1450
                           _Traits::__hash_cached::value>,
1451
    private _Hashtable_ebo_helper<0, _Equal>
1452
  {
1453
  public:
1454
    typedef _Key                                    key_type;
1455
    typedef _Value                                  value_type;
1456
    typedef _Equal                                  key_equal;
1457
    typedef std::size_t                             size_type;
1458
    typedef std::ptrdiff_t                          difference_type;
1459
 
1460
    using __traits_type = _Traits;
1461
    using __hash_cached = typename __traits_type::__hash_cached;
1462
    using __constant_iterators = typename __traits_type::__constant_iterators;
1463
    using __unique_keys = typename __traits_type::__unique_keys;
1464
 
1465
    using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1466
                                             _H1, _H2, _Hash,
1467
                                             __hash_cached::value>;
1468
 
1469
    using __hash_code = typename __hash_code_base::__hash_code;
1470
    using __node_type = typename __hash_code_base::__node_type;
1471
 
1472
    using iterator = __detail::_Node_iterator<value_type,
1473
                                              __constant_iterators::value,
1474
                                              __hash_cached::value>;
1475
 
1476
    using const_iterator = __detail::_Node_const_iterator<value_type,
1477
                                                   __constant_iterators::value,
1478
                                                   __hash_cached::value>;
1479
 
1480
    using local_iterator = __detail::_Local_iterator<key_type, value_type,
1481
                                                  _ExtractKey, _H1, _H2, _Hash,
1482
                                                  __constant_iterators::value,
1483
                                                     __hash_cached::value>;
1484
 
1485
    using const_local_iterator = __detail::_Local_const_iterator<key_type,
1486
                                                                 value_type,
1487
                                        _ExtractKey, _H1, _H2, _Hash,
1488
                                        __constant_iterators::value,
1489
                                        __hash_cached::value>;
1490
 
1491
    using __ireturn_type = typename std::conditional<__unique_keys::value,
1492
                                                     std::pair<iterator, bool>,
1493
                                                     iterator>::type;
1494
 
1495
    using __iconv_type = typename  std::conditional<__unique_keys::value,
1496
                                                    _Select1st, _Identity
1497
                                                    >::type;
1498
  private:
1499
    using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>;
1500
    using _EqualHelper =  _Equal_helper<_Key, _Value, _ExtractKey, _Equal,
1501
                                        __hash_code, __hash_cached::value>;
1502
 
1503
  protected:
1504
    using __node_base = __detail::_Hash_node_base;
1505
    using __bucket_type = __node_base*;
1506
 
1507
    _Hashtable_base(const _ExtractKey& __ex, const _H1& __h1, const _H2& __h2,
1508
                    const _Hash& __hash, const _Equal& __eq)
1509
    : __hash_code_base(__ex, __h1, __h2, __hash), _EqualEBO(__eq)
1510
    { }
1511
 
1512
    bool
1513
    _M_equals(const _Key& __k, __hash_code __c, __node_type* __n) const
1514
    {
1515
      return _EqualHelper::_S_equals(_M_eq(), this->_M_extract(),
1516
                                     __k, __c, __n);
1517
    }
1518
 
1519
    void
1520
    _M_swap(_Hashtable_base& __x)
1521
    {
1522
      __hash_code_base::_M_swap(__x);
1523
      std::swap(_M_eq(), __x._M_eq());
1524
    }
1525
 
1526
    const _Equal&
1527
    _M_eq() const { return _EqualEBO::_S_cget(*this); }
1528
 
1529
    _Equal&
1530
    _M_eq() { return _EqualEBO::_S_get(*this); }
1531
  };
1532
 
1533
  /**
1534
   *  struct _Equality_base.
1535
   *
1536
   *  Common types and functions for class _Equality.
1537
   */
1538
  struct _Equality_base
1539
  {
1540
  protected:
1541
    template<typename _Uiterator>
1542
      static bool
1543
      _S_is_permutation(_Uiterator, _Uiterator, _Uiterator);
1544
  };
1545
 
1546
  // See std::is_permutation in N3068.
1547
  template<typename _Uiterator>
1548
    bool
1549
    _Equality_base::
1550
    _S_is_permutation(_Uiterator __first1, _Uiterator __last1,
1551
                      _Uiterator __first2)
1552
    {
1553
      for (; __first1 != __last1; ++__first1, ++__first2)
1554
        if (!(*__first1 == *__first2))
1555
          break;
1556
 
1557
      if (__first1 == __last1)
1558
        return true;
1559
 
1560
      _Uiterator __last2 = __first2;
1561
      std::advance(__last2, std::distance(__first1, __last1));
1562
 
1563
      for (_Uiterator __it1 = __first1; __it1 != __last1; ++__it1)
1564
        {
1565
          _Uiterator __tmp =  __first1;
1566
          while (__tmp != __it1 && !bool(*__tmp == *__it1))
1567
            ++__tmp;
1568
 
1569
          // We've seen this one before.
1570
          if (__tmp != __it1)
1571
            continue;
1572
 
1573
          std::ptrdiff_t __n2 = 0;
1574
          for (__tmp = __first2; __tmp != __last2; ++__tmp)
1575
            if (*__tmp == *__it1)
1576
              ++__n2;
1577
 
1578
          if (!__n2)
1579
            return false;
1580
 
1581
          std::ptrdiff_t __n1 = 0;
1582
          for (__tmp = __it1; __tmp != __last1; ++__tmp)
1583
            if (*__tmp == *__it1)
1584
              ++__n1;
1585
 
1586
          if (__n1 != __n2)
1587
            return false;
1588
        }
1589
      return true;
1590
    }
1591
 
1592
  /**
1593
   *  Primary class template  _Equality.
1594
   *
1595
   *  This is for implementing equality comparison for unordered
1596
   *  containers, per N3068, by John Lakos and Pablo Halpern.
1597
   *  Algorithmically, we follow closely the reference implementations
1598
   *  therein.
1599
   */
1600
  template<typename _Key, typename _Value, typename _Alloc,
1601
           typename _ExtractKey, typename _Equal,
1602
           typename _H1, typename _H2, typename _Hash,
1603
           typename _RehashPolicy, typename _Traits,
1604
           bool _Unique_keys = _Traits::__unique_keys::value>
1605
    struct _Equality;
1606
 
1607
  /// Specialization.
1608
  template<typename _Key, typename _Value, typename _Alloc,
1609
           typename _ExtractKey, typename _Equal,
1610
           typename _H1, typename _H2, typename _Hash,
1611
           typename _RehashPolicy, typename _Traits>
1612
    struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1613
                     _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
1614
    {
1615
      using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1616
                                     _H1, _H2, _Hash, _RehashPolicy, _Traits>;
1617
 
1618
      bool
1619
      _M_equal(const __hashtable&) const;
1620
    };
1621
 
1622
  template<typename _Key, typename _Value, typename _Alloc,
1623
           typename _ExtractKey, typename _Equal,
1624
           typename _H1, typename _H2, typename _Hash,
1625
           typename _RehashPolicy, typename _Traits>
1626
    bool
1627
    _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1628
              _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
1629
    _M_equal(const __hashtable& __other) const
1630
    {
1631
      const __hashtable* __this = static_cast<const __hashtable*>(this);
1632
 
1633
      if (__this->size() != __other.size())
1634
        return false;
1635
 
1636
      for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx)
1637
        {
1638
          const auto __ity = __other.find(_ExtractKey()(*__itx));
1639
          if (__ity == __other.end() || !bool(*__ity == *__itx))
1640
            return false;
1641
        }
1642
      return true;
1643
    }
1644
 
1645
  /// Specialization.
1646
  template<typename _Key, typename _Value, typename _Alloc,
1647
           typename _ExtractKey, typename _Equal,
1648
           typename _H1, typename _H2, typename _Hash,
1649
           typename _RehashPolicy, typename _Traits>
1650
    struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1651
                     _H1, _H2, _Hash, _RehashPolicy, _Traits, false>
1652
    : public _Equality_base
1653
    {
1654
      using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1655
                                     _H1, _H2, _Hash, _RehashPolicy, _Traits>;
1656
 
1657
      bool
1658
      _M_equal(const __hashtable&) const;
1659
    };
1660
 
1661
  template<typename _Key, typename _Value, typename _Alloc,
1662
           typename _ExtractKey, typename _Equal,
1663
           typename _H1, typename _H2, typename _Hash,
1664
           typename _RehashPolicy, typename _Traits>
1665
    bool
1666
    _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1667
              _H1, _H2, _Hash, _RehashPolicy, _Traits, false>::
1668
    _M_equal(const __hashtable& __other) const
1669
    {
1670
      const __hashtable* __this = static_cast<const __hashtable*>(this);
1671
 
1672
      if (__this->size() != __other.size())
1673
        return false;
1674
 
1675
      for (auto __itx = __this->begin(); __itx != __this->end();)
1676
        {
1677
          const auto __xrange = __this->equal_range(_ExtractKey()(*__itx));
1678
          const auto __yrange = __other.equal_range(_ExtractKey()(*__itx));
1679
 
1680
          if (std::distance(__xrange.first, __xrange.second)
1681
              != std::distance(__yrange.first, __yrange.second))
1682
            return false;
1683
 
1684
          if (!_S_is_permutation(__xrange.first, __xrange.second,
1685
                                 __yrange.first))
1686
            return false;
1687
 
1688
          __itx = __xrange.second;
1689
        }
1690
      return true;
1691
    }
1692
 
1693
  /**
1694
   * This type is to combine a _Hash_node_base instance with an allocator
1695
   * instance through inheritance to benefit from EBO when possible.
1696
   */
1697
  template<typename _NodeAlloc>
1698
    struct _Before_begin : public _NodeAlloc
1699
    {
1700
      _Hash_node_base _M_node;
1701
 
1702
      _Before_begin(const _Before_begin&) = default;
1703
      _Before_begin(_Before_begin&&) = default;
1704
 
1705
      template<typename _Alloc>
1706
        _Before_begin(_Alloc&& __a)
1707
          : _NodeAlloc(std::forward<_Alloc>(__a))
1708
        { }
1709
    };
1710
 
1711
 //@} hashtable-detail
1712
_GLIBCXX_END_NAMESPACE_VERSION
1713
} // namespace __detail
1714
} // namespace std
1715
 
1716
#endif // _HASHTABLE_POLICY_H

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.